Tag: vectors: lines in two and three dimensions

Questions Related to vectors: lines in two and three dimensions

The length of the perpendicular drawn from the points $(5,4,-1)$ to the line $\overline r  = \widehat i + \lambda \left( {2\widehat i + 9\widehat i + 5\widehat k} \right)$ is

  1. $\dfrac{{\sqrt {2190} }}{{110}}$

  2. $\sqrt { \frac { { 2199 } }{ { 110 } }  } $

  3. $\sqrt { \frac { { 2109 } }{ { 110 } }  } $

  4. $\dfrac{{\sqrt {23190} }}{{110}}$


Correct Option: C
Explanation:

According to the question:

$\begin{array}{l} let\, the\, point\, (5,4,-1)\, \, be\, \, P\, and\, the\, point\, through\, which\, the\, \, line\, passes\, \, be\, \, Q\, (1,0,0).\, \, \, \,  \ the\, line\, is\, parallel\, to\, the\, vector:\, \, \overrightarrow { r } =\left( { 2\hat { i } +9\hat { i } +5\hat { k }  } \right)  \ Now, \ \overrightarrow { PQ } =-4\hat { i } -4\widehat { j } +\hat { k }  \ \therefore \, \, \, \overrightarrow { r\,  } \, \times \overrightarrow { PQ } =\left| \begin{array}{l} \, \, \hat { i } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \widehat { j } \, \, \, \, \, \, \, \, \, \, \, \widehat { k }  \ \, \, 2\, \, \, \, \, \, \, \, \, \, \, \, \, \, 9\, \, \, \, \, \, \, \, \, \, \, 5\, \,  \ \, -4\, \, \, \, \, \, \, -4\, \, \, \, \, \, \, \, \, \, 1 \end{array} \right| \, \, \, \, \, \, \, \,  \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\, 29\, \hat { i } \, -\, \, 22\, \widehat { j } \, +28\, \widehat { k }  \ \Rightarrow \left| { \, \overrightarrow { r\,  } \, \times \overrightarrow { PQ }  } \right| =\sqrt { \, { { (29) }^{ 2 } }\, +{ { (-\, \, 22) }^{ 2 } }\, +{ { (28) }^{ 2 } } }  \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\sqrt { 841+484+784 } =\sqrt { 2109 }  \ \left| { \overrightarrow { r\,  } \,  } \right| =\sqrt { { 2^{ 2 } }+{ 9^{ 2 } }+{ 5^{ 2 } } }  \ \, \, \, \, \, \, \, =\sqrt { 4+81+25 } =\sqrt { 110 }  \ d=\frac { { \, \left| { \overrightarrow { r\,  } \, \times \overrightarrow { PQ }  } \right|  } }{ { \left| { \overrightarrow { r\,  } \,  } \right|  } } =\frac { { \sqrt { 2109 }  } }{ { \sqrt { 110 }  } } =\sqrt { \frac { { 2109 } }{ { 110 } }  }  \ so\, that\, the\, correct\, option\, is\, C. \end{array}$

The perpendicular distance of the point $(2,4,-1)$ from the line $\dfrac{x+5}{1}=\dfrac{y+3}{4}=\dfrac{z-6}{-9}$ is

  1. $3$

  2. $5$

  3. $7$

  4. $9$


Correct Option: C
Explanation:
Let P(2,4,1)P(2,4,−1) be the given point and the Line Lx51=y34=z69=λL→x−51=y−34=z−6−9=λ
d.r.⇒d.r. of the line L=(1,4,9)L=(1,4,−9)
Any point Q(x,y,z)Q(x,y,z) on the line L is given by Q(λ+5,4λ+3,9λ+6)Q(λ+5,4λ+3,−9λ+6)
Let this point QQ be the foot of  of the point P on the line LL.
d.r of $\overrightarrow {PQ} $ the 
=(λ+52,4λ+34,9λ+6+1)=(λ+5−2,4λ+3−4,−9λ+6+1)
=(λ+3,4λ1,9λ+7)
$\overrightarrow {PQ} $(1,4,9)=0∴PQ¯.(1,4,−9)=0
(λ+3,4λ1,9λ+7).(1,4,9)=0(λ+3,4λ−1,−9λ+7).(1,4,−9)=0
(λ+3)1+(4λ1)49(9λ+7)=0⇒(λ+3)1+(4λ−1)4−9(−9λ+7)=0
λ+3+16λ4+81λ63=0⇒λ+3+16λ−4+81λ−63=0
98λ=64⇒98λ=64
λ=3249
$\overrightarrow {PQ} $ is  to the line L
Substituting λλ in Q we get the foot of Q⊥Q as
Q(3249Q(3249+5,12849+5,12849+3,28849+3,−28849+6)+6)

 distance$\overrightarrow {PQ} $ =7



A point on the line $\bar {r}=2\hat {i}+3\hat {j}+4\hat {k}+t(\hat {i}+\hat {j}+\hat {k})$ is

  1. $(2014,2015,2016)$

  2. $(2013,2015,2017)$

  3. $(2013,2014,2017)$

  4. $None\ of\ these$


Correct Option: A

Perpendicular distance between the plane $  2 x-y+2 z=1  $ and origin is 

  1. $ \frac{1}{3} $

  2. $3$

  3. $ \frac{1}{6} $

  4. $6$


Correct Option: A
Explanation:

The perpendicular distance of a plane and origin is give as 

$\dfrac{|d|}{\sqrt {a^2+b^2+c^2}}\\dfrac{1}{\sqrt {2^2+1^2+2^2}}\\dfrac 1{\sqrt 9}=\dfrac 13$

The position vector of point $A$ is $(4, 2, -3)$. If $p {1}$ is perpendicular distance of $A$ from $XY-plane$ and $p _{2}$ is perpendicular distance from Y-axis, then $p _{1} + p _{2} =$ ______.

  1. $8$

  2. $3$

  3. $2$

  4. $7$


Correct Option: A
Explanation:

$P _1$ is perpendicular distance of A from XY-plane 
So, $x _1=0,y _1=0,z _=-3$
$\therefore p _1=\sqrt{(-3)^2}=3$
$p _2$ is perpendicular distance from Y-axis
So, $x _1=4,y _1=0,z _1=-3$
$p _{2} = \sqrt {x _{1}^{2} + y _{1}^{2}}$
$\therefore p _2=\sqrt{4^2+(-3^2)}=5$
$p _{1} + p _{2} = 5 + 3 = 8$.

The perpendicular distance from a point $P$ with position vector $5\vec {i}+\vec {j}+3\vec {k} $ to the line $\vec {r}=(3\vec {i}+7\vec {j}+\vec {k})+t(\vec {j}+\vec {k})$ is

  1. $3$

  2. $6$

  3. $9$

  4. $12$


Correct Option: B
Explanation:

Point Pis $(5, 1, 3)$  and line is given

$\vec r = \left( {3\hat i + 7\hat j + \hat k} \right) + t\left( {\hat j + \hat k} \right)$
 let the foot of the perpendicular from point +p to the given line be $\theta \left( {x{,^1}y{,^1},{z^1}} \right)$ then direction ratios of $pq$ are
$\left( {{x^1} - 5,{y^1} - 1,{z^1} - 3} \right)$
since $pq$is $ \bot $ to the given line so 
$b \times \left( {{x^1} - 5} \right) + 1 \times \left( {{y^1} - 11 + 1 \times \left( {{z^1} - 31} \right)} \right) = 0$
${y^1} + 1 + {z^1} - 3 = 0$
${y^1} + {z^1} = 4 = 0$ 
artesian equation of the given line is 
$\frac{{x - 3}}{0} = \frac{{y - 7}}{1} = \frac{{z - 1}}{1}$ 
let $\frac{{x - 3}}{0} = \frac{{y - 7}}{1} = \frac{{z - 1}}{1} = r$
$x=3, y= r+7, z=r+1$
so general point on this line is (3,r+7,r+1)
since $\left( {{x^1},{y^1},{z^1}} \right)$
lies on this line so ${x^1} = 3\,\,{y^1} = r + 7\,\,{z^1} = r + 1$
putting values of ${y^1}& $ in
${y^1} + {z^1} = 4$
$r + 7 + r + 1 = 4$
$2r=-4$
$=r=-2$
thus ${x^1} = 3,{y^1} =  - 2 + 7 = 5$
${z^1} =  - 2 + 1 =  - 1$
so point Q is $(3,5,-1)$
therefore perpendicular distance $\sqrt {{{\left( {5 - 3} \right)}^2} + {{\left( {1 - 5} \right)}^2} + {{\left( {3 + 1} \right)}^2}} $
$\sqrt {4 + 16 + 16} $
$\sqrt {36} $
$=6units$

The perpendicular distance of the point $(6, -4, 4)$ on to the line joining the points $A(2, 1, 2), B(3, -1, 4)$ is?

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

Let the point be $P(6,-4,4)$ 


Equation of the line joining $A$ and $B$ is 

$\dfrac{x-2}{3-2}=\dfrac{y-1}{-1-1}=\dfrac{z-2}{4-2}$

$\dfrac{{x - 2}}{1} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 2}}{2}$

Let
$\dfrac{{x - 2}}{1} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 2}}{2}=r$

$x=r+2,\,y=-2r+1,\,z=2r+2,\,z=2r+2$

General point on the given line is 
$(r+2,-2r+1,2r+2)$

Let the foot of perpendicular from $P$ to the given line be $Q(r _1+2,-2r _1+1,2r _1+2)$

Direction ratios the line $PQ$ are 
$(r _1+2-6,\,-2r _1+1+4,\,2r _1+2-4)$ which is 
$r _1-4,\,\,-2r _1+5,\,\,2r _1-2$

Since the line $PQ$ is perpendicular to the given line 

$1(r _1-2)-2(-2r _1+5)+(2r _1-2)=0$

$r _1=2$

$\begin{array}{l} { r _{ 1 } }+2=4 \  \ -2{ r _{ 1 } }+1=-3 \  \ 2{ r _{ 1 } }+2=6 \end{array}$
Therefore, 
Foot of perpendicular is $Q(4,-3,6)$

Perpendicular distance $=PQ$

$=\sqrt {(4-6)^2+(-3+4)^2+(6-4)^2}=3$

Find point $Q$, the foot of perpendicular drawn on line repeat $AB$, from $P\ A(1, 2, 4)\ B(3, 4,5)\ P(2, 4, 3)$.

  1. $ Q=(\dfrac{19}{9}, \dfrac{28}{9}, \dfrac{41}{9}).$
  2. $Q=(12,20,30).$

  3. $Q=(55,66,44).$

  4. $Q=(23,34,45).$


Correct Option: A
Explanation:
Points are $P(2,4,3), A(1,2,4), B(3,4,5).$ 
To find the foot of the perpendicular from $P$ onto $AB$.

Equation of $AB$
$x = 1+(3-1)t = 1+2t$
$y = 2+(4-2)t = 2+2t$
$z = 4+(5-4)t = 4+t$

Direction Coefficients
$ 2,  2,  1$ $Q$ lies on the $AB.$

Equation of a $3-d$ plane perpendicular to $AB$ 
$2x + 2y + z = C $

This plane passes through $P$
So,
 $2\times 2+2\times 4+3= C$

$Q$ lies on the line and the plane. 
So,
$4t+2 + 4t+4 + t+4 = 15$
So for $Q$ $t = 5/9$
Hence, $Q=(19/9, 28/9, 41/9)$

Hence, this is the answer.

The length of the perpendicular drawn from the point $( 3 , - 1,11 )$ to the line $\dfrac { x } { 2 } = \dfrac { y - 2 } { 3 } = \dfrac { z - 3 } { 4 }  $ is:

  1. $\sqrt { 66 }$

  2. $\sqrt { 29 }$

  3. $\sqrt { 33 }$

  4. $\sqrt { 53 }$


Correct Option: D

The perpendicular distance of $p _1, p _2, p _3$ of points $({a^2}, 2a), \, (ab, a + b), \, ({b^2}, 2b)$ respectively from straight line $x + y\tan \theta + {{tan}^2} \theta = 0$ are in :

  1. A.P

  2. G.P

  3. H.P

  4. None of these


Correct Option: B