Tag: born-haber cycle
Questions Related to born-haber cycle
Which of the following can be calculated from Born-Haber cycle for $Al _2O _3$?
In the series $Sc(Z=21)$ to $Zn(Z=30)$, the enthalpy of atomisation of which element is least?
The lattice energy of CsI(s) is −604 KJ/mol, and the enthalpy of solution is 33 KJ/mol. How would you calculate the enthalpy of hydration (KJ) of 0.65 moles of CSI? Enter a numeric answer only, do not include units in your answer?
Consider the following reaction,
$2A + B \rightarrow C + 2D$, $\Delta H _{1} = 10$
$A + 2C \rightarrow 2D + B$, $\Delta H _{2} = -5$ What is $\Delta H$ of reaction $A + 2B \rightarrow 3C$?
Determine ${ \Delta }{ U }^{ o }$ at $300K$ for the following reaction using the listed enthalpies of reaction:
$4CO(g)+8{ H } _{ 2 }(g)\longrightarrow 3{ CH } _{ 4 }(g)+{ CO } _{ 2 }(g)+2{ H } _{ 2 }O(l)$
$C _{(graphite)}+1/2{ O } _{ 2 }(g)\longrightarrow CO(g);\quad \Delta { { H } _{ 1 } }^{ o }=-110.5kJ$
$CO(g)+1/2{ O } _{ 2 }(g)\longrightarrow { CO } _{ 2 }(g);\quad \Delta { { H } _{ 2 } }^{ o }=-282.9kJ$
${ H } _{ 2 }(g)+1/2{ O } _{ 2 }(g)\longrightarrow { H } _{ 2 }O(l);\quad \Delta { { H } _{ 3 } }^{ o }=-285.8kJ$
$C _{(graphite)}+2{ H } _{ 2 }(g)\longrightarrow { CH } _{ 4 }(g);\quad \Delta { { H } _{ 4 } }^{ o }=-74.8kJ$
The Born Haber cycle below represents the energy changes occurring at 298K when KH is formed from its elements
v : ${ \Delta H } _{ atomisation }$ K = 90 kJ/mol
w : ${ \Delta H } _{ ionisation }$ K = 418 kJ/mol
x : ${ \Delta H } _{ dissociation }$ H = 436 kJ/mol
y : ${ \Delta H } _{ electron affinity }$ H = 78 kJ/mol
z : ${ \Delta H } _{ lattice }$ KH = 710 kJ/mol
${ \Delta H } _{ i }$ of K is ${ \Delta H } _{ i }$ = $w/2$.
If true enter 1, else enter 0.
v : ${ \Delta H } _{ atomisation }$ $K = 90 kJ/mol$
w : ${ \Delta H } _{ ionisation }$ $K = 418 kJ/mol$
x : ${ \Delta H } _{ dissociation }$ $H = 436 kJ/mol$
y : ${ \Delta H } _{ electron affinity }$ $H = 78 kJ/mol$
z : ${ \Delta H } _{ lattice }$ $KH = 710 kJ/mol$
The Born Haber cycle below represents the energy changes occurring at 298K when $KH$ is formed from its elements
v : ${ \Delta H } _{ atomisation }$ $K = 90 kJ/mol$
w : ${ \Delta H } _{ ionisation }$ $K = 418 kJ/mol$
x : ${ \Delta H } _{ dissociation }$ $H = 436 kJ/mol$
y : ${ \Delta H } _{ electron affinity }$ $H = 78 kJ/mol$
z : ${ \Delta H } _{ lattice }$ $KH = 710 kJ/mol$
The Born Haber cycle below represents the energy changes occurring at 298K when KH is formed from its elements
v : ${ \Delta H } { atomisation }$ K = 90 kJ/mol
w : ${ \Delta H } _{ ionisation }$ K = 418 kJ/mol
x : ${ \Delta H } _{ dissociation }$ H = 436 kJ/mol
y : ${ \Delta H } _{ electron affinity }$ H = 78 kJ/mol
z : ${ \Delta H } _{ lattice }$ KH = 710 kJ/mol
${ \Delta H } _{ electron affinity }$ of H is ${ \Delta H } _{ electron affinity }$ is _.
I
The energy change for the alternating reaction that yields chlorine sodium $(Cl^{+}Na^{-})$ will be:
$2Na(s)\, +\, Cl _2(g)\,\rightarrow\, 2Cl^{+}Na^{-}(s)$
Given that:
Lattice energy of $NaCl\,=\,-787\, kJ\,mol^{-1}$
Electron affinity of $Na\,=\,-52.9\, kJ\, mol^{-1}$
Ionisation energy of $Cl\, =\, +\,1251\, kJ\, mol^{-1}$
BE of $Cl _2\,=\,244\, kJ\, mol^{-1}$
Heat of sublimation of $Na(s)\, =\,107.3\, kJ\, mol^{-1}$
$\Delta H _f(NaCl)\, =\,-411\, kJ\, mol^{-1}$.