Tag: logarithm and its uses

Questions Related to logarithm and its uses

$\log _ee^5$ is equal to- 

  1. $2.5$

  2. $1.5$

  3. $2$

  4. $5$


Correct Option: D
Explanation:

$\log _ee^5=5\log _ee=5*1=5$

If $\log _3 x = 3\, & \,\log _x y = 4\,$, then find $y$.

  1. ${3^6}$

  2. ${3^9}$

  3. ${3}^{12}$

  4. $none$


Correct Option: C
Explanation:

We have,

${{\log } _{3}}x=3$

 

We know that

${{\log } _{a}}x=y\Rightarrow x={{a}^{y}}$

 

Therefore,

$ x={{3}^{3}} $

$ x=27 $

 

Here,

$ {{\log } _{x}}y=12 $

$ y={{x}^{12}} $

 

On putting the value of $x$, we get

$y={{3}^{12}}$

 

Hence, this is the answer.

If anti ${ \log } _{ 10 }(0.3678)=2.3324$ then ${ \log } _{ 10 }233.2$ is equal to

  1. 367.8

  2. 36.78

  3. 3.3678

  4. 2.3678


Correct Option: D
Explanation:

$antilog _{10}(0.3678)=2.3324$


$\therefore \log(2.3324)=0.3678$

$\log _{10}233.2=\log _{10}(2.332\times 100)$

                     $=\log _{10}(2.332) + \log (10^2) \quad \dots ( \log a+\log b=\log(ab))$

                     $=\log _{10}(2.332) + 2\log (10) \quad \dots ( n \log _ab=\log _ab^n)$

As we know, $log _a a=1$

$\log _{10}233.2=2+0.3678=2.3678$

$\log _264+\log _3729$

  1. 12

  2. 15

  3. 18

  4. None


Correct Option: A
Explanation:

$\log _264+\log _3729\\log _22^6+\log _33^6\6\log _22+6\log _33\6+6=12$

$\log _5625+\log _6 216$

  1. $7$

  2. $6$

  3. $5 $

  4. $9$


Correct Option: A
Explanation:

$\log _5625+\lg _6216\\log _55^4+\log _66^3\4\log _55+3\log _66\3+4=7$

Which of the following real numbers is(are) non-positive?

  1. $log{ } _{ 0.3 }(\dfrac { \sqrt { 5 } +2 }{ \sqrt { 5 } -2 }  )$

  2. $log{ } _{ 7 }(\sqrt { 83 } -9\quad )$

  3. $log{ } _{ 7\frac { \pi }{ 12 } }(cot\frac { \pi }{ 8 } \quad )$

  4. ${ log } _{ 2 }\sqrt { 9.\sqrt [ 3 ]{ { 27 }^{ \frac { -5 }{ 3 } }.243{ }^{ \frac { -7 }{ 5 } } } } $


Correct Option: A
Explanation:
From given,

we have,

$\log _{0.3}\left(\dfrac{\sqrt{5}+2}{\sqrt{5}-2}\right)$

$=\log _{0.3}\left(2+\sqrt{5}\right)-\log _{0.3}\left(\sqrt{5}-2\right)$

$=-2.39811$

If $x=\log _am$, then value of $m$ is equal to

  1. anti log $ _a x$

  2. anti log $ _x a$

  3. $a^x$

  4. $x^a$


Correct Option: A,C
Explanation:

We have, 

$x = \log _am $
$\Rightarrow a^x = m $
or $\therefore m = $ $\text{anti}\log _ax$

If $\log x = -2.0258$, then $x$ is equal to

  1. $0.009223$

  2. $0.009423$

  3. $0.008422$

  4. $0.008223$


Correct Option: B
Explanation:

$\log x=-2.0258$

Characteristics$=-3$
Mantissa$=-2.0258-(-3)=0.9742$
Value of $0.9742$ from antilog table $=9419+4=9423$
Number of zeroes placed after decimal will be $2.$
Antilog $-2.0258=0.009423$
Hence, B is the correct option.

The antilog of the number $2.5463$ is

  1. $251.8$

  2. $254.8$

  3. $351.8$

  4. $354.8$


Correct Option: C
Explanation:

The number before decimal point is $2,$ so decimal point will be after $3$ digits.

Value of $0.5463$ from antilog table $=3516+2=3518$
Now place a decimal point after $3$ digits of the number from left we get, $351.8$
Antilog $2.5463=351.8$
Hence, C is the correct option.

The antilog of $ (.2817)$ will be

  1. $1.19$

  2. $0.91$

  3. $0.19$

  4. $1.91$


Correct Option: D
Explanation:

The number before decimal point is $0,$ so decimal point will be after $1$ digits.

Value of $0.2817$ from antilog table $=1910+3=1913$
Now place a decimal point after $1$ digit of the number from left we get, $1.913$
Antilog $0.2817=1.913=1.91$
Hence, D is the correct option.