More about logarithms - class-IX
Description: more about logarithms | |
Number of Questions: 60 | |
Created by: Mohini Tyagi | |
Tags: basic algebra maths real numbers logarithms exponential and logarithmic functions |
Which is the correct order for a given number $\alpha$ in increasing order.
If $\log _3{(\log _3{a})}+\log _{\cfrac{1}{3}}{\left(\log _{\cfrac{1}{3}}{b}\right)}=1$, then the value of $ab^3$ is
The value of $\log _a n\times\log _n m $ is equal to
If $\displaystyle \log _{10}\left [ \log _{10}\left ( \log _{10}x \right ) \right ]=0 $
If $\log _{ 5 }{ x } =y$, then ${5}^{5y}$ is
The value of $\log _{ 2 }{ 7 } $ is:
The value of $x$ satisfying $\log _{ 243 }{ x } =0.8$
If $\log _{ x }{ \left( 7x-10 \right) } =2$, then find the value(s) of $x$.
if $y=\left( \log _{ 2 }{ 3 } \right) \left( \log _{ 3 }{ 4 } \right) ....\left( \log _{ 31 }{ 32 } \right) $, then
The value of $\log _{ 49 }{ 7 } $ is
$\log 3 {27}$ is equal to___
If $\left( \log _{ 3 }{ x } \right) \left( \log _{ x }{ 2x } \right) \left( \log _{ 2x }{ y } \right) =\log _{ x }{ { x }^{ 2 } } $, then $y$ equals:
If $\log _{2x}$$216= x$, where $x$ is real, then $x$ is:
The value of $\log _{ 3 }{ 9 } +\log _{ 5 }{ 25 } +\log _{ 2 }{ 8 } $ is
Solve the following: $\dfrac{1}{\log _{xy} \, xyz} \, + \, \dfrac{1}{\log _{xz} \, xyz} \, + \, \dfrac{1}{\log _{zx} \, xyz} \, =$
If $(150)^x = 7$, then x is equal to:
Given that $N = 7^{\log _{49} 900} , A = 2^{\log _{2} 4} + 3^{\log _{2} 4} + 4^{\log _{2} 2} - 4^{\log _{2} 3} , D = (\log _5\, 49) (\log _7 \, 125)$
Then answer the following questions : (using the values of $N, A, D$)
If $\log _A \, D = a$, then the value of $\log _6 \, 12$ is (in terms of $a$)
If $A = \log _2 \, \log _2 \, \log _4 \, 256 + 2 \, \log _{\sqrt{2}} \, 2$, then $A$ is equal to
If $3{x^{{{\log } _5}2}} + {2^{{{\log } _5}x}} =64$ then $x$ is equal to
$\log _a {bc}= x, \log _b {ac}= y , \log _c {ab}= z$, then $\dfrac{1}{x + 1} + \dfrac{1}{y + 1} + \dfrac{1}{z + 1} = $
The remainder when ${75^{{{75}^{75}}}}$ is divided by $37$.
If $ 3^{\log _{4}{x}}=27$, then $x$ is equal to
The value of $3^{\log _{ 4 }{ 5 }} -5 ^{\log _{ 4 }{ 3 }}$ is
If $\log _{k}x.\log _{5}k=\log _{x}5,k\neq 1,k> 0$, then the value of $x$ is equal to
${ \log } _{ a }{ x }^{ n }=n{ \log } _{ a }x$
If $\displaystyle 5x^{log _23} + 3^{log _2x} = 162$ then logarithm of $x$ to the base 4 has the value equal to :
The value of $ a^{\frac{\log _b (\log _b N)}{\log _b a}}$ is
If ${ log } _{ 4 }5=a\quad and\quad { log } _{ 5 }6=b,\quad then\quad { log } _{ 3 }2$ is equal to
If $4^{\log _{2}\log x}=\log x-\left ( \log x \right )^{2}+1$ (base is e), then find the value of $x$
The value of $\left( \log _{ b }{ a } \right) \left( \log _{ c }{ b } \right) \left( \log _{ a }{ c } \right) $ is equal to
Using the identity $\displaystyle a^{\log _{a}{n}}= n,$ find:
If $\displaystyle a^{\log _{a}10}= 10$, then the set of value(s) of $a$ is/are
If $\displaystyle \log _{p}q+\log _{q}r+\log _{r}p$ vanishes, where $p,q$ and $r$ are positive reals different than unity, then the value of $\displaystyle \left ( \log _{p}q \right )^{3}+\left ( \log _{q}r \right )^{3}+\left ( \log _{r}p \right )^{3} $ is
The value of ${\left(\displaystyle\frac{1}{2}\right)}^{\log _{2}5}$ is equal to
The value of $\displaystyle 49^{A}+5^{B}$, where $\displaystyle A= 1-\log _{7}2$ and $\displaystyle B= -\log _{5}4$ is
The value of the expression
$\displaystyle\frac{1}{1+\log _b\,a+\log _b\,c}+\displaystyle\frac{1}{1+\log _c\,a+\log _c\,b}+\displaystyle\frac{1}{1+\log _a\,b+\log _a\,c}$ is equal to
The value of $\,3^{\textstyle \log _4\,5}\,+\,4^{\textstyle \log _5\,3}\,-5^{\textstyle \log _4\,3}\,-3^{\textstyle \log _5\,4}$ is equal to
$\log _{25} 25$ is equal to
Find the value of $x$ which satisfies $4.18^{x} = 36.54$.
If $\left( \log _{ 3 }{ x } \right) \left( \log _{ x }{ 2x } \right) \left( \log _{ 2x }{ y } \right) =\log _{ x }{ { x }^{ 2 } } $, then what is $y$ equal to?
$\log 8 {64}$ is equal to____
$\log 4{64}$ is equal to___
$\log 2 {64}$ is equal to___
$\log _{\sqrt{3}} {81}$ is equal to
$\log _\sqrt{5} {625}$ is equal to
If $\displaystyle \log _{ 2a }{ a } =x$, $\log _{ 3a }{ 2a } =y$ and $\log _{ 4a }{ 3a } =z$, then $xyz-2yz$ is equal to
$\log _\sqrt{2} {16}$ is equal to:
$\log _\sqrt{2} {256}$ is equal to
$\log \sqrt{6} {216}$ is equal to____
The set of solutions for the equation $\log _{ 10 }{ \left( { a }^{ 2 }-15a \right) } =2$ consists of:
If $\log _{2}x + \log _{4}x + \log _{64} x = 5$, then the value of $x$ will be
If the eccentricity of the ellipse $\cfrac { { x }^{ 2 } }{ { \left( \log { a } \right) }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { \left( \log { b } \right) }^{ 2 } } =1\left( a>b>0,a\neq 1 \right) $ is $\cfrac { 1 }{ \sqrt { 2 } } $ and $c$ be the eccentricity of the hyperbola $\cfrac { { x }^{ 2 } }{ { \left( \log _{ b }{ a } \right) }^{ 2 } } -{ y }^{ 2 }=1\quad $ then ${e}^{2}$ is greater than (where $\log{x}-\ln{x}$)
If $\displaystyle y= a^{\left(\frac{1}{1-\log _{a}x}\right)}$ and $\displaystyle z= a^{\left(\frac{1}{1-\log _{a}y}\right)}$, then relation between $x$ and $z$ is
The solution of the equation ${ 4 }^{ \log _{ 2 }{ \log { x } } }=\log { x } -{ \left( \log { x } \right) }^{ 2 }+1$ is
If $\log _{ 4 }{ \left( x \right) } =12\quad $, then $\log _{ 2 }{ \left( x/4 \right) } $ is equal to
If $a, b, c$ are positive numbers such that $a^{\log _37}=27, b^{\log _711}=49, c^{\log _{11}25}=\sqrt{11}$, then the sum of digits of $S=a^{(\log _37)^2}+b^{(\log _711)^2}+c^{(\log _{11}25)^2}$ is