Tag: section and mid-point formula

Questions Related to section and mid-point formula

STATEMENT - 1 : The coordinates of the point P(x, y) which divides the line segment joining the points A$(x _1,  y _1)$ and B$(x _2,  y _2)$ internally in the ration $m _1$  :  $m _2$ are $\left ( \dfrac{m _1 x _2 -m _2 x _1}{m _1 + m _2} ,  \dfrac{m _1 y _2 - m _2 y _1}{m _1 + m _2}\right )$


STATEMENT - 2 : The mid-point of the line segment joining the points P $(p _1 y _1)$ and Q$(x _2, y _2)$ is $\left ( \dfrac{x _1+x _2}{2} , \dfrac{y _1 + y _2}{2} \right )$

  1. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1

  2. Statement - 1 is True, Statement - 2 is True : Statement 2 is NOT a correct explanation for Statement - 1

  3. Statement - 1 is True, Statement - 2 is False

  4. Statement - 1 is False, Statement - 2 is True


Correct Option: D
Explanation:

Statement -1 is false,

As the formula is not for the internally it is when point divides externally.
Statement -2 is true.

The ratio in which the joining of (-3,2) and (5,6) is divided by the y-axis is

  1. 3:5

  2. 2:5

  3. 1:3

  4. 2:3


Correct Option: A
Explanation:

Let the ratio be k:1 Then
x-coordinate of P = 0

$\dfrac{k\times 5+1\times -3}{k+1}=0$
$k=\dfrac{3}{5}$

Consider points $A(-1,3), B(-1,2)$. Find point $P$ which divides $AB$ externally in $\dfrac{5}{4}$.

  1. $(9,-22)$

  2. $(-1,2)$

  3. $(-1,-2)$

  4. $(9,22)$


Correct Option: C
Explanation:
Let point P be (x,y)
$x=\cfrac { 5\times (-1)-4\times (-1) }{ 5-4 } \\ x=\cfrac { -5+4 }{ 1 } \\ x=-1\\ y=\cfrac { 5\times (2)-4\times (3) }{ 5-4 } \\ y=\cfrac { 10-12 }{ 1 } \\ y=-2\\ \therefore P=(-1,-2)$