Tag: direction cosines and direction ratios
Questions Related to direction cosines and direction ratios
The points with position vectors $60\hat{i}+3\hat{j}$, $40\hat{i}-8\hat{j}$, $a\hat{i}-52\hat{j}$ are collinear if
The points with position vectors $\vec {a}=\hat {i}-2\hat {j}+3\hat {k}, \vec {b}=2\hat {i}+3\hat {j}-4\hat {k}$ & $-7\hat {j}+10\hat {k}$ are collinear.
The points $i + j + k, \, i + 2j, \, 2i+2j+k,\, 2i+3j+2k$ are
If $\vec a, \, \vec b$ are two non-collinear vectors, then the position vector $\vec a + \vec b, \, \vec a - \vec b, \,and \, \vec a + \lambda {\vec b}$ are collinear for some real values of $\lambda$.
If $\bar {a}, \bar {b}$ and $\bar {c}$ are non-zero non collinear vectors and $\theta(\neq 0 , \pi)$ is the angle between $\bar {b}$ and $\bar {c}$ if $(\bar {a}\times \bar {b}) \times \bar {c}=\dfrac {1}{2} |\bar {b}|\bar {c}|\bar {a}$. then $\sin \theta =$
The points with position vectors $ 60i + 3j, 40i -8j$ and $ ai -52j $ are collinear if
The three points $ABC$ have position vectors $(1,x,3),(3,4,7)$ and $(y,-2,-5)$ are collinear then $(x,y)=$
If the three points $A(\overline a),B(\overline b),C(\overline c) $ are collinear ,the line passing through them is
$\overline r=\overline a+\lambda(\overline b-\overline a)$ then value of $\lambda $ is
If points (1,2), (3 , 5) and (0 , b ) are collinear the value of b is
The following lines are $\hat { r } =\left( \hat { i } +\hat { j } \right) +\lambda \left( \hat { i } +2\hat { j } -\hat { k } \right) +\mu \left( -\hat { i } +\hat { j } -\hat { 2k } \right) $