Tag: power of 10

Questions Related to power of 10

Evaluate the product of $2.3\times 10^4$ and $3\times 10^3$.

  1. $6.9\times 10^4$

  2. $6.9\times 10^7$

  3. $6.9\times 10^8$

  4. $6.9\times 10^6$


Correct Option: B
Explanation:

$(2.3\times 10^4) \times (3 \times 10^3)$
$\Rightarrow (2.3 \times 3) \times(10^{3+4})$

$\therefore 6.9 \times 10^7$
Ans- Option $B$.

Evaluate $\dfrac{6.3\times 10^3}{3\times 10^7}$

  1. $2\times 10^{-3}$

  2. $2.1\times 10^{-3}$

  3. $2.1\times 10^{-4}$

  4. $2\times 10^{-5}$


Correct Option: C
Explanation:

$\dfrac{6.3\times 10^{3}}{3\times 10^7}$


$\Rightarrow \dfrac{6.3}{3} \times 10^{3-7}$


$\therefore 2.1\times 10^{-4}$

Ans-Option $C$.

Solve:

$\cfrac{2.3^{n+1} + 7.3^{n-1}}{3^{n+2}-2 \left ( \cfrac{1}{3} \right )^{1-n}} $

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: B
Explanation:

We have,

$\cfrac{2.3^{n+1} + 7.3^{n-1}}{3^{n+2}-2 \left ( \cfrac{1}{3} \right )^{1-n}}  $

$\Rightarrow \cfrac{6.3^n+ \dfrac{7}{3}.3^n}{9.3^n-\dfrac{2}{3}. 3^n}  $

$\Rightarrow \cfrac{18.3^n+ 7.3^n}{27.3^n-2. 3^n}  $

$\Rightarrow \cfrac{25.3^n}{25.3^n}  $

$\Rightarrow 1  $

Hence, this is the answer.

The average distance between the Sun and a certain planet is approximately $\displaystyle 2.3\times { 10 }^{ 14 }$ inches. Which of the following is closest to the average distance between the Sun and the planet, in kilometers? (1 kilometer is approximately $\displaystyle 3.9\times { 10 }^{ 4 }$ inches )

  1. $\displaystyle 7.1\times { 10 }^{ 8 }$

  2. $\displaystyle 5.9\times { 10 }^{ 9 }$

  3. $\displaystyle 1.6\times { 10 }^{ 10 }$

  4. $\displaystyle 1.6\times { 10 }^{ 111 }$

  5. $\displaystyle 5.9\times { 10 }^{ 11 }$


Correct Option: B
Explanation:

The average distance in KM will be $\frac { 2.3\times { 10 }^{ 14 } }{ 3.9\times { 10 }^{ 4 } } =0.59\times { 10 }^{ 10 }=5.9\times { 10 }^{ 9 }\quad km$

So correct answer will be option B

Simplify: $\dfrac{1.8\times 10^{11}}{2\times 10^4}$

  1. $9\times 10^7$

  2. $0.9\times 10^6$

  3. $0.9\times 10^5$

  4. $9\times 10^6$


Correct Option: D
Explanation:

$\dfrac{1.8\times 10^{11}}{2\times 10^4}$


$= \dfrac{1.8}{2} \times 10^{11-4}$


$=0.9 \times 10^7$

$= 9\times 10^6$


Ans-Option $D$.

Express $(3000)^2\times (20)^3$ in scientific notation:

  1. $7.2\times 10^{10}$

  2. $3.6\times 10^{8}$

  3. $6\times 10^9$

  4. $4.8\times 10^{12}$


Correct Option: A
Explanation:

${ 3000 }^{ 2 }\times { 20 }^{ 3 }=(9\times { 10 }^{ 6 })\times (8\times { 10 }^{ 3 })\ =72\times { 10 }^{ 9 }=7.2\times { 10 }^{ 10 }$

So correct answer will be option A

Write the number of significant digits in:
$0.97 \times 10^{-2}$

  1. $1$

  2. $5$

  3. $2$

  4. $3$


Correct Option: C
Explanation:

$0.97\times 10^{-2}$
There are $2$ significant figures $9$ and $7$. When a number is  written in scientific notation, only significant figures are placed into the numerical portion.

$225$ can be expressed as

  1. $5\times 3^2$

  2. $5^2\times 3$

  3. $5^2\times 3^2$

  4. $5^3\times 3$


Correct Option: C
Explanation:

$ 225 = 25 \times 9$
$ 225 = (5\times 5)  \times (3 \times 3)$

$ 225 = 5^2 \times 3^2$
Option C is correct

Which of the following is greater than 1000.01 ?

  1. 0.00010001 x 10$\displaystyle ^{7}$

  2. 0.00001 x 10$\displaystyle ^{8}$

  3. 1.1 x 10$\displaystyle ^{2}$

  4. 1.00001 x 10$\displaystyle ^{3}$


Correct Option: A
Explanation:

A $\Rightarrow \displaystyle 0.00010001\times 10^{7}=1000.1 $
B $\Rightarrow \displaystyle 0.00001\times 10^{8}=1000 $
C $\Rightarrow \displaystyle 1.1\times 10^{2}=110 $
D $\Rightarrow \displaystyle 1.00001\times 10^{3}=1000.01 $

We observe that $\displaystyle 1000.1> 1000.01 $
i.e., $\displaystyle 0.00010001\times 10^{7}> 1000.01 $

What is the smallest integer n for which $\displaystyle { 25 }^{ n }>{ 5 }^{ 12 }$?

  1. $6$

  2. $7$

  3. $8$

  4. $9$

  5. 10


Correct Option: B
Explanation:

${25}^{n}>{5}^{12}$

${({5}^{2})}^{n}>{5}^{12}$
${{5}^{2n}}>{5}^{12}$
Comparing the power
$2n>12$
$n>\dfrac{12}{2}$
$n>6$
Smallest integer greater than $6$ will be $7$