Tag: reciprocal equations

Questions Related to reciprocal equations

The equation $3x^4-5x^3+3x^2-4x+5=0$ is of the type

  1. Quadratic

  2. Linear

  3. Reiprocal

  4. None of the above


Correct Option: D
Explanation:

Given equation is $3x^4-5x^3+3x^2-4x+5=0$ .... $(i)$

The maximum power of $x$ in this equation is $ 4$, so this is $4th$ degree equation  
So, $(i)$ is neither linear nor quadratic equation.
In reciprocal equation ($ ax^4 +bx^3 +cx^2 +dx +e = 0 $)  the multiplication of the roots i.e ($\dfrac{e}{a}$) should be  $1$

In the given equation $(i)$, $\dfrac{e}{a}  = \dfrac{5}{3}$  
So the multiplication of roots is not equal to one
Therefore, equation $(i)$ is not a reciprocal equation.

Hence, option D is correct.

$x+\dfrac{1}{x}=2, x^{1680}+\dfrac{1}{x^{1680}}$

  1. $1$

  2. $-1$

  3. $2$

  4. $-2$


Correct Option: C
Explanation:

We have,

$x+\dfrac{1}{x}=2$
We know that if $x+\dfrac{1}{x}=2$, then
$x^n+\dfrac{1}{x^n}=2$
Therefore,
$x^{1680}+\dfrac{1}{x^{1680}}=2$

Simplify the reciprocal equation $\dfrac{3}{12}=\dfrac{3}{2x}$

  1. $0$

  2. $3$

  3. $6$

  4. $1$


Correct Option: C
Explanation:

Given equation is $\dfrac {3}{12}=\dfrac {3}{2x}$

$\Rightarrow 6x=36$
$\Rightarrow x=\dfrac {36}{6}$
$\Rightarrow x=6$
Therefore, the reciprocal of the given function is $6$.

Simplify $\sqrt { 1+{ \left( \cfrac { { x }^{ 4 } }{ -2{ x }^{ 2 } }  \right)  }^{ 2 } } $

  1. $\cfrac { { x }^{ 4 }+1 }{ 2{ x }^{ 2 } } $

  2. $\cfrac{\sqrt{{x}^{2}+1}}{2}$

  3. $\cfrac{{x}^{4}+2{x}^{2}-1}{2{x}^{2}}$

  4. $\cfrac { { x }^{ 4 }-1 }{ 2{ x }^{ 4 } } $


Correct Option: B
Explanation:

$\sqrt{1+(\dfrac{x^4}{-2x^2})^2}$


$\Rightarrow \sqrt{1+\dfrac{x^8}{4x^4}}$

$\Rightarrow \sqrt{\dfrac{4x^4+x^8}{4x^4}}$

$\Rightarrow \dfrac{\sqrt{4x^4+x^8}}{2x^2}$

$\Rightarrow\cfrac{\sqrt{{x}^{2}+1}}{2}$

The equation $2x^4-9x^3+14x^2-9x+2=0$ is of the type

  1. Quadratic equation

  2. Linear equation

  3. Reciprocal Equation

  4. None


Correct Option: C
Explanation:

Given equation is $2x^4-9x^3+14x^2-9x+2=0$ .... $(i)$

The maximum power of $x$ in this equation is $ 4$, so this is $4th$ degree equation  
So, it is neither linear nor quadratic equation.
In reciprocal equation $ ax^4 +bx^3 +cx^2 +dx +e = 0 $, the multiplication of the roots i.e ($\dfrac{e}{a}$) should be  $1$

In the given equation $(i)$, $\dfrac{e}{a}  = \dfrac{2}{2}$  
So the multiplication of roots is equal to one
Therefore, equation $(i)$ is a reciprocal equation.

Hence, option C is correct.

What is a reciprocal equation?

  1. It involves reciprocal of the given variable.

  2. It involves square of the given variable.

  3. It involves squareroot of the given variable.

  4. It involves square and reciprocal of the given variable.


Correct Option: A
Explanation:

Reciprocal is said to be divide $1$ by a number. Reciprocal equation involves reciprocal of the given number.

Determine the root of the equation: $\dfrac{9}{x}-\dfrac{7}{x}=1$

  1. $x=2$

  2. $x=-2$

  3. $x=1$

  4. None of these


Correct Option: A
Explanation:

Given reciprocal equation can be written as

$\dfrac{9}{x}=\dfrac{7+x}{x}$
Cancelling out the denominator on both side, we get
$9=7+x$
$\Rightarrow x=2$
Hence, option A is correct.

Which of the following is not a reciprocal function?

  1. $f(x)=\dfrac{1}{x}$

  2. $f(x)={x}^{-1}$

  3. $f(x)=x$

  4. None of the above


Correct Option: C
Explanation:

This is the reciprocal function:

$f(x)=\dfrac {1}{x}$
Its domain is the real numbers, except $0$, because $\dfrac {1}{0}$ is undefined.
The reciprocal function can also be written as an exponent.
$f(x)=x^{-1}$

$\cfrac { \left( 2x-1 \right) { \left( x-1 \right)  }^{ 4 }{ \left( x-2 \right)  }^{ 4 } }{ (x-2){ \left( x-4 \right)  }^{ 4 } } \le 0$

  1. $(\dfrac{1}{2},2)$

  2. $R$

  3. $\phi$

  4. $(1/3,2)$


Correct Option: A
Explanation:

$\dfrac{(2{x}-1)(x-1)^{4}(x-2)^{4}}{(x-2)(x-4)^{4}} \le 0\implies x\neq 2$


$(2{x}-1)(x-1)^{4}(x-2)^{3}\le 0$


$(x-\dfrac{1}{2})(x-2)^{3}\le 0$

$x\in \bigg(\dfrac{1}{2},2\bigg)$

If $b$ is a root of a reciprocal equation, $f(x)=0$, then another root of $f(x)=0$ is:

  1. $\dfrac{-1}{b}$

  2. $\dfrac{1}{b^2}$

  3. $\sqrt b$

  4. $\dfrac{1}{b}$


Correct Option: D
Explanation:

A reciprocal equation is an equation whose roots can be divided into pairs of numbers, each the reciprocal of the other. 

(equivalently) an equation which is unchanged if the variable $x$ is replaced by its reciprocal $\dfrac{1}{x}$ is reciprocal equation.
Since one root is $b$, then the other root is $\dfrac{1}{b}$

Hence, option D is correct.