Tag: logarithms

Questions Related to logarithms

If $\log\ (-2x)=2\log\ (x+1)$, then $x$ can be  equal to

  1. $-2+\sqrt {3}$

  2. $-4+2\sqrt {3}$

  3. $-2-\sqrt {3}$

  4. $-4-2\sqrt {3}$


Correct Option: A,C
Explanation:

We have,

$ \log \left( -2x \right)=2\log \left( x+1 \right) $

$ \Rightarrow \log \left( -2x \right)=\log {{\left( x+1 \right)}^{2}} $


Comparing both side and we get,

$ -2x={{\left( x+1 \right)}^{2}} $

$ \Rightarrow -2x={{x}^{2}}+1+2x $

$ \Rightarrow {{x}^{2}}+4x+1=0 $


Using quadratic formula and we get,

$ x=\dfrac{-4\pm \sqrt{16-4\times 1\times 1}}{2\times 1} $

$ x=\dfrac{-4\pm \sqrt{12}}{2} $

$ x=\dfrac{-4\pm \sqrt{2\times 2\times 3}}{2} $

$ x=\dfrac{-4\pm 2\sqrt{3}}{2} $

$ x=-2\pm \sqrt{3} $


Hence, this is the answer.

If $\displaystyle \log _3 x = 0$, then value of $x$ is equal to

  1. $2$

  2. $4$

  3. $1$

  4. $3$


Correct Option: C
Explanation:
$\log _3x = 0$      

$x=3^0$   ....(since we know that $\log _ab=t\Rightarrow b=a^t$)
     
$\therefore x=1$

State true or false: 

If$\displaystyle x^y = z$, then $\displaystyle y = log _z x$.

  1. True

  2. False


Correct Option: B
Explanation:

$x^y=z$
Apply log on both the sides, we get
$\therefore ylogx=logz$
$\therefore y=\dfrac{logz}{logx}$
$\therefore y=log _xz$
Hence, it is false.

The value of $\log _{10}0.01$ is equal to 

  1. $0$

  2. $-2$

  3. $-1$

  4. $4$


Correct Option: B
Explanation:

$\log _{ 10 }{ 0.01= } \log _{ 10 }{ { 10 }^{ -2 } } $

$\log _{ 10 }{ 0.01= } -2$
Answer (B) -2

The exponential form of $\log _{10}1 = 0$ is $10^{m} = 1$,  then the value of $m$ is 

  1. $2$

  2. $0$

  3. $1$

  4. $6$


Correct Option: B
Explanation:

$ \log _{ 10 }{ 1 }= 0\ 1 = { 10 }^{ 0 }$

The value of $\log _5\ 125$ is equal to

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: D
Explanation:

$ \log _{ 5 }{ 125 } =x\ 125 = { 5 }^{ x }\ x = 3 $

The value of $\log _5 1$ is equal to

  1. $1$

  2. $0$

  3. $7$

  4. $2$


Correct Option: B
Explanation:

$ \log _{ 5 }{ 1 } =x\ 1\quad =\quad { 5 }^{ x }\ x\quad =\quad 0\ \ $

If exponential form of $\log _{10} 0.01 = -2$ is $10^{m} = 0.01$, then value of $m$ is equal to

  1. $-1$

  2. $3$

  3. $-2$

  4. $4$


Correct Option: C
Explanation:

$ \log _{ 10 }{ 0.01 } = -2 \Rightarrow 0.01 = { 10 }^{ -2 } $

$\therefore m=-2$

Express the following in logarithmic form$\,\colon$
$81\,=\,3^{4}$

  1. $\log _381\,=\,4$

  2. $\log _981\,=\,2$

  3. $2\log _39\,=\,4$

  4. $4\log _93\,=\,2$


Correct Option: A,B,C,D
Explanation:

$y={ a }^{ x }\Rightarrow \log _{ a }{ y } =x\ \therefore 81={ 3 }^{ 4 }\Rightarrow \log _{ 3 }{ 81 } =4$

A is true.
$81=3^{4}=9^{2}$

$\Rightarrow \log _{9}81=\log _{9}9^{2}=2\log _{9} 9=2$
B is true.
$81=3^{4}=9^{2}$
$\Rightarrow \log _{3} 3^{4}=\log _{3}9^{2}=2\log _{3} 9$
C is true.
$81=3^{4}=9^{2}$
$\Rightarrow \log _{9}3^{4}=\log _{9}9^{2}=2\log _{9} 9=2$
$\Rightarrow 4\log _{9} 3=2$
D is true.

If $log 27 = 1.431$, then the value of $log 9$ is

  1. 0.934

  2. 0.945

  3. 0.954

  4. 0.958


Correct Option: C
Explanation:

$log 27 = 1.431$
$\Rightarrow log (3^3) = 1.431$
$\Rightarrow 3 log 3 = 1.431$
$\Rightarrow log 3 = 0.477$
$\therefore log 9 = log (3^2) = 2 log 3 = (2 \times 0.477) = 0.954$