Tag: fundamental theorem of integral calculus
Questions Related to fundamental theorem of integral calculus
The value of $\displaystyle \int _0^1\tan^{-1}\left (\frac {2x-1}{1+x-x^2}\right )dx$ is
$\int _{0}^{\pi /2}sin2xtan^{-1}\left ( sinx \right )dx=$
Evaluate: $\displaystyle \int _{0}^{\sqrt{3}}[x^{3} -1] dx$
$\displaystyle\int^{100} _0[\tan^{-1}x]dx$.
Solve $\displaystyle\int^{100} _0e^{x-[x]}dx=?$ where $[x]$ is greatest integer function.
$\int _0^\pi {{x^2}\,g\left( x \right)\,dx\, = } $
$\int _0^\pi {f\left( x \right)\,dx\, = } $
If $I _1 = \displaystyle \int^{2\pi /3} _{\pi / 2}\left|cos\dfrac{x}{2}cosx\right|dx,I _2=\left|\displaystyle \int _{\pi/2}^{2\pi/3} cos\dfrac{x}{2}cosxdx\right|$ then $I _1 - I _2$ equals
The value of the definite integral, $\displaystyle \int _0^{\pi/2} \dfrac{sin5x}{sinx}dx$ is
The value of the definite integral $\int _{ 0 }^{ \pi /2 }{ \sin { x } \sin { 2x } \sin { 3x } dx } $ is equal to: