Tag: finding nth roots of a complex number
Questions Related to finding nth roots of a complex number
If $z _{1}$ is a root of the equation $a^{n} _{0}z^{n}+a _{1}z^{n-1}+....+a _{n-1^{z}}+a _{n}=3$, where $|a _{i}|<2$ for $i=0,1,....,n.$ Then,
The number of common roots of the 15th and of 25th roots of unity are
If $\alpha $ is a non- real fifth root of unity, then the value of ${3^{\left[ {1 + a + {a^2} - {a^{ - 1}}} \right]}}$,is
Let principle argument of complex number be re-defined between $(\pi,3\pi)$, then sum of principle arguments of roots of equation $z^{n}+z^{2}+1=0$ is
The value of the expression
If $p, q, r, s, t$ are the roots of the equation $x^5-1 = 0$, then $p^{ 10 }+q^{ 10 }+{ r }^{ 10 }+{ s }^{ 10 }+t^{ 10 }=$
If $1, a _1, a _2, ..a _{n-1}$ are $n^{th}$ roots of unity then $\dfrac{1}{1-a _1}+\dfrac{1}{1-a _2}+....+\dfrac{1}{1-a _{n-1}}$ equals?
If $1,{z} _{1},{z} _{2},{z} _{n-1}$ are the ${n}^{th}$ roots of unity then the value of $\dfrac{1}{3-z _{1}}+\dfrac{1}{3-z _{2}}+.......+\dfrac{1}{3-z _{n-1}}$ is equal to
If $1,{a _1},{a _2},....{a _{n - 1}}$ are ${n^{th}}$ roots of unity then $\frac{1}{{1 - {a _1}}} + \frac{1}{{1 - {a _2}}} + .... + \frac{1}{{1 - {a _{n - 1}}}}$ equals
If $1, \alpha _1, \alpha _2, \alpha _3, \alpha _4, \alpha _5, \alpha _6$, are seven, $7^{th}$ root of unity them $|(3-\alpha _1)(3-\alpha _3)(3-\alpha _5)|$ is?