Tag: area and volume of cylinder

Questions Related to area and volume of cylinder

The volume, V $cm^{2}$, of a hollow cylindrical pipe of length $l$ cm, outer radius R cm and inner radius r cm is given by the formula : $V\, =\, \pi\, (R^{2}\, -\, r^{2}).\, l$

Find r, if $V\, =\, 22,\, R\, =\, 2,\, l\, =\, 4$ and $\pi,\, 3\displaystyle \frac{1}{7}.$

  1. 1.5

  2. 1.2

  3. 1.4

  4. 1.6


Correct Option: A
Explanation:

Given $V= \pi \left ( R^{2}-r^{2} \right )l$

$V= \pi  R^{2}-\pi r^{2} l$

$\pi r^{2}l= \pi R^{2}l-V$


$ r^{2}= \dfrac{\pi R^{2}l-V}{\pi l}$

$\therefore  r= \sqrt{\dfrac{\pi R^{2}l-V}{\pi l}}$

Given $V=22 ,R=2 ,L=4 , \pi = 3\tfrac{1}{7}= \frac{22}{7}$

$\therefore r= \sqrt{\dfrac{\frac{22}{7}\times 4\times 4-22}{\dfrac{22}{7}\times4}}= \sqrt{\dfrac{352-154}{88}}= \sqrt{\dfrac{198}{88}}= \sqrt{\dfrac{9}{4}}= 1.5$

An iron pipe $20\space cm$ long has exterior diameter equal to $25\space cm$. If the thickness of the pipe is $1\space cm$, find the whole surface area of the pipe.

  1. $3167\space cm^2$

  2. $3160\space cm^2$

  3. $3068\space cm^2$

  4. $3268\space cm^2$


Correct Option: A
Explanation:

TSA of pipe $=$ $2\pi h(R+r)+2\pi ({ R }^{ 2 }-{ r }^{ 2 })$


                     $=$ $2\times \dfrac { 22 }{ 7 } \times 20(12.5+11.5)+2\times \dfrac { 22 }{ 7 } \left( { \left( 12.5 \right)  }^{ 2 }-{ \left( 11.5 \right)  }^{ 2 } \right) $


                     $=$ $\dfrac { 44\times 480 }{ 7 } +\dfrac { 44\times 24 }{ 7 } $

                    $ =$ $\dfrac { 21120 }{ 7 } +\dfrac { 1056 }{ 7 } =\dfrac { 22176 }{ 7 } $

                     $=$ $3167$ ${ cm }^{ 2 }$

The diameters of two cylinders are in the ratio of 2:1 and their volumes are equal. The ratio of their heights will be _________.

  1. 1:6

  2. 1:2

  3. 1:4

  4. 3:4


Correct Option: C
Explanation:
Let the diameter of the given two cylinders are $2x$ and $x$, 
so the radius of these cylinders are $x$ and $0.5 x$ respectively. 

Let the height of these cylinders are $ h _1$ and $ h _2$ respectively.

Given $ πx^2h _1=π(0.5x)^2h _2 $

$∴\dfrac{h _1}{h _2}=\dfrac{(0.5)^2}{1}=\dfrac 14$

$1:4.$

If the volume of a cylinder is $448\pi:cm^3$ and height 7 cm, its total surface area will be ______________.

  1. $352:cm^2$

  2. $754.28:cm^2$

  3. $724.64:cm^2$

  4. $354:cm^2$


Correct Option: B
Explanation:
Let the radius of cylinder is $r$ cm and height of this is $7$ cm.

Given, volume of cylinder
$=πr^2h$

$448π=πr^2×7⟹r2=64⟹r=8$ cm

∴  Required total surface area of cylinder
$=2πr(r+h)=2π×8(8+7)$

$=2×\dfrac {22} 7×8×15 $

$=754.28$ $cm^2$

200 wooden balls each of diameter 70 mm are to be painted Find the cost of painting these balls at 10 paise/$\displaystyle cm^{2}$

  1. Rs.3080

  2. Rs.2771

  3. Rs.4000

  4. Rs.7000


Correct Option: A
Explanation:

Total surface area of 200 balls of $\displaystyle \frac{35}{10}$ cm radius will be $\displaystyle 200\times 4\times \frac{22}{7}\times \frac{35}{10}\times \frac{35}{10}$ mm
The cost will be Rs $\displaystyle \frac{200\times 4\times 22\times 35\times 35}{7\times 10\times 10\times 100}$ which simplifies to Rs 3080

A rectangular paper of dimensions 6 cm and 3 cm is rolled to form a cylinder with height equal to the width of the paper, then its base radius is

  1. $ \displaystyle \frac{6}{\pi }cm $

  2. $ \displaystyle \frac{3}{2\pi }cm $

  3. $ \displaystyle \frac{6}{2\pi }cm $

  4. $ \displaystyle \frac{9}{2\pi }cm $


Correct Option: C
Explanation:

The length of the rectangle become the circumference of the base of the cylinder 

$\therefore 2\pi r=6\Rightarrow r=\frac{6}{2\pi }$ cm

The curved surface of a circular cylinder of height 'h' and the curved surface area of the cone of slant height 2 'h' having the same circular base are in the ratio of

  1. 1 : 2

  2. 2 : 1

  3. 1 : 1

  4. 1 : 3


Correct Option: C
Explanation:

Let the base radius of cone and circular cylinder is r and height of circular cylinder is h and height of cone 2h

Then Curved surface area of circular cylinder =$2\pi rh$
And curved surface area of cone=$\pi r(2h)=2\pi rh$
So ratio of Curved surface area of circular cylinder : curved surface area of cone :: $2\pi r(h)=2\pi rh$ : $2\pi rh$=1:1

A hollow sphere of internal and external radii 3 cm and 4 cm respectively is malted into a cylinder of diameter 37 cm The height of the cylinder is

  1. 2 cm

  2. 2.5 cm

  3. 3 cm

  4. none


Correct Option: D
Explanation:

Given the external  radius of hollow sphere is 4 cm and internal radius 3 cm 

Then volume of metal used=$\frac{4}{2}\pi (R^{2}-r^{2})=\frac{4}{3}\pi \left ( (4)^{2}-(3)^{2} \right )=\frac{4}{3}\pi (16-9)=\frac{4}{3}7\pi $
The diameter of cylinder 37 cm 
Radius of cylinder is =18.5 cm
Volume of cylinder=$\pi r^{2}h=\pi (18.5)^{2}h$
But cylinder made by metal of hollow sphere
$\pi (18.5\times 18.5)h=\frac{4}{3}7\pi \Rightarrow h=\frac{4\times 7}{3\times 18.5\times 18.5}\Rightarrow \Rightarrow h=0.027 cm$

A cistern $6$ m long and $4$ m wide contains water to a depth of $1.25$ m. What is the area of wetted surface?

  1. $40$ sq. m

  2. $45$ sq. m

  3. $49$ sq. m

  4. $73$ sq. m


Correct Option: D
Explanation:

Given, $l = 6, b = 4$

Also given depth i.e., $ h = 1.25$
Area of the wetted surface $= 2[lb + bh + hl]$
$=2[(6\times 4)+(4\times 1.25)+(1.25\times 6)]$
$=2[24+5+7.5]$
$= 73$ sq. m
Therefore, the area of wetted surface is $73$ sq. m.

The outer and inner diameters of a circular pipe are $6$ cm and $4$ cm respectively. If its length is $10$ cm then what is the total surface area in square centimetres?

  1. $55\pi$

  2. $110\pi$

  3. $150\pi$

  4. None of the above


Correct Option: D
Explanation:

Given, outer and inner diameters of circular pipe are $6$ cm and $4$ cm
Therefore, outer and inner radii of a circular pipe are $3$ cm and $2$ cm.
Thus total surface area would be $ 10\times \pi (3^{2} - 2^{2})$ $= 50\pi $ sq. cm.