0

More about logarithms - class-IX

Description: more about logarithms
Number of Questions: 60
Created by:
Tags: basic algebra maths real numbers logarithms exponential and logarithmic functions
Attempted 0/56 Correct 0 Score 0

Which is the correct order for a given number $\alpha$ in increasing order.

  1. $\log _{2} \alpha, \log _{e} \alpha, \log _{3} \alpha, \log _{10} \alpha$

  2. $\log _{10} \alpha, \log _{3} \alpha, \log _{e} \alpha, \log _{2} \alpha$

  3. $\log _{10} \alpha, \log _{e} \alpha, \log _{2} \alpha, \log _{3} \alpha$

  4. $\log _{3} \alpha, \log _{e} \alpha, \log _{2} \alpha, \log _{10} \alpha$


Correct Option: A
Explanation:
We know that, greater the value of base lesser is the value of the logarithm

Also, $10<3<e(2.71)<2$

$\therefore $ For any positive number $\alpha $,

${ log } _{ 2 }\alpha >{ log } _{ e }\alpha >{ log } _{ 3 }\alpha >{ log } _{ 10 }\alpha $

If $\log _3{(\log _3{a})}+\log _{\cfrac{1}{3}}{\left(\log _{\cfrac{1}{3}}{b}\right)}=1$, then the value of $ab^3$ is 

  1. $9$

  2. $3$

  3. $1$

  4. $\cfrac{1}{3}$


Correct Option: C

The value of $\log _a n\times\log _n m $  is equal to

  1. $\log _a m$

  2. $\log _m a$

  3. $\dfrac{\ln m}{\ln a}$

  4. $\dfrac{\ln a}{\ln m}$


Correct Option: A,C
Explanation:

$\because \displaystyle \log _{ n }{ m } =\frac { \log{ m }  }{ \log { n }  } $
$\therefore \log _an\times \log _nm=\dfrac{\log n}{\log a}\times \dfrac{\log m}{\log n}=\dfrac{\log m}{\log a}=\log _am$

If $\displaystyle \log _{10}\left [ \log _{10}\left ( \log _{10}x \right ) \right ]=0 $

  1. x = $\displaystyle 10^{3}$

  2. x = $\displaystyle 10^{10}$

  3. x = $\displaystyle 15^{5}$

  4. None


Correct Option: B
Explanation:

 $ \log _{10}\left [ \log _{10}\left ( \log _{10}x \right ) \right ]=0 $
$log _{10} log _{10} x=1$
$log _{10 }x=10$
$x=10^{10}$

If $\log _{ 5 }{ x } =y$, then ${5}^{5y}$ is

  1. $\cfrac{x}{5}$

  2. $5x$

  3. $\log _{ x }{ 5 } $

  4. ${x}^{5}$


Correct Option: D
Explanation:

$\log _5 x =y $

$5^{\log _5 x }=5^y $
$5^y =x$

Then , $5^{5y} = (5^y)^5 = x^5$

The value of $\log _{ 2 }{ 7 } $ is:

  1. an integer

  2. a prime number

  3. a rational number

  4. an irrational number


Correct Option: D
Explanation:
Suppose $\log _{2}{7}$ is rational.

$\Rightarrow \: \log _{2}{7}=\dfrac{a}{b}\:\Rightarrow \: 7=2^{a/b}$
$\Rightarrow \: 7^{b}=2^{a}$

But $2^{a}$ is even and $7^{b}$ is odd.
Hence, our assumption is wrong.

$\Rightarrow \: \log _{2}{7}$ is irrational.

The value of $x$ satisfying $\log _{ 243 }{ x } =0.8$

  1. $81$

  2. $1.8$

  3. $2.43$

  4. $27$


Correct Option: A
Explanation:

$\log _{243}x=0.8$

$\Rightarrow x=243^{0.8}$
$\Rightarrow x=81$
Hence, A is the correct option.

If $\log _{ x }{ \left( 7x-10 \right)  } =2$, then find the value(s) of $x$.

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: A,D
Explanation:

$\log _x(7x-10) =2$

$\Rightarrow x^2 =7x-10$ ...... $[\because a^{\log _{a} x}=x]$

$\Rightarrow x^2-7x+10=0$

$\Rightarrow x^2-5x-2x-10 =0$

$\Rightarrow (x-5)(x-2)=0$

Hence, $x =5 \; or \; x =2$

if $y=\left( \log _{ 2 }{ 3 }  \right) \left( \log _{ 3 }{ 4 }  \right) ....\left( \log _{ 31 }{ 32 }  \right) $, then

  1. $4< y\le 5$

  2. $y=5$

  3. $4< y< 6$

  4. $y=6$


Correct Option: A,B,C
Explanation:

Let $y = (\log _2 3 ) (\log _3 4 ) ( \log _4 5 ) … (\log _{31} 32 )$

Then, $2^y =2^{((\log _2 3 ) (\log _3 4 ) ( \log _4 5 ) … (\log _{31} 32 ))} $

By laws of exponents and the definition of a logarithm,

$2^{((\log _2 3 ) (\log _3 4 ) ( \log _4 5 ) … (log _{31} 32 ))} $

$=(2^{(\log _23)})^{((\log _3 4 ) ( \log _4 5 ) … (\log _{31} 32 ))} $

$= 3^{((\log _3 4 ) ( \log _4 5 ) … (\log _{31} 32 ))} $

$=(3^{(\log _34)})^{(( \log _4 5 ) … (\log _{31} 32 ))} $

$=4^{(( \log _4 5 ) … (\log _{31} 32 ))} $ .......

$=31^{(\log _{31}32)} =32$

$\therefore 2^y =32$

$y=5$

The value of $\log _{ 49 }{ 7 } $ is

  1. $2$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{7}$

  4. $1$


Correct Option: B
Explanation:

$\log _{49}7 = \log _{7^2}7 = \dfrac{1}{2}\log _{7}7 = \dfrac{1}{2}$

$\log 3 {27}$ is equal to___

  1. $3$

  2. $2$

  3. $4$

  4. $5$


Correct Option: A
Explanation:

$\log _3(27)$

$=\log _3(3^3)$
$=3\log _33$
$=3$              $\because(\log _aa=1)$
Hence, A is the correct option.

If $\left( \log _{ 3 }{ x }  \right) \left( \log _{ x }{ 2x }  \right) \left( \log _{ 2x }{ y }  \right) =\log _{ x }{ { x }^{ 2 } } $, then $y$ equals:

  1. $\cfrac{9}{2}$

  2. $9$

  3. $18$

  4. $27$

  5. $81$


Correct Option: B
Explanation:

Since $\log _{ a }{ b } =\cfrac { \log _{ c }{ b }  }{ \log _{ c }{ a }  } $, we have with base $x$, 
$\cfrac { \log { x }  }{ \log { 3 }  } .\cfrac { \log { 2x }  }{ \log { x }  } .\cfrac { \log { y }  }{ \log { 2x }  } =2;\quad \quad \log { y } =2\log { 3 } =\log { 9 } ;\quad y=9$

If $\log _{2x}$$216= x$, where $x$ is real, then $x$ is:

  1. A non-square, non-cube integer

  2. A non-square, non-cube, non-integral number

  3. An irrational number

  4. A perfect square

  5. A perfect cube


Correct Option: A
Explanation:

$\log _{2x}216= x , (2x)^x = 216 , 2^x.x^x= 2^3 . 3^3$
An obvious solution to this eqquation is $x = 3$, so that (A) is the correct choice.

The value of $\log _{ 3 }{ 9 } +\log _{ 5 }{ 25 } +\log _{ 2 }{ 8 } $ is

  1. $4$

  2. $5$

  3. $6$

  4. $7$


Correct Option: D
Explanation:

$\log _{ 3 }{ 9 } +\log _{ 5 }{ 25 } +\log _{ 2 }{ 8 } =\log _{ 3 }{ { \left( 3 \right)  }^{ 2 } } +\log _{ 5 }{ { \left( 5 \right)  }^{ 2 } } +\log _{ 2 }{ { \left( 2 \right)  }^{ 3 } } =2\log _{ 3 }{ { \left( 3 \right)  }^{  } } +2\log _{ 5 }{ { \left( 5 \right)  }^{  } } +3\log _{ 2 }{ { \left( 2 \right)  }^{  } } =7$

Solve the following: $\dfrac{1}{\log _{xy} \, xyz} \, + \, \dfrac{1}{\log _{xz} \, xyz} \, + \, \dfrac{1}{\log _{zx} \, xyz} \, =$

  1. 0

  2. 1

  3. 2

  4. $log _x \, xyz$


Correct Option: C
Explanation:

We have,

$\dfrac{1}{\log _{xy} \, xyz} \, + \, \dfrac{1}{\log _{yz} \, xyz} \, + \, \dfrac{1}{\log _{zx} \, xyz}$

$\Rightarrow \dfrac{\log _{xy}xy}{\log _{xy} \, xyz} \, + \, \dfrac{\log _{yz}yz}{\log _{yz} \, xyz} \, + \, \dfrac{\log _{zx}zx}{\log _{zx} \, xyz} $

We know that
$\dfrac{\log _a m}{\log _a n}=\log _n m$

Therefore,
$\Rightarrow \log _{xyz}xy\, + \, \log _{xyz}yz\, + \,\log _{xyz}zx$

$\Rightarrow \log _{xyz}(x^2y^2z^2)$

$\Rightarrow \log _{xyz}(xyz)^2$

$\Rightarrow 2\log _{xyz}(xyz)$

$\Rightarrow 2$

Hence, this is the answer.

If $(150)^x = 7$, then x is equal to:

  1. $\displaystyle \frac{log 7}{(log 3)+(log 5)+1}$

  2. $\displaystyle \frac{log7}{(log3)+(log6)}$

  3. $\displaystyle \frac{log7}{(log3)+(log5)+10}$

  4. $\displaystyle \frac{log7}{log2+log3}$


Correct Option: A
Explanation:

$(150)^x = 7$


$\Rightarrow log _{150} 7 = x$

$\Rightarrow \dfrac{log 7}{log 150} = x$

$\Rightarrow \dfrac{log 7}{log(3\times 5\times 10)} = \dfrac{log 7}{log 3+log 5+ log 10}$

$= \dfrac{log 7}{log 3+log 5+1}$

Given that $N = 7^{\log _{49} 900} , A = 2^{\log _{2} 4} + 3^{\log _{2} 4} + 4^{\log _{2} 2} - 4^{\log _{2} 3} , D = (\log _5\, 49) (\log _7 \, 125)$ 
Then answer the following questions : (using the values of $N, A, D$)
If $\log _A \, D = a$, then the value of $\log _6 \, 12$ is (in terms of $a$)

  1. $\dfrac{1 + 3a}{3a}$

  2. $\dfrac{1 + 2a}{3a}$

  3. $\dfrac{1 + 2a}{2a}$

  4. $\dfrac{1 + 3a}{2a}$


Correct Option: A
Explanation:
$A=2^{\log _{2}4}+3^{\log _{2}4}+4^{\log _{2}2}-4^{\log _{2}3}$
$A=2^{\log _{2}(2)^{2}}+3^{\log _{2}(2)^{2}}+4^{\log _{2}2}-3^{\log _{2}4}$             ($a^{\log _{x}b}=b^{\log _{x}a}$)
$A=2^{2\log _{2}2}+3^{2\log _{2}2}+4^1-3^{2\log _{2}2}$
$A=2^{2}+3^{2}+4-3^{2}=8$

$D=(\log _{5}49)(\log _{7}125)$
$D=(\log _{5}(7)^{2})(\log _{7}(5)^{3})$
$D=2\log _{5}7\times 3\log _{7}5$
$D=2\times 3=6$                    (  $\log _{5}7=\dfrac{1}{\log _{7}5}$  )

It is given that,
$\log _{A}D=a$
$\log _{8}6=a$
$\log _{6}8=\dfrac{1}{a}$
$\log _{6}(2)^{3}=\dfrac{1}{a}$
$\log _{6}2=\dfrac{1}{3a}$

Now,
$\log _{6}12=\log _{6}\left ( 6\times 2 \right )$
$=\log _{6}6+\log _{6}2$

$=1+\dfrac{1}{3a}$
$=\dfrac{3a+1}{3a}$







If $A = \log _2 \, \log _2 \, \log _4 \, 256 + 2 \, \log _{\sqrt{2}} \, 2$, then $A$ is equal to 

  1. $2$

  2. $3$

  3. $5$

  4. $7$


Correct Option: C
Explanation:
Use the properties
$\log _{ a }{ { \left( m \right)  }^{ n }=n\log _{ a }{ m }  } $  and  $\log _{ a }{ a } =1$

$\log _{ 2 }{ \log _{ 2 }{ \log _{ 4 }{ 256 }  }  } +2\log _{ \sqrt { 2 }  }{ 2 } =\log _{ 2 }{ \log _{ 2 }{ \log _{ 4 }{ { \left( 4 \right)  }^{ 4 } }  }  } +2\log _{ \sqrt { 2 }  }{ { \left( \sqrt { 2 }  \right)  }^{ 2 } } $

$=\log _{ 2 }{ \log _{ 2 }{ 4 }  } +2\left( 2 \right) $
$=\log _{ 2 }{ \log _{ 2 }{ { \left( 2 \right)  }^{ 2 } }  } +4$
$=\log _{ 2 }{ 2 } +4$
$=1+4=5$

If $3{x^{{{\log } _5}2}} + {2^{{{\log } _5}x}} =64$ then $x$ is equal to

  1. $625$ 

  2. $250$

  3. $125$

  4. None of these


Correct Option: A
Explanation:
$3{x}^{\log _{5}{2}}+{2}^{\log _{5}{x}}=64$

$\Rightarrow\,3 \times {2}^{\log _{5}{x}}+{2}^{\log _{5}{x}}=64$ using 

${a}^{\log _{b}{c}}={c}^{\log _{b}{a}}$

$\Rightarrow\,4\times {2}^{\log _{5}{x}}=64$

$\Rightarrow\,{2}^{2}\times {2}^{\log _{5}{x}}={2}^{6}$

$\Rightarrow\,2+\log _{5}{x}=6$  .................... taking log on both sides 

$\Rightarrow\,\log _{5}{x}=6-2=4$

$\Rightarrow\,x=5^4=625$

$\log _a {bc}= x, \log _b {ac}= y , \log _c {ab}= z$, then $\dfrac{1}{x + 1} + \dfrac{1}{y + 1} + \dfrac{1}{z + 1} = $

  1. $0$

  2. $1$

  3. $\dfrac{1}{2}$

  4. none


Correct Option: B
Explanation:

We have,

$x=\log _a bc$

$x=\dfrac{\log bc}{\log a}$                     $\because \log _a m=\dfrac{\log m}{\log a}$


Similarly,

$y=\dfrac{\log ac}{\log b}$

$z=\dfrac{\log ab}{\log c}$


Since,

$\Rightarrow \dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}$


Therefore,

$\Rightarrow \dfrac{1}{\dfrac{\log bc}{\log a}+1}+\dfrac{1}{\dfrac{\log ac}{\log b}+1}+\dfrac{1}{\dfrac{\log ab}{\log c}+1}$

$\Rightarrow \dfrac{\log a}{{\log bc}+{\log a}}+\dfrac{\log b}{{\log ac}+{\log b}}+\dfrac{\log c}{{\log ab}+{\log c}}$

$\Rightarrow \dfrac{\log a}{{\log abc}}+\dfrac{\log b}{{\log abc}}+\dfrac{\log c}{{\log abc}}$

$\Rightarrow \dfrac{\log a+\log b+\log c}{{\log abc}}$

$\Rightarrow \dfrac{\log abc}{{\log abc}}$

$\Rightarrow 1$


Hence, this is the answer.


The remainder when ${75^{{{75}^{75}}}}$ is divided by $37$.

  1. $0$

  2. $1$

  3. $3$

  4. can't be determine


Correct Option: B
Explanation:
Since $75 ≅ 1 modulo 37$

$75 \times 75 ≅ 1 *1 (=1) modulo 37$

$75 \times 75\times 75 ≅ 1*1*1 (=1) modulo 37$

So $75 ^{\ any \ integer}≅ $1$ modulo $37$
So$\ {75^{{75}^{75}}}$ ≅ $1 $modulo $37$

The remainder is 1.
*The digits (=1) are the remainders when divided by 37.

If $ 3^{\log _{4}{x}}=27$, then $x$ is equal to

  1. $16$

  2. $64$

  3. $27$

  4. $\log _2 16$


Correct Option: B
Explanation:

$ 3^{\log _{4}{x}}=27$
$\Rightarrow { 3 }^{ \log _{ 4 }{ x }  }={ 3 }^{ 3 }$
Equating powers of $3$
$\log _{ 4 }{ x } =3$
Taking exponential of the above equation, we get
${ 4 }^{ 3 }=x$
$\therefore x=64$

The value of $3^{\log _{ 4 }{ 5 }} -5 ^{\log _{ 4 }{ 3 }}$ is

  1. $0$

  2. $1$

  3. $2$

  4. none of these


Correct Option: A
Explanation:

We have,
${ 3 }^{ \log _{ 4 }{ 5 }  }-{ 5 }^{ \log _{ 4 }{ 3 }  }$
${ =5 }^{ \log _{ 4 }{ 3 }  }-{ 5 }^{ \log _{ 4 }{ 3 }  },$ ($\because { x }^{ \log _{ a }{ y }  }={ y }^{ \log _{ a }{ x }  }$)
$=0$

If $\log _{k}x.\log _{5}k=\log _{x}5,k\neq 1,k> 0$, then the value of $x$ is equal to

  1. $k$

  2. $\displaystyle \frac{1}{5}$

  3. $5$

  4. none of these


Correct Option: B,C
Explanation:

$\log _{ k }{ x } \log _{ 5 }{ k } =\log _{ x }{ 5 } \ \Rightarrow \dfrac { \log { x } \log { k }  }{ \log { k } \log { 5 }  } \left[ \because \log _ba=\dfrac{\log a}{\log b}\right]=\dfrac { \log { 5 }  }{ \log { x }  } \ \Rightarrow { \left( \log { x }  \right)  }^{ 2 }={ \left( \log { 5 }  \right)  }^{ 2 }\ \Rightarrow \log { x } =\pm \log { 5 }=\log 5 , \log 5^{-1}, \left[n\log a=\log a^n \right] \ \therefore \quad x=5,\dfrac { 1 }{ 5 } $

Ans: B.C

${ \log } _{ a }{ x }^{ n }=n{ \log } _{ a }x$

  1. True

  2. False


Correct Option: A
Explanation:
Step 1:
Let $m = \log _a x$

Step 2: Write in exponent form
$x = a^m$

Step 3: Raise both sides to the power of $n$
$x^n = ( a^m )^n$

Step 4: Convert back to a logarithmic equation
$\log _a x^n = mn$

Step 5: Substitute for $m = \log _a x$
$\log _a x^n = n \log _a x$

If $\displaystyle 5x^{log _23} + 3^{log _2x} = 162$ then logarithm of $x$ to the base 4 has the value equal to :

  1. $2$

  2. $1$

  3. $-1$

  4. $3/2$


Correct Option: D
Explanation:
Given,

$5x^{\log _2\left(3\right)}+3^{\log _2\left(x\right)}=162$

$3^{\log _2\left(x\right)}=162-5x^{\log _2\left(3\right)}$

$\Rightarrow \log _2\left(3^{\log _2\left(x\right)}\right)=\log _2\left(162-5x^{\log _2\left(3\right)}\right)$

$\Rightarrow \log _2\left(x\right)\log _2\left(3\right)=\log _2\left(162-5x^{\log _2\left(3\right)}\right)$

$\Rightarrow \log _2\left(x^{\log _2\left(3\right)}\right)=\log _2\left(162-5x^{\log _2\left(3\right)}\right)$

$x^{\log _2\left(3\right)}=162-5x^{\log _2\left(3\right)}$

$x=27^{\frac{665}{1054}}\approx 8$

Now,

$\log _4x$

$=\log _4 8$

$=\dfrac{3}{2}$

The value of $ a^{\frac{\log _b (\log _b N)}{\log _b a}}$ is

  1. $\log _b (N-b)$

  2. $\log _b (N+b)$

  3. $\log _b\dfrac Nb$

  4. $\log _b N$


Correct Option: D
Explanation:
Using $\log _p q =\dfrac{\log q}{\log p}$
$\displaystyle= a^{\cfrac{\log _b (\log _b N)}{\log _b a}}$
$\displaystyle = a^{\cfrac{\log(\log _b N)/\log b}{\log a/\log b}}$
$=\displaystyle a^{\displaystyle \log _a (\log _b N)}$
$=\log _b N[\because a^{\log _ab=b}]$


If ${ log } _{ 4 }5=a\quad and\quad { log } _{ 5 }6=b,\quad then\quad { log } _{ 3 }2$ is equal to

  1. $\dfrac { 1 }{ 2a+1 } $

  2. $\dfrac { 1 }{ 2b+1 } $

  3. $2ab+1$

  4. $\dfrac { 1 }{ 2ab-1 } $


Correct Option: D
Explanation:
Given,

$\log _{4}5=a$

$\log _{5}6=b$

now,

$ab=\log _{4}5 \times \log _{5}6$

$=\dfrac{\log 5}{\log 4} \times \dfrac{\log 6}{\log 5}$

$=\dfrac{\log 6}{\log 4}$

$ab=\log _4{6}$

$=\dfrac{1}{2}\log _2 6$

$=\dfrac{1}{2}\log _2 (2\times 3)$

$=\dfrac{1}{2}(\log _2 2+\log _2 3)$

$=\dfrac{1}{2}(1+\log _2 3)$

$2ab=1+\log _2 3$

$\log _2 3=2ab-1$

$\therefore \log _3 2=\dfrac{1}{2ab-1}$

If $4^{\log _{2}\log x}=\log x-\left ( \log x \right )^{2}+1$ (base is e), then find the value of $x$

  1. $x=e$

  2. $x=2e$

  3. $x=3e$

  4. none of these


Correct Option: A
Explanation:

Given equation is 
$4^{\log _{2}\log x}=\log x-\left ( \log x \right )^{2}+1$

Now, $\log _{2}\log x$ is meaningful if $\log x > 0$.
Since $4^{\log _{2}\log x}=2^{2\log _{2}\log x}=\left ( 2^{\log _{2}\log x} \right )^{2}=\left ( (\log x)^{\log _{2}2} \right )^{2}[\because a^{\log _bc}=c^{\log _ba}]$
             $=\left ( \log x \right )^{2}$    $ \left ( \because a^{\log _{a}x}=x, a> 0, a\neq 1 \right )$

So the given equation reduces to
$2\left ( \log x \right )^{2}-\log x-1=0$.
$\displaystyle \Rightarrow \log x=1, \log x=-\frac{1}{2}$.
But $\log x> 0$
Hence,    $\log x=1$, i.e.,$x=e$

The value of $\left( \log _{ b }{ a }  \right) \left( \log _{ c }{ b }  \right) \left( \log _{ a }{ c }  \right) $ is equal to

  1. $0$

  2. $\log { abc } $

  3. $1$

  4. $10$


Correct Option: C
Explanation:

Let $x=\left( \log _{ b }{ a }  \right) \left( \log _{ c }{ b }  \right) \left( \log _{ a }{ c }  \right) \ \Rightarrow x=\left( \dfrac { \log { a }  }{ \log { b }  }  \right) \left( \dfrac { \log { b }  }{ \log { c }  }  \right) \left( \dfrac { \log { c }  }{ \log { a }  }  \right),\left[\because \log _yx=\cfrac{\log x}{\log y}\right] \ \Rightarrow x=1$

Ans: C

Using the identity $\displaystyle a^{\log _{a}{n}}= n,$ find:

$\displaystyle 2^{2-\log _{2}5}$

  1. $0.6$

  2. $0.8$

  3. $0.2$

  4. $0.1$


Correct Option: B
Explanation:
Given $\displaystyle a^{\log _{a}{n}}= n$      .....(1)

Consider, 

$\displaystyle 2^{2-\log _2 5}=$$\displaystyle 2^{2}.2^{-\log _{2}5}$

                    $= 4.2^{\log _{2}5^{-1}}$

                    $= 4\,.5^{-1}$       $(by (1))$

                    $= \cfrac{4}{5}$

$\displaystyle 2^{2-\log _2 5}=0.8$

Ans: 0.8

If $\displaystyle a^{\log _{a}10}= 10$, then the set of value(s) of $a$ is/are

  1. $\displaystyle a \in \left ( 0,1 \right )\cup \left ( 1,\infty \right )$

  2. $\displaystyle a \in \left [ 0,1 \right )\cup \left (1,\infty \right).$

  3. $\displaystyle a \in \left ( -1,0 \right )\cup \left ( 1,\infty \right )$

  4. $\displaystyle a \in \left (-1,0\right ]\cup \left ( 1,\infty \right ).$


Correct Option: A
Explanation:

$\displaystyle a^{\log _{a}10}= 10$
$\displaystyle \log _a10.\log _{10}a = 1\Rightarrow \cfrac{\log _{10}a}{\log _{10}a}=1$
Given expression is correct for all $'a'$ provided $'a'$ belongs to the domain of the given expression.
$\displaystyle \log _{a}10$ is defined for a+ive, and $\displaystyle a\neq 1.$
$\displaystyle \therefore a \in \left ( 0,1 \right )\cup \left ( 1,\infty  \right)$

If $\displaystyle \log _{p}q+\log _{q}r+\log _{r}p$ vanishes, where $p,q$ and $r$ are positive reals different than unity, then the value of $\displaystyle \left ( \log _{p}q \right )^{3}+\left ( \log _{q}r \right )^{3}+\left ( \log _{r}p \right )^{3} $ is

  1. an odd prime.

  2. an even number.

  3. an odd composite.

  4. an irrational number.


Correct Option: A
Explanation:

Given 
$\displaystyle \log _{p}q+\log _{q}r+\log _{r}p=0$
$\Rightarrow \log _{p}q+\log _{q}r=-\log _{r}p$    ....(1)

Consider,$\left( \log _{ p } q \right) ^{ 3 }+\left( \log _{ q } r \right) ^{ 3 }+\left( \log _{ r } p \right) ^{ 3 }$

$=[(\log _{ p } q+\log _{ q } r)^{ 3 }-3\log _{ p } q\log _{ q } r(\log _{ p } q+\log _{ q } r)]+\left( \log _{ r } p \right) ^{ 3 }$

$=\left( -\log _{ r } p \right) ^{ 3 }-3\log _{ p } q\log _{ q } r\left( -\log _{ r } p \right) +\left( \log _{ r } p \right) ^{ 3 }$       (by (1))

$=3\log _{ p } q\log _{ q } r\log _{ r } p = 3 \quad \quad [\because \log _ab=\dfrac{\log b}{\log a}]$

The value of ${\left(\displaystyle\frac{1}{2}\right)}^{\log _{2}5}$ is equal to

  1. $ \displaystyle\frac{1}{5}$

  2. $ \displaystyle\frac{-1}{5}$

  3. $ \displaystyle\frac{-1}{25}$

  4. $ \displaystyle\frac{1}{25}$


Correct Option: A
Explanation:

$\displaystyle { \frac { 1 }{ 2 }  }^{ \log _{ 2 }{ 5 }  }={ 2 }^{ -\log _{ 2 }{ 5 }  }={ 2 }^{ \log _{ 2 }{ { 5 }^{ -1 } }  }={ 5 }^{ -1 }[\because a^{\log _ab}=b]=\frac { 1 }{ 5 } $

The value of $\displaystyle 49^{A}+5^{B}$, where $\displaystyle A= 1-\log _{7}2$ and $\displaystyle B= -\log _{5}4$ is

  1. $\displaystyle \frac{25}{2}$

  2. $\displaystyle \frac{49}{4}$

  3. $12$

  4. none of these


Correct Option: A
Explanation:

$\displaystyle 49^{A}= 49^{1-\log _{7}2}= \frac{49}{49^{\log _{7}2}}= \frac{49}{7^{\log _{7}4}}= \frac{49}{4}\quad [\because a^{\log _ab}=b]$
$\displaystyle 5^{B}= 5^{-\log _{5}4} \quad [\because m\log a=\log a^m]=5^{\log _5\dfrac{1}{4}}= \frac{1}{4}$
$\therefore 49^A+5^B = \cfrac{25}{2}$

The value of the expression
$\displaystyle\frac{1}{1+\log _b\,a+\log _b\,c}+\displaystyle\frac{1}{1+\log _c\,a+\log _c\,b}+\displaystyle\frac{1}{1+\log _a\,b+\log _a\,c}$ is equal to

  1. $\,\,abc$

  2. $\,\,\displaystyle\frac{1}{abc}$

  3. $\,\,0$

  4. $\,\,1$


Correct Option: D
Explanation:

$\displaystyle\frac{1}{1+\log _b\,a+\log _b\,c}+\displaystyle\frac{1}{1+\log _c\,a+\log _c\,b}+\displaystyle\frac{1}{1+\log _a\,b+\log _a\,c}$
$=\displaystyle \dfrac{1}{\displaystyle 1+\frac{\log a}{\log b}+\frac{\log c}{\log b}}+\dfrac{1}{\displaystyle 1+\frac{\log a}{\log c}+\frac{\log b}{\log c}}+\dfrac{1}{\displaystyle 1+\frac{\log b}{\log a}+\frac{\log c}{\log a}} [\because \log _yx=\dfrac{\log x}{\log y}]$
$=\displaystyle\frac{\log\,b}{\log\,b+\log\,a+\log\,c}+\displaystyle\frac{\log\,c}{\log\,c+\log\,a+\log\,b}+\displaystyle\frac{\log\,a}{\log\,c+\log\,a+\log\,b}\,=\,1$

Ans: D

The value of $\,3^{\textstyle \log _4\,5}\,+\,4^{\textstyle \log _5\,3}\,-5^{\textstyle \log _4\,3}\,-3^{\textstyle \log _5\,4}$ is equal to

  1. $\,\,0$

  2. $\,\,1$

  3. $\,\,2$

  4. $3$


Correct Option: A
Explanation:
Use $\,a^{\textstyle \log _b\,c}\,=\,c^{\textstyle \log _b\,a}$
So, $[5^{\textstyle \log _4\,3}=3^{\textstyle \log _4\,5}]$
and $[4^{\textstyle \log _5\,3}=3^{\textstyle \log _5\,4}]$
$\Rightarrow\,\,3^{\textstyle \log _4\,5}\,+\,4^{\textstyle \log _5\,3}\,-\,3^{\textstyle \log _4\,5}\,-\,4^{\textstyle \log _5\,3}\,=\,0$

Ans: A

$\log _{25} 25$ is equal to

  1. $1$

  2. $0$

  3. $\infty$

  4. none of these


Correct Option: A
Explanation:

We know $log _a  a = 1.         \therefore log _{25} 25 = 1$

Find the value of $x$ which satisfies $4.18^{x} = 36.54$.

  1. $0.86$

  2. $1.43$

  3. $1.80$

  4. $2.17$

  5. $2.52$


Correct Option: E
Explanation:

Given, ${4.18}^{x} = 36.54$


$\Rightarrow x = \log _{ 4.18 }{ 36.54 } $

$\Rightarrow x=\dfrac { \log { 36.54 }  }{ \log { 4.18 }  } =2.52$

If $\left( \log _{ 3 }{ x }  \right) \left( \log _{ x }{ 2x }  \right) \left( \log _{ 2x }{ y }  \right) =\log _{ x }{ { x }^{ 2 } } $, then what is $y$ equal to?

  1. $4.5$

  2. $9$

  3. $18$

  4. $27$


Correct Option: B
Explanation:
$(\log _{ 3 }{ x }) (\log _{ x }{ 2x }) (\log _{ 2x }y)=\log _{x} x^{2}$ .... $(i)$
$(\log _{ 3 }{ x }) (\log _{ x }{ 2x }) (\log _{ 2x }y)$
$=\left(\dfrac { \log x}{\log 3}\right) \left(\dfrac {\log 2x}{\log x} \right) \left(\dfrac { \log y}{\log 2x}\right)$ .......[using base change formula]
$=\dfrac { \log { y }  }{ \log { 3 }  } =\log _{ 3 }{ y } $
Also, $\log _{ x }{ { x }^{ 2 } } =2\log _{ x }{ x } =2$
So, $\log _{ 3 }{ y } =2$ .... From $(i)$
$\Rightarrow y={ 3 }^{ 2 }=9$
Hence, option B is correct

$\log 8 {64}$ is equal to____

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: A
Explanation:

$\log _8(64)$

$=\log _8(8^2)$
$=2\log _88$
$=2$                     $\because(\log _aa=1)$
Hence, A is the correct option.

$\log 4{64}$ is equal to___

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: B
Explanation:

$\log _4(64)$

$=\log _4(4^3)$
$=3\log _44$
$=3$                              $\because(\log _aa=1)$
Hence, B is the correct option.

$\log 2 {64}$ is equal to___

  1. $2$

  2. $3$

  3. $4$

  4. $6$


Correct Option: D
Explanation:

$\log _2(64)$

$=\log _2(2^6)$
$=6\log _22$
$=6$                        $\because(\log _aa=1)$
Hence, D is the correct option.

$\log _{\sqrt{3}} {81}$ is equal to

  1. $8$

  2. $4$

  3. $5$

  4. $6$


Correct Option: A
Explanation:

$\log _{\sqrt3}81$

$=\cfrac1{\frac12}\log _381$
$=2\log _33^4$
$=2\times4\log _33$
$=2\times4$
$=8$
Hence, A is the correct option.

$\log _\sqrt{5} {625}$ is equal to

  1. $8$

  2. $4$

  3. $5$

  4. $6$


Correct Option: A
Explanation:

$\log _{\sqrt5}625$

$=\cfrac1{\frac12}\log _5625$
$=2\log _55^4$
$=2\times4\log _55$
$=2\times4$
$=8$
Hence, A is the correct option.

If $\displaystyle \log _{ 2a }{ a } =x$, $\log _{ 3a }{  2a } =y$ and $\log _{ 4a }{  3a } =z$, then $xyz-2yz$ is equal to

  1. 1

  2. -1

  3. 0

  4. 2


Correct Option: C
Explanation:

We have,

${{\log } _{2a}}a=x,{{\log } _{3a}}2a=y,{{\log } _{4a}}3a=z$

$ {{\log } _{2a}}a=x $

$ \dfrac{\log a}{\log 2a}=x $

Similarly,

$ {{\log } _{3a}}2a=y $

$ \dfrac{\log 2a}{\log 3a}=y $

Similarly,

$ {{\log } _{4a}}3a=z $

$ \dfrac{\log 3a}{\log 4a}=z $


Therefore,,

$ =xyz-2yz $

$ =\dfrac{\log a}{\log 2a}\times \dfrac{\log 2a}{\log 3a}\times \dfrac{\log 3a}{\log 4a}-2\times \dfrac{\log 2a}{\log 3a}\times \dfrac{\log 3a}{\log 4a} $

$ =\dfrac{\log a}{\log 4a}-2\times \dfrac{\log 2a}{\log 4a} $

$ =\log a-\log 4-\log a-2\times \left( \log 2a-\log 4a \right) $

 $ =-\log 4-2\times \left( \log 2a-\log 2a-\log 2 \right) $

 $ =-\log 4+2\log 2 $

 $ =-\log 4+\log 4 $

 $ =0 $

So, the value is 0.

$\log _\sqrt{2} {16}$ is equal to:

  1. $8$

  2. $4$

  3. $5$

  4. $6$


Correct Option: A
Explanation:

$\log _{\sqrt2}16$

$=\cfrac1{\frac12}\log _{2}16$
$=2\log _22^4$
$=2\times4\log _22$
$=8$
Hence, A is the correct option.

$\log _\sqrt{2} {256}$ is equal to

  1. $8$

  2. $4$

  3. $15$

  4. $16$


Correct Option: D
Explanation:

$\log _{\sqrt2}256$

$=\cfrac1{1/2}\log _2256$
$=2\log _2(2^8)$
$=2\times8\log _22$
$=16$
Hence, D is the correct option.

$\log \sqrt{6} {216}$ is equal to____

  1. $8$

  2. $4$

  3. $5$

  4. $6$


Correct Option: D
Explanation:

$\log _{\sqrt6}216$

$=\cfrac1{\frac12}\log _6216$
$=2\log _66^3$
$=2\times3\log _66$
$=6$
Hence, D is the correct option.

The set of solutions for the equation $\log _{ 10 }{ \left( { a }^{ 2 }-15a \right)  } =2$ consists of:

  1. Two integers

  2. One integer and one fraction

  3. two irrational numbers

  4. two non-real numbers

  5. no numbers, that is, the set is empty


Correct Option: A
Explanation:

$\log _{10}{(a^{2}-15a)}=2$

$\Rightarrow a^{2}-15a=10^{2}$
$\Rightarrow a^{2}-15a-100=0$
Discrimnant$= (15)^{2}-(4)(-100)=225+400= 625>0$
$(a-20)(a+5)=0$
$a=20,-5$
(Two integers)

If $\log _{2}x + \log _{4}x + \log _{64} x = 5$, then the value of $x$ will be

  1. $8$

  2. $16$

  3. $7$

  4. $2$


Correct Option: A
Explanation:

$ \log _{ 2 }{ x } +\log _{ 4 }{ x } +\log _{ 64 }{ x } = 5$


We know that,
 
$ \log _{ b }{ a }=\dfrac { \log _{c} { a }  }{  \log _{c} {  b }   } $

$\therefore \dfrac { \log { x }  }{  \log {  2 }   } + \dfrac { \log {  x }  }{  \log {  4 }   } +\dfrac { \log {  x }  }{  \log {  64 } }  = 5$


 Assuming base $2$ for numerator and denominator, we get

$\dfrac { \log x }{ 1 } +\dfrac { \log x }{ 2 }  +\dfrac { \log x }{ 6 }  = 5$

$ 6\log x + 3\log x+\log x = 30$

$ 10 \log x = 30$

$ \log _{ 2 }{ { x }^{ 10 } }  =30 \ \ \ \ \dots (\log _{  { y}  }x^n=n \log _{ y }x)$

$ \\ { x }^{ 10 } = { 2 }^{ 30 }$

So, $x = { 2 }^{ 3 }=8$

If the eccentricity of the ellipse $\cfrac { { x }^{ 2 } }{ { \left( \log { a }  \right)  }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { \left( \log { b }  \right)  }^{ 2 } } =1\left( a>b>0,a\neq 1 \right) $ is $\cfrac { 1 }{ \sqrt { 2 }  } $ and $c$ be the eccentricity of the hyperbola $\cfrac { { x }^{ 2 } }{ { \left( \log _{ b }{ a }  \right)  }^{ 2 } } -{ y }^{ 2 }=1\quad $ then ${e}^{2}$ is greater than (where $\log{x}-\ln{x}$)

  1. $\dfrac{3}{2}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{2}{3}$

  4. $\dfrac{5}{4}$


Correct Option: A
Explanation:
Eqn of ellipse
$\dfrac{x^2}{(\log a)^2}+\dfrac{y^2}{(\log b)^2}=1\left(a>b>0, a\neq 1\right)$
if $a>b>0$ then $\log a> \log b$
For ellipse
$e=\dfrac{1}{\sqrt{2}}$
$e=\sqrt{1-\left(\dfrac{\log b}{\log a}\right)^2}=\dfrac{1}{\sqrt{2}}\quad \begin{cases} as\  & \dfrac { x^{ 2 } }{ a^{ 2 } } +\dfrac { y^{ 2 } }{ b^{ 2 } } =1 \\ e=\sqrt { 1-\dfrac { b^{ 2 } }{ a^{ 2 } }  }  & if\quad a>b \end{cases}$
$1-\left(\dfrac{\log b}{\log a}\right)^2=\dfrac{1}{2}$
$\dfrac{1}{2}=\left(\dfrac{\log b}{\log a}\right)^2\quad ----(1)$
Eqn of hyperbola
$\dfrac{x^2}{(\log _b a)^2}-y^2=1$
$e=\sqrt{1+\dfrac{b^2}{a^2}}\quad \left\{\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1\right\}$
So
$e=\sqrt{1+\dfrac{1}{(\log _b a)^2}}=\sqrt{1+\left(\dfrac{\log b}{\log a}\right)}\quad \left\{ as\ \log _{ b }{ a=\dfrac { \log { a }  }{ \log { b }  }  }  \right. $
$=\sqrt{1+\dfrac{1}{2}}=\sqrt{\dfrac{3}{2}}$
$e^2=\dfrac{3}{2}$

If $\displaystyle y= a^{\left(\frac{1}{1-\log _{a}x}\right)}$ and $\displaystyle z= a^{\left(\frac{1}{1-\log _{a}y}\right)}$, then relation between $x$ and $z$ is

  1. $\displaystyle x= a^{\left(\frac{1}{1-\log _{a}z}\right)}$

  2. $\displaystyle x= a^{\left(\frac{1}{1+\log _{a}z}\right)}$

  3. $\displaystyle x= a\left(\frac{1}{1-\log _{a}z}\right)$

  4. $\displaystyle x= a\left(\frac{1}{1+\log _{a}z}\right)$


Correct Option: A
Explanation:

$\displaystyle y={ a }^{ \frac { 1 }{ 1-\log _{ a }{ x }  }  }\Rightarrow \log _{ a }{ y } =\frac { 1 }{ 1-\log _{ a }{ x }  } $, taking log both sides on base 'a'

$\displaystyle z={ a }^{ \frac { 1 }{ 1-\log _{ a }{ y }  }  }\Rightarrow \log _{ a }{ z } =\frac { 1 }{ 1-\log _{ a }{ y }  } =\frac { 1 }{ 1-\frac { 1 }{ 1-\log _{ a }{ x }  }  } $

$\displaystyle \Rightarrow \log _{ a }{ z } =\frac { 1-\log _{ a }{ x }  }{ 1-\log _{ a }{ x } -1 } \Rightarrow -\log _{ a }{ x } \log _{ a }{ z } =1-\log _{ a }{ x } $

$\displaystyle \Rightarrow \log _{ a }{ x } =\frac { 1 }{ 1-\log _{ a }{ z }  } \Rightarrow x={ a }^{ \frac { 1 }{ 1-\log _{ a }{ z }  }  }$

The solution of the equation ${ 4 }^{ \log _{ 2 }{ \log { x }  }  }=\log { x } -{ \left( \log { x }  \right)  }^{ 2 }+1$ is

  1. $x=1$

  2. $x=4$

  3. $x=e$

  4. $x={e}^{2}$


Correct Option: C
Explanation:

${ \log _{ 2 }{ \log { x }  }  }$ is meaningful if $x>1$
Since ${ 4 }^{ \log _{ 2 }{ \log { x }  }  }={ \left( { 2 }^{ \log _{ 2 }{ \log { x }  }  } \right)  }^{ 2 }={ \left( \log { x }  \right)  }^{ 2 }$         .......$\left[\because  a^{ \log _{ a }{ x }  }=x,a>0,a\neq 1 \right] $     

So the given equation {${ 4 }^{ \log _{ 2 }{ \log { x }  }  }=\log { x } -{ \left( \log { x }  \right)  }^{ 2 }+1$} reduces to
$2{ \left( \log { x }  \right)  }^{ 2 }-\log { x } -1=0$
$\Rightarrow \log { x } =1,\log { x } =-\dfrac12$
But for $x>1$, $\log { x } >0$
 so $\log { x } =1$ i.e., $x=e$

Ans: C

If $\log _{ 4 }{ \left( x \right)  } =12\quad $, then $\log _{ 2 }{ \left( x/4 \right)  } $ is equal to

  1. $11$

  2. $48$

  3. $-12$

  4. $22$


Correct Option: D
Explanation:

If $\log _{ 4 }{ \left( x \right)  } =12$ then,


$x={ 4 }^{ 12 }\$ 

$\frac { x }{ 4 } ={ 4 }^{ 11 }$

Hence, 

$\log _{ 2 }{ \left( \frac { x }{ 4 }  \right)  } =\log _{ 2 }{ \left( { 4 }^{ 11 } \right)  } \$ 

                 $=\log _{ 2 }{ \left( \left( { 2 }^{ 2 } \right) ^{ 11 } \right)  } \$ 

                 $=\log _{ 2 }{ \left( { 2 }^{ 22 } \right)  }$ 

                 $ =22$

Hence option D is correct.

If $a, b, c$ are positive numbers such that $a^{\log _37}=27, b^{\log _711}=49, c^{\log _{11}25}=\sqrt{11}$, then the sum of digits of $S=a^{(\log _37)^2}+b^{(\log _711)^2}+c^{(\log _{11}25)^2}$ is

  1. 15

  2. 17

  3. 19

  4. 21


Correct Option: C
Explanation:

${ a }^{ \log _{ 3 }{ 7 }  }=27,\quad { b }^{ \log _{ 7 }{ 11 }  }=49,\quad { c }^{ \log _{ 11 }{ 25 }  }=\sqrt { 11 } $
$S=({ a }^{ \log _{ 3 }{ 7 } })^{\log _{ 3 }{ 7 }  }+{ \left( { b }^{ \log _{ 7 }{ 11 }  } \right)  }^{ \log _{ 7 }{ 11 }  }+{ \left( { c }^{ \log _{ 11 }{ 25 }  } \right)  }^{ \log _{ 11 }{ 25 }  }$
$={ \left( 27 \right)  }^{ \log _{ 3 }{ 7 }  }+{ \left( 49 \right)  }^{ \log _{ 7 }{ 11 }  }+{ \left( \sqrt { 11 }  \right)  }^{ \log _{ 11 }{ 25 }  }$
$={ 3 }^{ 3\log _{ 3 }{ 7 }  }+{ 7 }^{ 2\log _{ 7 }{ 11 }  }+{ 11 }^{ { 1 }/{ 2 }\log _{ 11 }{ 25 }  }$
$={ 7 }^{ 3 }+{ 11 }^{ 2 }+{ 25 }^{ { 1 }/{ 2 } }$
$=469$
Sum of digits $=19$
Hence, C is correct.

- Hide questions