Tag: finding percentage of a number

Questions Related to finding percentage of a number

$120\%$ of $45$

  1. $45$

  2. $54$

  3. $34$

  4. $43$


Correct Option: B
Explanation:
Given,

$120\%$ of $45$

$=\dfrac{120}{100} \times 45$

$=\dfrac{12}{2} \times 9$

$=6 \times 9$

$=54$

Two-third of one-seventh of a number is $87.5$% of $240$. What is the number?

  1. $2670$

  2. $2450$

  3. $2205$

  4. $1470$


Correct Option: C
Explanation:

Given, $\dfrac {2}{3}$ of $\dfrac {1}{7}$ of a number say $x$ is $87.5\%$ of $240$.

$\therefore \displaystyle \frac{2}{3}\times\frac{1}{7}\times x=\frac{87.5}{100}\times240$

$\displaystyle \Rightarrow x =\frac{87.5\times240\times3\times7}{2\times100}=2205$
therefore, the number is $2205$.

John estimated that the repairs to his car would cost $200$ rupees. In fact they cost $350$ rupees. What was the percentage error?

  1. $52.85\%$

  2. $42.85\%$

  3. $32.85\%$

  4. $22.85\%$


Correct Option: B
Explanation:

Given that: Expected repair of car= $200$
Actual cost of repair = $ 350$
Percentage of error: $\dfrac{Absolute \ value - exact \ value}{Exact \ value} \times 100$
$= \dfrac{350 - 200}{350} \times{100}$

$= 42.85 $ %

You expected to get $50$ gifts for your birthday, but you only got $32$. What was the percentage error?

  1. $51.25\%$

  2. $45.25\%$

  3. $46.25\%$

  4. $56.25\%$


Correct Option: D
Explanation:

Given, absolute value $=50$, exact value $=32$
Percentage error $=$ $\left | \dfrac{Absolute \space\ value - exact \space\ value}{exact\space\ value} \right |\times 100$ $\%$
$=$ $\left | \dfrac{50 - 32}{32} \right |\times 100$ $\%$
$=$ $\left | \dfrac{ 18}{32} \right |\times 100$ $\%$
$=$ $\left | 0.5625\right |\times 100$ $\%$
$= 56.25\%$

10% of 60 + 60% of 100 =?

  1. 90

  2. 46

  3. 66

  4. 70


Correct Option: C
Explanation:

$\dfrac{10}{100}\times60$ + $\dfrac{60}{100}\times100$ $=6+60=66$

After allowing $15$% discount, the selling price of a radio becomes $Rs. 255$. The marked price is

  1. $Rs. 500$

  2. $Rs. 600$

  3. $Rs. 400$

  4. $Rs. 300$


Correct Option: D
Explanation:

Let the marked price of Radio be $Rs. x$.
According to the question, $0.85x = 255$
$x = Rs. 300$
Hence, the marked price of Radio is $Rs. 300$.

Choose the correct answer from the alternatives given.
Some money was lent on $4\%$ compound interest. If the difference in interest of second and the first year is $88$, find out the sum.

  1. $Rs. 50,000$

  2. $Rs. 60,000$

  3. $Rs. 65,000$

  4. $Rs. 55,000$


Correct Option: D

Choose the correct answer from the alternatives given.
Directions for question 71 to 75: Study the following table carefully and answer the questions given below.
Number of Students Enrolled
With Five Colleges over the Years

Year/College A B C D E
2004 450 320 400 480 520
2005 480 350 380 500 540
2006 420 300 410 520 460
2007 460 360 430 470 480
2008 470 340 390 530 530

What is the average number of students enrolled in the college A over the years? 

  1. $456$

  2. $460$

  3. $464$

  4. $452$


Correct Option: A
Explanation:

Total number of students in college over the years$=420+480+420+460+470=2280$

Average no. of students$=2280/5=456$

$60 \% \text { of } 264$ is the same as-

  1. $10 \% \text { of } 44$

  2. $15 \% \text { of } 1056$

  3. $30 \% \text { of } 132$

  4. $17 \% \text { of } 544$


Correct Option: B
Explanation:

$60\% \ of \ 264 =\dfrac{60}{100} \times 264 =158.4$


Also, $15\% \ of \ 1056 =\dfrac{15}{100} \times 1056 = 158.4$

Hence, $60\% \ of \ 264 = 15\% \ of \ 1056$

$0.15 \% \text { of } 33 \frac { 1 } { 3 } \% \text { of } \mathrm { Rs } .10,000$ is?

  1. $\mathrm { Rs } .0 .05$

  2. $\mathrm { Rs } .5$

  3. $\mathrm { Rs } .105$

  4. $\mathrm { Rs } .150$


Correct Option: B
Explanation:

Given 


$0.15\% \times 33\dfrac 13\% \times 10000$

$\implies \dfrac {15}{100}\times \dfrac 1{100}\times \dfrac {100}3 \times \dfrac 1{100}\times 10000$

$\implies \dfrac {15}3=5$