Tag: sector and arc of a circle

Questions Related to sector and arc of a circle

A sector of a circle with sectorial angle of $\displaystyle 36^{\circ} $ has an area of 15.4 sq cm The length of the arc of the sector is

  1. $8.8 m$

  2. $4.4 m$

  3. $0.22 m$

  4. $0.44 m$


Correct Option: D
Explanation:

$\displaystyle \frac{36}{360}\times \frac{22}{7}r^{2}=15.4\Rightarrow r^{2} =\frac{15.4\times 5\times 7}{11}=49$
$\displaystyle \Rightarrow r=7$
$\displaystyle C=2\pi r=2\times \frac{22}{7}\times 7=44cm$
$\displaystyle =0.44 m$

In a circle of radius 21 cm an arc subtends an angle of $\displaystyle 56^{\circ} $ at the centre of the circle. The length of the arc is

  1. $20.53$ cm

  2. $17.53$ cm

  3. $15.53$ cm

  4. $16.53$ cm


Correct Option: A
Explanation:

$\displaystyle \theta =56^{\circ},r=21cm$
Length. of $\displaystyle AB=\dfrac{56^{\circ}}{360^{\circ}}\times 2\times \dfrac{22}{7}\times 21$
$\displaystyle =\dfrac{616}{30}=20.53cm$

What is the length of arc AB making angle of $126^0$ at center of radius $8$?

  1. $2.6\displaystyle \pi $

  2. $5.6\displaystyle \pi $

  3. $7.6\displaystyle \pi $

  4. $\displaystyle \frac{1}{2}\pi $


Correct Option: B
Explanation:

Setting a proportion 
AB : OB : : 126 : 360
$\displaystyle \frac{\overline{AB}}{2\pi r}=\frac{126}{360}$
$\displaystyle \overline{AB}=\left ( \frac{126}{360} \right )\times 2\pi r$
$\displaystyle \overline{AB}=\left ( \frac{126}{360} \right )\times 2\pi \times 8$
$\displaystyle \overline{AB}=5.6\pi $

If the radius and arc length of a sector are 17 cm and 27 cm respectively, then the perimeter is

  1. 16 cm

  2. 61 cm

  3. 32 cm

  4. 80 cm


Correct Option: B
Explanation:

Perimeter of the Sector = 2(Radius of the circle) + Arc Length 


$Perimeter = 2(17) + 27 = 2*17 +27 = 61cm$

If an arc of a circle of radius 14 cm subtends an angle of $60^{\circ}$ at the centre, then the length of the arc is $\displaystyle \frac{44}{3} cm$.

  1. True

  2. False

  3. Niether

  4. Either


Correct Option: A

In a circle of radius 21 cm, an arc subtends an angle of $60^{\circ}$ at the centre the length of the arc is 22 cm.

  1. True

  2. False

  3. Neither

  4. Either


Correct Option: A

The length of an arc of a sector of a circle of radius r units and of centre angle $\theta$ is $\displaystyle \frac{\theta}{360^{\circ}} \times \pi r^2$.

  1. True

  2. False

  3. Neither

  4. Either


Correct Option: B

Length of an arc of a circle with radius $r$ and central angle $\theta$ is(angle in radians):

  1. $\dfrac{r\times \theta}{360^{o}}$

  2. $\dfrac{r\times \theta}{180^{o}}$

  3. $\dfrac{r\times \theta}{90^{o}}$

  4. $r\times \theta$


Correct Option: D
Explanation:
Let $r$ be the radius of a circle and $\theta$ be the central angle
Length of an arc of the sector $=r\times \theta$
Hence, length of an arc of a circle $=r\times \theta$.

If $ABC$ is an are of a circle and $\angle ABC=135^{o}$, then the ratio of arc $ ABC$ to the circumference is:

  1. $1 :4$

  2. $3:4$

  3. $3:8$

  4. $1:2$


Correct Option: A
The diameter of a circle is $10$ cm, then find the length of the arc, when the corresponding central angle is $180^{\circ}$.  $(\pi =3.14)$
  1. $15.7$

  2. $16$

  3. $3.14$

  4. $18$


Correct Option: A
Explanation:

Radius of the circle $ = \dfrac {\text{Diameter}}{2} = 5 $ cm 


Length of an arc subtending an angle $ \theta  = \dfrac { \theta  }{ 360 }

\times 2\pi R $, where $R$ is the radius of the circle. 

So, length of the arc $ = \dfrac {180}{360} \times 2 \times 3.14\times 5  = 15.7 $ cm