Tag: measuring volume

Questions Related to measuring volume

The radius of a cone is $\sqrt2$ times the height of the cone. A cube of maximum possible volume is cut from the same cone. What is the ratio of the volume of the cone to the volume of the cube?

  1. $3.18\pi$

  2. $2.25\pi$

  3. $2.35$

  4. Can't be determined


Correct Option: B
Explanation:

Cube here will be inscribed in a cone as a square is in isosceles triangle.
Let the height of the cone be $h$
Radius=$\sqrt2 h$
Volume of cone=$\dfrac{1}{3}\pi r^2h$
                           =$\dfrac{2\sqrt 2}{3}\pi h^3$
Let the side of the cube be x,the top of the cone above it has the sign $(h-x)$ and radius $\dfrac{x}{2}$
Using properties of similar triangle $\dfrac { \dfrac { x }{ 2 }  }{ h-x } =\dfrac{\sqrt2 h}{h}$
                                                            $=\sqrt 2 x$
                                                             $=\dfrac { 2\sqrt { 2 } h }{ 2\sqrt { 2 } +1 } $
Volume of the cube=$\dfrac { 2\sqrt { 2 } h }{ 2\sqrt { 2 } +1 } $
Ratio of the volume of the cone to volume of the cube=$\dfrac { \dfrac { 2\sqrt { 2 }  }{ 3 } \pi h^{ 3 } }{ (\dfrac { 2\sqrt { 2 } h }{ 2\sqrt { 2 } +1 } )^ 3 } $
                                            $=\dfrac{\pi(2\sqrt { 2 } +1  )^ 3)}{24}$
                                            $=2.35\pi$

If S is the total surface area of a cube and V is its volume, then which one of the following is correct?

  1. $V^{3} = 216 S^{2}$

  2. $S^{3} = 216 V^{2}$

  3. $S^{3} = 6 V^{2}$

  4. $S^{2} = 36 V^{3}$


Correct Option: B
Explanation:

$S = 6a^{2}; V = a^{3}$
Then $S^{3} = 216a^{6} = 216(a^{3})^{2}$ or $S^{3} = 216 V^{2}$

If a box is $\dfrac{1}{4}$ filled contains $5$ small cubes each of volume $1$ cubic units then find out the volume of the box.

  1. $25$ cu.

  2. $20$ cu.

  3. $15$ cu.

  4. $5$ cu.


Correct Option: B
Explanation:

Since the box is $\dfrac {1}{4}$ filled with  the given cubes , we need to multiply the total volume of the given cubes by $4$ to get the total volume of thr box.

Volume of one cube is $1 cu.$
$\therefore $ Volume of 5 cubes will be $5\times 1 cu.=5cu.$
$\therefore $ Volume of the box will be $4\times 5 cu.=20cu.$

How many small cubical blocks side $5$cm can be cut from a cubical block whose each edge measure $20$cm?

  1. $56$

  2. $48$

  3. $64$

  4. $52$


Correct Option: A

how many bricks each measuring $250 cm$ by $12.5 cm$ by $7.5 cm$ will be required to build a wall 5 m long ,3m high and 20 m thick?

  1. $148$

  2. $128$

  3. $168$

  4. $158$


Correct Option: A

how many bricks are required to build a wall 15 m long 3 m high and 50 cm thick ,if each brick measures 25 cm by 12 cm by 6 cm?

  1. $16500$

  2. $14500$

  3. $12500$

  4. $10500$


Correct Option: A

How many cubes each of surface area $24 sq\ m$ can be made out a meter cube, without any wastage?

  1. $75$

  2. $250$

  3. $125$

  4. $62$`


Correct Option: A

If the volumes of two cubes are in the ratio $8:1$, then the ratio of their edges is

  1. $8:1$

  2. $2\sqrt 2:1$

  3. $2:1$

  4. none of these


Correct Option: C
Explanation:

Let $V _1$ and $V _2$ be two volume of cubes.

$l _1$ and $l _2$ be edges of the two cubes.
We know that,
Volume of cube $V=l^3$
So,
$\Rightarrow$  $\dfrac{V _1}{V _2}=\dfrac{l _1^3}{l _2^3}$

$\Rightarrow$  $\dfrac{8}{1}=\left(\dfrac{l _1}{l _2}\right)^3$             [ Given ]

$\therefore$  $\dfrac{l _1}{l _2}=\dfrac{2}{1}$

$\therefore$  Ratio of their edges is $2:1$.

The volume of a cube whose surface area is $96{cm}^{2}$, is

  1. $16\sqrt 2{cm}^{3}$

  2. $32{cm}^{3}$

  3. $64{cm}^{3}$

  4. $216{cm}^{3}$


Correct Option: C
Explanation:

Let $l$be the side of cube.

Surface area of cube $=6l^2$
$\Rightarrow$  $96=6l^2$                      [ Given ]
$\Rightarrow$  $l^2=16$
$\therefore$  $l=4\,cm$
Now,
$\Rightarrow$  Volume of cube $=l^3$
                                  $=(4)^3$
                                  $=64\,cm^3$

If each edge of a cube, of volume $V$, is doubled, then the volume of the new cube is

  1. $2V$

  2. $4V$

  3. $6V$

  4. $8V$


Correct Option: D
Explanation:

Let $a$ be the initial edge of the cube.

So, 
Volume of cube $V=a^3$
In the new cube,
Let $a'$ be the edge of new cube
$\therefore$  $a'=2a$               [ Given ]
Volume of new cube,
$V'=(a')^3$
      $=(2a)^3$
      $=8a^3$
      $=8V$                        [ Since, $a^3=V$ ]
Volume of the new cube is $8V.$