Tag: concepts of seven and eight digit numbers

Questions Related to concepts of seven and eight digit numbers

A data has highest value $120$ and the lowest value $71.A$ frequency distribution in descending order with seven classes is to be constructed. The limits of the second class interval shall be 

  1. $77$ and $78$

  2. $78$ and $85$

  3. $85$ and $113$

  4. $113$ and $120$


Correct Option: D
Explanation:
Range of Frequency distribution=Highest Value-Lowest value
 $=120-71=49$

Dividing this into Seven $(7)$ equal classes.

$\Rightarrow \dfrac{49}{7}=7$

Thus the class width should be 7

Now  arranging  in descending order

Class interval $1 \rightarrow (120-7) to\space 120 \rightarrow 113-120$

Class interval $2 \rightarrow (113-7) to \space 113 \rightarrow 106-113$

Hence class interval $1$ and $2$ is $113$ and $120$ 

Arrange the following fractions is ascending order :
$\dfrac{7}{10},\dfrac{3}{8},\dfrac{4}{5}$

  1. $\dfrac{3}{8},\dfrac{7}{10},\dfrac{4}{5}$

  2. $\dfrac{3}{8},\dfrac{4}{5},\dfrac{7}{10}$

  3. $\dfrac{4}{5},\dfrac{3}{8},\dfrac{7}{10}$

  4. $\dfrac{7}{10},\dfrac{3}{8},\dfrac{4}{5}$


Correct Option: A
Explanation:
$7/10= 0.7$
$3/8 = 0.375$
$4/5=0.8$

So ascending order, = $\dfrac 3 8, \dfrac 7 {10}, \dfrac 4 5$

Arrange the following rational number in ascending order $\displaystyle \frac{3}{7},\frac{4}{5},\frac{7}{9},\frac{1}{2}$

  1. $\displaystyle \frac{4}{5},\frac{7}{5},\frac{3}{9},\frac{1}{2}$

  2. $\displaystyle \frac{3}{7},\frac{1}{2},\frac{7}{9},\frac{4}{5}$

  3. $\displaystyle \frac{4}{5},\frac{7}{9},\frac{1}{2},\frac{3}{7}$

  4. $\displaystyle \frac{1}{2},\frac{3}{7},\frac{7}{9},\frac{4}{5}$


Correct Option: B
Explanation:

The LCM of 2, 5, 7 and 9 is 630.
$\frac{3}{7} = \frac{270}{630}$
$\frac{4}{5} = \frac{504}{630}$
$\frac{7}{9}=\frac{490}{630}$
$\frac{1}{2}=\frac{315}{630}$
The ascending order will be $\frac{3}{7},\frac{1}{2},\frac{7}{9},\frac{4}{5}$

Arrange in ascending order of magnitude $\sqrt 3, \sqrt [5]{15}, \sqrt [10]{227}$

  1. $\sqrt [5]{15} < \sqrt [10]{227} < \sqrt 3$

  2. $\sqrt 3 < \sqrt [5]{15} < \sqrt [10]{227}$

  3. $\sqrt [10]{227} < \sqrt 3 < \sqrt [5]{15}$

  4. None of these


Correct Option: A
Explanation:

$\sqrt 3, \sqrt [5]{15}, \sqrt [10]{227}$


LCM of $2, 5$ and $10=10$

$\sqrt 3=\sqrt [2\times 5]{3^5}=\sqrt [10]{3\times 3\times 3\times 3\times 3}=\sqrt [10]{243}$

$\sqrt [5]{15}=\sqrt [5\times 2]{15^2}=\sqrt [10]{15\times 15}=\sqrt [10]{225}$

$\sqrt [10]{227}=\sqrt [10]{227}$

$\therefore \sqrt [5]{15} < \sqrt [10]{227} < \sqrt 3$

Arrange the given fractions in ascending order:

$\displaystyle\frac{2}{7}$, $\displaystyle\frac{4}{5}$, $\displaystyle\frac{3}{4}$

  1. $\displaystyle\frac{4}{5}$, $\displaystyle\frac{3}{4}$, $\displaystyle\frac{2}{7}$

  2. $\displaystyle\frac{4}{5}$, $\displaystyle\frac{2}{7}$, $\displaystyle\frac{3}{4}$

  3. $\displaystyle\frac{2}{7}$, $\displaystyle\frac{3}{4}$, $\displaystyle\frac{4}{5}$

  4. $\displaystyle\frac{3}{4}$, $\displaystyle\frac{2}{7}$, $\displaystyle\frac{4}{5}$


Correct Option: C
Explanation:

First, we make all divisors common.
So l.c.m of $7,5,4 = 140$


Now $\dfrac{2}{7}\times \dfrac{20}{20} = \dfrac{40}{140}$

$\dfrac{4}{5}\times \dfrac{28}{28} = \dfrac{112}{140}$

$\dfrac{3}{4}\times \dfrac{35}{35} = \dfrac{102}{140}$

So the order will be $\displaystyle\frac{2}{7}$, $\displaystyle\frac{3}{4}$, $\displaystyle\frac{4}{5}$

Which one of the following is correct?

  1. $\dfrac {-7}{10} < \dfrac {-2}{3} < \dfrac {-5}{8}$

  2. $\dfrac {-5}{8} < \dfrac {-2}{3} < \dfrac {-7}{10}$

  3. $\dfrac {-5}{8} < \dfrac {-7}{10} < \dfrac {-2}{3}$

  4. $\dfrac {-7}{10} < \dfrac {-5}{8} < \dfrac {-2}{3}$


Correct Option: A

Arrange in descending order:
$6,00,780;  5,56,879; 6,87,340; 4,76,980$

  1. $4,76,980; 6,00,780; 5,56,879; 6,87,340; $

  2. $5,56,879;6,00,780; 6,87,340; 4,76,980$

  3. $ 6,87,340; 6,00,780;5,56,879; 4,76,980$

  4. $6,00,780; 6,87,340; 4,76,980; 5,56,879;$


Correct Option: C
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in descending order as 
$6,87,340;\ 6,00,780;\ 5,56,879;\ 4,76,980$

Arrange in ascending  order:
$9,78,654;  8,78,654;  9,56,236;  9,54,234$

  1. $9,78,654; 8,78,654; 9,56,236; 9,54,234$

  2. $ 8,78,654; 9,56,236; 9,54,234; 9,78,654$

  3. $ 8,78,654; 9,54,234; 9,56,236; 9,78,654$

  4. $ 9,54,234; 9,56,236; 9,78,654; 8,78,654$


Correct Option: C
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in ascending order as 
$8,78,654;\ 9,54,234;\ 9,56,236;\ 9,78,654$

Arrange in ascending order:
$12,098; 12,908; 12,809; 12,890$

  1. $12,098; 12,908; 12,809; 12,890$

  2. $12,098;12,809; 12,890; 12,908;$

  3. $12,098;12,890; 12,908; 12,809$

  4. $12,890; 12,908; 12,809; 12,098$


Correct Option: B
Explanation:

Comparing digits at ten thousand's place followed by thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in ascending order as 
$12,098; 12,809; 12,890; 12,908$

Arrange in ascending order:
$1,234; 2,345; 6,784; 1,543$

  1. $1,234; 2,345; 6,784; 1,543$

  2. $1,234; 1,543; 2,345; 6,784$

  3. $1,543; 1,234;2,345; 6,784$

  4. $1,543; 1,234; 6,784; 2,345$


Correct Option: B
Explanation:

Comparing digits at thousand's place followed by hundred's, ten's and one's place,


We can arrange the given numbers in ascending order as 
$1,234; 1,543; 2,345; 6,784$