Tag: decimal to fraction

Questions Related to decimal to fraction

Convert $0.25$ into fraction.

  1. $\displaystyle \frac{3}{4}$

  2. $\displaystyle \frac{1}{2}$

  3. $\displaystyle \frac{1}{4}$

  4. none of the above


Correct Option: C
Explanation:

$0.25=\displaystyle \frac{25}{100}=\frac{1}{4}$

Convert $0.55$ in to a fraction.

  1. $\displaystyle \frac{11}{20}$

  2. $\displaystyle \frac{2}{9}$

  3. $\displaystyle \frac{3}{9}$

  4. $\displaystyle \frac{4}{9}$


Correct Option: A
Explanation:

$0.55=\displaystyle \frac{55}{100}=\frac{11}{20}$

$0.8$ can be represented as

  1. $\displaystyle \frac{8}{10}$

  2. $\displaystyle \frac{8}{100}$

  3. $\displaystyle \frac{8}{1000}$

  4. None of the above


Correct Option: A
Explanation:

Multiplying the numerator and denominator by $10$ we get,
$0.8=\displaystyle \frac{8}{10}$

$\displaystyle \frac{0.25}{0.4}$ is equal to

  1. $\displaystyle \frac{5}{8}$

  2. $\displaystyle \frac{25}{40}$

  3. $\displaystyle \frac{16}{19}$

  4. None of the above


Correct Option: A,B
Explanation:
$\dfrac {0.25}{0.4}$ = $\dfrac{\dfrac {25}{100}}{ \dfrac {4}{10}}$

$= \displaystyle \frac{25\times 10}{4 \times 100} = \frac{25}{40}$

So. options A and B are correct.

In the number $0.257$, which of the following does the digit $7$ represent?

  1. $\displaystyle 7\times\frac{1}{10}$

  2. $\displaystyle 7\times\frac{1}{100}$

  3. $\displaystyle 7\times\frac{1}{1000}$

  4. $\displaystyle 7\times\frac{1}{10000}$

  5. $\displaystyle 7\times\frac{1}{100000}$


Correct Option: C
Explanation:

The number $0.257$ can be represented as $0.2 + 0.05 + 0.007$.

Therefore we can see that digit $7$ represents $0.007 = 7\times \dfrac { 1 }{ 1000 } $.

$0.614$ can be represented as 

  1. $\displaystyle \frac{61.4}{10}$

  2. $\displaystyle \frac{614}{1000}$

  3. $\displaystyle \frac{614}{10}$

  4. None of the above


Correct Option: B
Explanation:

$0.614 =\displaystyle \frac{614}{1000}$


So, option B is correct.

Express the following as a fraction and simplify:

$0.008$

  1. $\cfrac {1}{25}$

  2. $\cfrac {1}{125}$

  3. $\cfrac {2}{25}$

  4. $\cfrac {4}{125}$


Correct Option: B
Explanation:

To convert a decimal to a fraction, write it over the appropriate power of 10 and simplify:
$0.008= \cfrac{8}{1000} = \cfrac{1}{125}$

$0.43$ is rational and it can be written as ..........

  1. $\dfrac {43}{100}$

  2. $\dfrac {43}{10}$

  3. $\dfrac {4}{3}$

  4. $\dfrac {34}{10}$


Correct Option: A
Explanation:

$0.43 = \dfrac {43}{100}$ (As it is expressed a fraction.)
Therefore, $A$ is the correct answer.

$0.34$ can be represented as

  1. $\displaystyle \frac{34}{100}$

  2. $\displaystyle \frac{34}{1000}$

  3. $\displaystyle \frac{34}{10}$

  4. None of the above


Correct Option: A
Explanation:

$0.34 =\displaystyle \frac{34}{100}$


So, option A is correct.

$\dfrac {p}{q}$ form of $0.0875$ is _______

  1. $\dfrac {7}{2^{4}\times 5}$

  2. $\dfrac {7}{2\times 5^{4}}$

  3. $\dfrac {7}{2^{4}\times 5^{4}}$

  4. $\dfrac {5^{3}\times 7}{2^{3}\times 5^{4}}$


Correct Option: A
Explanation:

Since, $0.0875=\displaystyle \frac {875}{10000}=\frac {175}{2000}=\frac{35}{400} =\frac {7}{80}=\frac 7{16\times 5}=\frac 7{2^4\times 5}$

Option $A$ is correct.