Tag: finding ratios

Questions Related to finding ratios

Convert the following into percentage.
$\dfrac{2}{3}$.

  1. $66\%$

  2. $65\%$

  3. $33\%$

  4. $66.67\%$


Correct Option: D
Explanation:
$\dfrac{2}{3}$ into percentage
$=\dfrac{2}{3}\times 100\%= \dfrac{200}{3}\% = 66.67\%$

Convert the following into percentage.
$\dfrac{5}{8}$.

  1. $62.5 \%$

  2. $65.5\%$

  3. $66.6\%$

  4. $64\%$


Correct Option: A
Explanation:
$\dfrac{5}{8}$
$=\dfrac{5}{8}\times 100\%=\dfrac{500}{8}\%=62.5\%$

If $\dfrac{1}{x} + y = 3$ and $x + \dfrac{1}{y} = 2$ then $x:y$ is 

  1. $3:2$

  2. $2:3$

  3. $1:2$

  4. $2:1$


Correct Option: B
Explanation:
The question states '...then x: is' 
It should state '..then x:y is'

Given
$\dfrac { 1 }{ x } +y=3$ --- Eqn (1)
$x+\dfrac { 1 }{ y } =2$ ---Eqn (2)

Multiplying Eqn (1) by x and Eqn (2) by y, we get:

$x\left( \dfrac { 1 }{ x } +y \right) =3x\quad \Rightarrow 1+yx=3x$ --- Eqn (3)
$y\left( x+\dfrac { 1 }{ y }  \right) =2y\quad \Rightarrow xy+1=2y$ --- Eqn (4)

Subtracting Eqn (4) and Eqn (5), we get:

$1+yx-1-yx=3x-2y$
$\Rightarrow 0=3x-2y$
$\Rightarrow 3x=2y$
$\Rightarrow \dfrac { x }{ y } =\dfrac { 2 }{ 3 } $
$\therefore x:y=2:3$

Hence the answer is B

Find the ratio of: $36$ to $64$

  1. $9:11$

  2. $9:12$

  3. $9:16$

  4. $9:17$


Correct Option: C
Explanation:

$\dfrac{36}{64}=\dfrac{36\div 4}{64\div 4} =\dfrac{9}{16}$

The ratio of $40\ min$ to $2.5$ hours is

  1. $4:17$

  2. $4:18$

  3. $4:13$

  4. $4:15$


Correct Option: D
Explanation:
$\dfrac {40\ min}{2.5\ hr}$
$=\dfrac {10\ min}{2hr +30\ min}=\dfrac {40}{2\times 60+30}$
$=\dfrac {40}{150}\ \Rightarrow \boxed {4:15}$
Option $D$ is correct

If ${x+y}{ax+by}=\dfrac{y+z}{ay+bz}=\dfrac{z+x}{az+bx}$, then "each of these ratio is equal to $\dfrac{2}{a+b}$, unless $x+y+z=0$." this statement is ____

  1. True

  2. False


Correct Option: A

$30$ cricket players and $20$ kho-kho players are training on a field. What is the ratio cricket players to the total number of players?

  1. $\dfrac {3}{2}$

  2. $\dfrac {2}{5}$

  3. $\dfrac {3}{5}$

  4. $\dfrac {1}{5}$


Correct Option: C
Explanation:

$\dfrac{\text{number of cricket players}}{\text{total number of players}}=\dfrac{30}{30+20}=\dfrac{30}{50} =\dfrac{3}{5}$

Snehal has a red ribbon that is $80cm$ long and a blue ribbon, $220m$ long. What is the ratio of the length of the red ribbon to that of the blue ribbon?

  1. $\dfrac {4}{21}$

  2. $\dfrac {4}{5}$

  3. $\dfrac {5}{11}$

  4. $\dfrac {4}{11}$


Correct Option: D
Explanation:

$\dfrac{\text{length of red ribbon}}{\text{length of blue ribbon}}= \dfrac{80cm}{220cm} = \dfrac{8}{22} = \dfrac{4}{11}$

If a:b=$3$:$5$, find 
$\left( {10a + 3b} \right):\left( {5a + 2b} \right)$

  1. $9:8$

  2. $3:5$

  3. $9:5$

  4. $7:5$


Correct Option: C
Explanation:

Given $a:b=3:5$, Let $a=3k$ and $b=5k$


Then, $(10a+3b):(5a+2b)$

$=\dfrac{10\times3k+3\times5k}{5\times3k+2\times5k}$

$=\dfrac{30k+15k}{15k+10k}$

$=\dfrac{45k}{25k}$

$=\dfrac{9}{5}$

$(10a+3b):(5a+2b)=9:5$

The total population of a village is  $3540,$  out of which  $2065$  are males. Find the ratio of males to females.

  1. $\dfrac 57$

  2. $\dfrac 35$

  3. $\dfrac 75$

  4. $\dfrac 65$


Correct Option: C