Tag: fundamental theorem of algebra

Questions Related to fundamental theorem of algebra

What are the solutions of the equation $x^2+8x+15=0$? 

  1. $3,-5$

  2. $3,5$

  3. $5,-3$

  4. $-5,-3$


Correct Option: D
Explanation:

${ x }^{ 2 }+8x+15=0\ { x }^{ 2 }+5x+3x+15=0\ (x+5)(x+3)=0\ x=-5,-3$

If $3$ times the third term of an A.P. is equal to $5$ times the fifth term. Then its $8$ term is

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A
Explanation:

$3(a+2d)=5(a+4d)\ 3a+6d=5a+20d\ -2a=14d\ a=-7d\ a=+7d=-7d+7d={ 0 }$

If $a, b , c \in R $ and $3b^2 - 8ac < 0$ then the
equation $ax^4 + bx^3 +cx^2 +5x - 7=0$ has

  1. (a) all real roots

  2. (b) all imaginary roots

  3. (c) exactly two real and two imaginary roots

  4. (d) none


Correct Option: A

The solution to the equation ${7}^{1+x}+{7}^{1-x}=50$ is

  1. $0$

  2. $\pm 1$

  3. $2$

  4. none of these


Correct Option: B
Explanation:

$7^{1+x}+7^{1-x}=50$

$7(7^{x}+7^{-x})=50$
$7(7^{2{x}})+7=50(7^{x})$
$\implies (7^{x}-7)(7^{x+1}-1)=0$
$\implies 7^{x}=7^{1}$ or $7^{x+1}=7^{0}\implies x=\pm 1$

Solve the equation $y^2 + 2y = 40$, correct to $1$ decimal place using trial and improvement method.

  1. $5.8$

  2. $5.4$

  3. $5.7$

  4. $5.9$


Correct Option: B

The number of solution of $2\cos^2\dfrac{\pi}{2}\sin^2x=x^2+\dfrac{1}{x^2},\;0 \le x \le \dfrac{\pi}{2}$ is 

  1. Zero

  2. One

  3. Infinite many

  4. Four


Correct Option: A
Explanation:

$2\left ( \cos^2 \dfrac{\pi }{2} \right )\left ( \sin^{2}x \right )=x^{2}+\dfrac{1}{x^{2}}$

 
$=2(0) \sin^{2}x=x^{2}+\dfrac{1}{x^{2}}$ 

$=x^{2}+\dfrac{1}{x^{2}}=0$ 

not possible for any $ X\in R$ 

$\therefore $ no. of solutions = $0 $

find the value of $f(2)$ if $f(x)=x^3+x^2+x+1$

  1. 15

  2. 12

  3. 10

  4. None of these


Correct Option: A
Explanation:

$f(x)=x^3+x^2+x+1\f(2)=2^3+2^2+2+1\f(2)=8+4+2+1=15$

The value of $p$ if $\dfrac 3p+\dfrac 4p=1$

  1. 7

  2. 3

  3. 4

  4. 1


Correct Option: A
Explanation:

$\dfrac 3p+\dfrac 4p=1\3+4=p\p=7$

Simplify $(3x-11y) -(17x+13y)$ and choose the right answer. 

  1. $7x - 12y$

  2. $14x - 54y$

  3. $-3 (5x-4y)$

  4. $-2 (7x+12y)$


Correct Option: D
Explanation:
$\left(3x-11y\right)-\left(17x+13y\right)$

$=3x-11y-17x-13y$

$=-14x-24y$

$=-2\left(7x+12y\right)$

Solve $\frac { 7 y + 4 } { y + 2 } = \frac { - 4 } { 3 }$

  1. -4$/ 5$

  2. 5$/9$

  3. -9$/2$

  4. 4$/5$


Correct Option: A
Explanation:

Given $\dfrac{7 y+4}{y+2}=\dfrac{-4}{3}$

$\implies 3(7 y+4)=-4(y+2)$
$\implies 21 y+12=-4{y}-8$
$\implies 25 y=-20$
$\implies y=\dfrac{-20}{25}$
$\implies y=-\dfrac{4}{5}$