0

Area of a sector of a circle - class-X

Description: area of a sector of a circle
Number of Questions: 56
Created by:
Tags: trigonometry geometry maths area of plane figures measurements circle measures areas related to circles
Attempted 0/55 Correct 0 Score 0

Tick the correct answer in the following:
Area of a sector of angle $\theta$ (in degrees) of a circle with radius R is

  1. $\dfrac {\theta}{180}\times 2\pi R$

  2. $\dfrac {\theta}{180}\times \pi R^{2}$

  3. $\dfrac {\theta}{3600}\times 2\pi R$

  4. $\dfrac {\theta}{720}\times 2\pi R^{2}$


Correct Option: D
Explanation:

Area of a sector with angle $p$ $=\dfrac{\theta}{360}\times\pi R^2$

$=\dfrac{\theta}{360\times2}\times\pi R^2\times2$

$=\dfrac{\theta}{720}\times2\pi R^2$

Hence, Option $D$ is correct

If the angle subtended by the arc of a sector at the center is $90$ degrees, then the area of the sector in square units is

  1. $2\pi r^2$

  2. $4\pi r^2$

  3. $\dfrac{\pi r^2}{4}$

  4. $\dfrac{\pi r^2}{2}$


Correct Option: C
Explanation:

Since the Central angle is $90^{\circ}$, it means it is a Quad-circle.

So the Area of this sector is $\dfrac{1}{4}$ th of the Circle's Area $= \dfrac{1}{4}* \pi r^2$

The perimeter of a sector of a circle is $56$ cms and the area of the circle is $64\pi$ sq. cms  Find the area of sector.

  1. $360cm^2$

  2. $160cm^2$

  3. $260cm^2$

  4. None of these


Correct Option: B
Explanation:

Area $= \pi r^{2}=64\pi cm^{2}$  


$\Rightarrow r=8cm$ 


perimeter $=2r+r\theta $ 

perimeter of sector $=r(\theta +2)=56cm$ 

$\Rightarrow \theta =5rad$ 

Area of sector $=\dfrac{r^{2}\theta }{2}=\dfrac{64}{2}\times 5cm^{2}$

                        $=160cm^{2}$

In a circle with radius $5.7\ cm$, the perimeter of a sector is $27.2\ cm$. Find the area of this sector.

  1. $97.52cm^2$

  2. $57.52cm^2$

  3. $77.52cm^2$

  4. $87.52cm^2$


Correct Option: C
Explanation:
$R=5.7 cm$
Perimeter = $R\theta =27.2 cm$
$\therefore R\theta = 27.2 cm$
$\theta = \left(\dfrac{27.2}{5.7}\right)^{c}$
$\therefore $ Area of sector $=\dfrac{1}{2}R^{2}\theta $
$=\dfrac{1}{2}\times (5.7)^{2}\times \dfrac{27.2}{5.7}$
$=\dfrac{5.7}{2}\times 27.2 cm^{2}$
$ = 5.7 \times 13.6 = 77.52 cm^{2}$

The angle of sector with area equal to one fifth of total area of whole circle 

  1. 72

  2. 80

  3. 60

  4. 45


Correct Option: A
Explanation:

The area of circle is $\pi r^2$

The area of sector is $\dfrac 15\pi r^2$
The area of sector is given as $\dfrac{x}{360}\times \pi r^=\pi r^2\\dfrac x{360}=\dfrac 15\x=72$

A horse is tied to a pole fixed at one corner of a $50 m \times 50 m$ square field of grass by means of a $20 m$ long rope. What is the area to the nearest whole number of that part of the field which the horse can graze?

  1. $1256 m^{2}$

  2. $942 m^{2}$

  3. $628 m^{2}$

  4. $314 m^{2}$


Correct Option: D
Explanation:

The area of the field in which the horse can graze is one fourth of the circle of radius $ 20  cm $
Area of a circle $ = \pi { r }^{ 2 } $
Hence, area of the field in which the horse can graze $ = \cfrac {1}{4} \times
\cfrac{22}{7} \times 20 \times 20 = 314  $ sq m

The area of a sector of a circle of radius 16 cm cut off by an arc which is 18.5 cm long is

  1. $168\, cm^2$

  2. $148\, cm^2$

  3. $154\, cm^2$

  4. $176\, cm^2$


Correct Option: B
Explanation:

$A\, =\, \displaystyle \frac {1}{2}\, lr\, =\, \displaystyle \frac {1}{2}\, \times\, 18.5\, \times\, 16\, =\, 148\, cm^2$

The area of a sector is 1/18th of the area of the circle The sectorial angle is

  1. $\displaystyle 18^{\circ} $

  2. $\displaystyle 36^{\circ} $

  3. $\displaystyle 10^{\circ} $

  4. $\displaystyle 20^{\circ} $


Correct Option: D
Explanation:

$\displaystyle \frac{x}{360}=\frac{1}{18}\Rightarrow x=20^{\circ}$

The minute hand of a clock is $\displaystyle \sqrt{21}$ cm long. The area described by the minute hand on the face of the clock between $7$ am and $7.05$ am is

  1. $5.5$ $\displaystyle cm^{2}$

  2. $22$ $\displaystyle cm^{2}$

  3. $11$ $\displaystyle cm^{2}$

  4. None of these


Correct Option: A
Explanation:
Given $r=\sqrt{21}cm $

Angle made by minute hand in $1$ minute $=$ $\dfrac { { 360 }^{ 0 } }{ { 60 }} ={ 6 }^{ 0 }$

Therefore, angle made in $5$ minutes $=$ ${ 6 }^{ 0 }\times 5={ 30 }^{ 0 }$

Area of the sector$=\dfrac{\theta}{360^\circ}\times \pi \times r^2$

Here $\theta=30^\circ$

Hence, area swept in $5$ minutes $=$ $\dfrac { { 30 }^{ 0 } }{ { 360 }^{ 0 } } \times \dfrac { 22 }{ 7 } \times { \left( \sqrt { 21 }  \right)  }^{ 2 }$

                                                      $=$ $\dfrac { 1 }{ 12 } \times \dfrac { 22 }{ 7 } \times 21$

                                                      $=$ $5.5$ ${ cm }^{ 2 }$

A circular disc of radius 10 cm is divided into sectors with angles $ \displaystyle 120^{\circ}   $ and  $ \displaystyle 150^{\circ}   $ then  the ratio of the areas of two sectors is

  1. 4 : 5

  2. 5 : 4

  3. 2 : 1

  4. 8 : 7


Correct Option: A
Explanation:

Now $\frac{c}{circle}=\frac{120}{360}=\frac{1}{3}$

And $\frac{c}{circle}=\frac{150}{360}=\frac{5}{12}$
So sector with angle 120 and 150 is part $\frac{1}{3}$ and $\frac{5}{12}$
Now ratio of the area of two sectors =Ratio of central angle =120:150=4:5

Given, $\displaystyle A = \frac{S}{360}\times \pi r^2$
$A$ is the area of setor, $ S$ is the angle measure in degrees of the sector and $r$ is the radius of the circle. Find $r$ in terms of $A$ and $S$.

  1. $r=\dfrac{360A\pi}{S}$

  2. $r=\dfrac{360A}{S\pi}$

  3. $r=\sqrt{\dfrac{360A\pi}{S}}$

  4. $r=\sqrt{\dfrac{360A}{S\pi}}$


Correct Option: D
Explanation:

To change the formula in terms of $A$ and $S$, Isolate $r^2$, we get the formula as
$\dfrac{A\times 360}{S\pi}=r^2$
Now taking square root on both the sides to get the value of $r$ in terms of $A$ and $S$.
$\therefore r=\sqrt{\dfrac{360A}{S\pi}}$

What is the area of the sector of a circle, whose radius is $6\ m$ when the angle at the centre is $42^{\circ}$?

  1. $13.2\ m^{2}$

  2. $14.2\ m^{2}$

  3. $13.4\ m^{2}$

  4. $14.4\ m^{2}$


Correct Option: A
Explanation:

Area of sector $=$ $\dfrac { \theta  }{ { 360 }^{ 0 } } \times \pi { r }^{ 2 }=\dfrac { { 42 }^{ 0 } }{ { 360 }^{ 0 } } \times \dfrac { 22 }{ 7 } \times 6\times 6=13.2{ m }^{ 2 }$

Area of a sector having radius 12 cm and arc length 21 cm is

  1. 126 $cm^2$

  2. 252 $cm^2$

  3. 33 $cm^2$

  4. 45 $cm^2$


Correct Option: A
Explanation:

Arc Length : Perimeter = Area of Sector : Area of Circle

$21: 2\pi r = \; Area \; of \;  Sector : \pi r^2$

$21:24\pi = \; Area \; of \;  Sector :144\pi$

Area of Sector $= \dfrac{144 \pi *21}{24 \pi} = 126cm^2$

If the area and arc length of the sector of a circle are 60 $cm^2$ and 20 cm respectively, then the diameter of the circle is 

  1. 6 cm

  2. 12 cm

  3. 24 cm

  4. 36 cm


Correct Option: B
Explanation:

Arc length of the Circle  : Area of the Sector = Perimeter of the Circle :Area of the Circle

Let the radius of the circle be 'r'.

 

Hence, $20 : 60$=$ 2\pi r : \pi r^2$

$ 1:3 = 2: r$

$ r= 6 $ (Product of Means = Product of Extremes)

Therefore, $Diameter = 2r = 12cm$

The perimeter of a sector of a circle is 37cm. If its radius is 7cm, then its arc length is 

  1. 23 cm

  2. 5.29 cm

  3. 32 cm

  4. 259 cm


Correct Option: A
Explanation:

Perimeter of the Sector =37cm

Then, Radius = 7cm

Now perimeter of the sector of the circle $ =$ Arc's length+ Radius+radius 
37$ =$ Arc's Length +7+7

Arc's Length$ =$ 37-14 $=$ 23cm

The length of a minute hand of a wall clock is $8.4\ cm$. Find the area swept by it in half an hour.

  1. $100\ cm^{2}$

  2. $110.88\ cm^{2}$

  3. $120\ cm^{2}$

  4. $130\ cm^{2}$


Correct Option: B
Explanation:

We know that minute hand covers $180^{o}$ in half an hour, which is a semicircle, hence area is

 $\Rightarrow \dfrac{1}{2}(\pi)(r^{2})=0.5\times3.1428\times(8.4)^{2}=110.88 \,cm^{2}$

The area of a sector of angle p (in degrees) of a circle with radius R is

  1. $\displaystyle \frac{p}{360} \times 2 \pi R$

  2. $\displaystyle \frac{p}{180}\times \pi R^2$

  3. $\displaystyle \frac{p}{720} \times 2 \pi R$

  4. $\displaystyle \frac{p}{720} \times 2 \pi R^2$


Correct Option: D
Explanation:

Area of a sector with angle $p = \dfrac{p}{360} \times \pi \times R^2$ ,which matches with option D.

Find the area of sector whose length is $30\ \pi$ cm and angles of the sector is $40^o$.

  1. $2125\ \pi $ sq. cm

  2. $2225\ \pi $ sq. cm

  3. $2025\ \pi $ sq. cm

  4. $2200\ \pi $ sq. cm


Correct Option: C
Explanation:
As we know that,
$1° = \cfrac{\pi}{180}$

$\therefore 40° = \cfrac{\pi}{180} \times 40 = \cfrac{2 \pi}{9}$

Let $S$ be the length of the arc and $A$ be the area of the corresponding sector.

Given that length of arc $\left( S \right) = 30 \pi \; cm$

As we know,
$S = r \theta$

$\Rightarrow 30 \pi = r \left( \cfrac{ \pi}{9} \right)$

$\Rightarrow r = 135 \; cm$

$\therefore$ Area of corresponding seector $\left( A \right) = \cfrac{1}{2} {r}^{2} \theta$

$\Rightarrow A = \cfrac{1}{2} {\left( 135 \right)}^{2} \left( \cfrac{2 \pi}{9} \right) = 2025 \pi \; {cm}^{2}$

The crescent shaded in the diagram, is like that found on many flags. $PSR$ is an arc of a circle, centre $O$ and radius $24.0$ cm. Angle POR $=$ $48.2^{\circ}$.
$PQR$ is a semicircle on $PR$ as diameter, where $PR$ $=$ $19.6$ cm
$[\pi = 3.14] [\cos 24.1 = 0.91]$

The area of the crescent is

  1. $116.4$ cm$^2$

  2. $123.4$ cm$^2$

  3. $112.2$ cm$^2$

  4. $23.4$ cm$^2$


Correct Option: B
Explanation:

Length PQR $= \displaystyle  \frac{1}{2} \times 2 \pi r = \frac{1}{2} \times 2 \times 3.14 \times 9.8 = 30.772 cm$
Length PSR $ = \displaystyle \frac{\theta}{360} \times 2 \pi = \frac{48.2}{360}\times 2 \pi r= \frac{48.2 }{360} \times 2 \times 3.14 \times24$
$= 20.1797 cm$
Perimeter of crescent $= 30.772 + 20. 1797 = 51$
Area of sector POR $= \displaystyle \frac{\theta}{360} \times \pi \times r^2 = \frac{48.2}{360} \times 3.14 \times 14^2$
$= 242.16 cm^2 = 242 cm^2$
In triangle POR height, $ h = 24 cos24.1 = 21.91 cm$
Area $= \displaystyle \frac{1}{2} bh = \frac{1}{2} \times 19.6 \times 21.91= 214.70 cm^2$
$\therefore $ Area of shape PSR remaining $= 242.16 - 214.70 = 27.46 cm^2$
Area of semicircle $= \displaystyle \frac{1}{2} \times \pi \times 9.8^2 = 150.859$
$\therefore$ Area of crescent $=150.859 - 27.46 = 123.4 cm^2$

If the area of a sector of a circle is $\dfrac{5}{18}$th of the area of that circle, then the central angle of the sector is 100. Is it true or false?

  1. True

  2. False


Correct Option: A
Explanation:

For $180^\circ$, we have $\cfrac{1}{2}$ of the total area.

Hence, for $\cfrac{5}{18}^{th}$ of the total area, we have $360 \times \cfrac{5}{18} = 100^\circ$

An arc AB of a circle subtends an angle x radians at the centre O of the circle. Given that the area of the sector AOB is equal to the square of the length of the arc AB, then the value of x?

  1. $\dfrac{1}{3}$

  2. $\dfrac{1}{4}$

  3. $\dfrac{1}{5}$

  4. $\dfrac{1}{2}$


Correct Option: D

A wire of length $20\ cm$ can be bent $n$ the form of a sector then its maximum area is 

  1. $15\ sq.cm$

  2. $25\ sq.cm$

  3. $5\ sq.cm$

  4. $none$


Correct Option: A

ABC is a right angel triangle right angled at vertex A. A circle is drawn to touch sides AB and AC at points P and Q respectively such that other end points of diameters passing through P and Q lie on side BC. If AB = 6. then the area of circular sector which lies outside the triangle is :

  1. $\pi -2$

  2. $\pi -3$

  3. 4

  4. $\pi +2$


Correct Option: A

The area of the sector of circle ${x}^{2}+{y}^{2}=16$ and the line $y=x$ in the first quadrant is 

  1. $8\pi sq.units$

  2. $\pi sq.units$

  3. $4\pi sq.units$

  4. $2\pi sq.units$


Correct Option: A

The area of a sector whose perimeter is four times its radius (r units)is

  1. $\sqrt{r}\,sq.\,units$

  2. ${r}^{4}\,sq.\,units$

  3. ${r}^{2}\,sq.\,units$

  4. $\displaystyle \frac {{r}^{2}}{r}\,sq.\,units$


Correct Option: A
The radius of a circle is $7 cm$, then area of the sector of this circle if the corresponding angle is $30^{\circ}$ is 
  1. $12.83 \,cm^2$

  2. $11.83 \,cm^2$

  3. $12.25 \,cm^2$

  4. None of these


Correct Option: A
Explanation:

Area of a sector of a circle of radius '$r$' and angle $ = \dfrac { \theta  }{ 360 } \pi {r}^{2}$
Hence, area of the sector of the circle of  radius $ 7 $ cm and angle $ = \dfrac { 30 }{ 360 } \times \dfrac { 22 }{ 7 } \times 7 \times 7 = 12.83 \ \text{cm}^{2} $

The radius of a circle is $7 cm$, then area of the sector of this circle if the corresponding angle is:$210^{\circ}$ is 

  1. $88.83 \,cm^2$

  2. $87.83 \,cm^2$

  3. $89.83 \,cm^2$

  4. $86.83 \,cm^2$


Correct Option: C
Explanation:

Area of a sector of a circle of radius 'r' and angle  $ \theta = \dfrac { \theta  }{ 360 } \pi {r}^{2}$

Hence,area of the sector of the circle of  radius $ 7 $ cm and angle $ { 210 }^{

0 } = \dfrac { 210 }{ 360 } \times \dfrac { 22 }{ 7 } \times 7 \times

7\quad = 89.83  {cm}^{2} $


The area of a circle is 314 sq. cm and area of its minor sector is 31.4 sq. cm. Find the area of its major sector.

  1. 282.6c$m^2$

  2. 200.6c$m^2$

  3. 180.04c$m^2$

  4. 1220.09c$m^2$


Correct Option: A
Explanation:

Given:
Area of circle = $314 $$cm^2$
Area of minor sector = $31.4 $$cm^2$
Area of major sector = Area of a circle - Area of minor sector
= $314 - 31.4 cm^2$
= $282.6$ $cm^2$

The radius of a circle is $3.5$ cm and area of the sector is $3.85$ $cm^2$. Find the length of the corresponding arc.

  1. $2.2cm$

  2. $4.2cm$

  3. $5.1cm$

  4. $6.2cm$


Correct Option: A
Explanation:

Let the angle of centre made by the sector be $\theta$
Therefore,
Area of the sector=$\pi r^2\dfrac{\theta }{360}$
                        $=>3.85=\dfrac{\pi(3.5)^2\theta}{360}$


                        $=>\theta=\dfrac{3.8\times 360\times 7}{(3.5)^2\times 22}$
                        $=35.5$
                        $=36$
Thus length of the arc =$2\pi r\dfrac{\theta}{360}$
                                   =$2\times \dfrac{22}{7}\times 3.5\times \dfrac{36}{360}$
                                   =$2.2cm$

The minute hand of a clock is $8: cm$ long. Find the area swept by the minute hand between $8.30: a.m.$ and $9.05: a.m.$

  1. $\displaystyle 117\frac{1}{3}:cm^{2}$

  2. $\displaystyle 107\frac{1}{3}:cm^{2}$

  3. $\displaystyle 217\frac{1}{3}:cm^{2}$

  4. None of these


Correct Option: A
Explanation:

Angle made the centre by each $5$ minutes =$\dfrac{360}{12}$
                                                              =$30^o$


Angle covered between $8.30$am to $9.5$a.m is $210^o$

Therefore,
$Area=\pi(8)^2\dfrac{210}{360}$
        $=\dfrac{22}{7}\times 8\times 8\times \dfrac{210}{360}$
        $=117\dfrac{1}{3} cm^2$

The area of the sector of a circle whose radius is 6 m when the angle at the centre is $\displaystyle 42^{\circ}$ is 

  1. $\displaystyle 13.2:m^{2}$

  2. $\displaystyle 14.2:m^{2}$

  3. $\displaystyle 13.4:m^{2}$

  4. $\displaystyle 14.4:m^{2}$


Correct Option: A
Explanation:

Area of sector $\displaystyle =\frac{42}{360}\times \pi r^{2}$
$\displaystyle =\frac{42}{360}\times \frac{22}{7}\times6\times6=13.2m^{2}$

The area of a sector of a circle of radius $16$ cm cut off by an arc which is $18.5$ cm long is 

  1. $168$ cm$\displaystyle ^{2}$

  2. $148$ cm$\displaystyle ^{2}$

  3. $154$ cm$\displaystyle ^{2}$

  4. $176$ cm$\displaystyle ^{2}$


Correct Option: B
Explanation:

$\displaystyle A=\frac{1}{2}l r=\frac{1}{2}\times 18.5\times 16=148cm^{2}$

A sector of $120^{\circ}$ cut out from a circle has an area of $9\displaystyle \frac {3}{7}$ sq cm. The radius of the circle is

  1. $3$ cm

  2. $2.5$ cm

  3. $3.5$ cm

  4. $3.6$ cm


Correct Option: A
Explanation:

Given, area of an sector $=9\dfrac {3}{7}$ sq. cm , $\theta=120^0$
We know Area of sector $=\dfrac {\theta}{360}\times \pi r^2$
$\Rightarrow \displaystyle \frac {\theta}{360}\, \times\, \pi r^2\, =\, 9\, \displaystyle \frac {3}{7}$
$\Rightarrow \displaystyle \frac {120}{360}\, \times\, \displaystyle \frac {22}{7}\, \times\, r^2\, =\, \displaystyle \frac {66}{7}$
$\Rightarrow r^2\, =\, \displaystyle \frac {66}{7}\, \times\, \displaystyle \frac {360}{120}\, \times\, \displaystyle \frac {7}{22}\, =\, 9$
$\Rightarrow r\, =\, \sqrt 9\, =\, 3$ cm

The area of the sector of a circle, whose radius is $6$ m when the angle at the centre is $42^0$, is

  1. $13.2$ sq. m

  2. $14.2$ sq. m

  3. $13.4$ sq.m

  4. $14.4$ sq. m


Correct Option: A
Explanation:
Given, $\theta=42^0$, radius $=6$ m
Area of sector $=\, \displaystyle \frac {\theta}{360}\, \times\, \pi r^2$
$=\displaystyle \frac {42}{360}\, \times\, \displaystyle \frac {22}{7}\, \times\, 6\, \times\,6$
$ =\, 13.2$ sq. m

A sector of $120^{\circ}$ cut out from a circle has an area of $9\displaystyle \frac{3}{7}$sq cm. The radius of the circle is

  1. $3 cm$

  2. $2.5 cm$

  3. $3.5 cm$

  4. $3.6 cm$


Correct Option: A
Explanation:
Let radius of circle be $'r' cm$. Then,
$\cfrac { \theta  }{ 360° } \times \pi { r }^{ 2 }=9\cfrac { 3 }{ 7 } cm^2=\cfrac { 66 }{ 7 } cm^2$
$\Rightarrow \cfrac { 120° }{ 360° } \times \cfrac { 22 }{ 7 } \times { r }^{ 2 }=\cfrac { 66 }{ 7 } \Rightarrow { r }^{ 2 }=\cfrac { 66\times 7\times 360° }{ 120°\times 22\times 7 } =9$
$\Rightarrow r=\sqrt { 9 } =3 cm$

The minute hand of a clock is $10$ cm long. Find the area of the face of the clock described by the minute hand between $9$A.M and $9.35$A.M.

  1. $90.165cm^2$

  2. $112.6cm^2$

  3. $156.4cm^2$

  4. $183.3cm^2$


Correct Option: D
Explanation:

We have,
Angle described by the minute hand in one minute $=6^o$


$\therefore$ Angle described by the minute hand in $35$ minutes $=(6\times 35)^o=210^o$

$\therefore$ Area swept by the minute hand in $35$ minutes.


$=$ Area of a sector of angle $210^o$ in a circle of radius $10$ cm

 $=\dfrac {\theta}{360} \pi {r _1}^2$

$= \dfrac{210}{360}\times \dfrac{22}{7}\times (10)^2\ cm^2$.....

$=183.3\ cm^2$

The minute hand of a clock is 7 cm long Find the area  traced out by the minute hand of the clock between 6 pm to 6:30 pm

  1. $\displaystyle 14.4cm^{2}$

  2. $\displaystyle 15.4cm^{2}$

  3. $\displaystyle 7.2cm^{2}$

  4. $\displaystyle 6.42cm^{2}$


Correct Option: D
Explanation:

The total angle of $ 12 $ hours in a clock is 
$ { 360 }^{ 0 } $.
$ => 24 $ half hours $ = { 360 }^{ 0 } $.
This means for one half an hour, angle $ = \frac {{ 360 }^{ 0 }}{24} = { 15 }^{ 0 } $

Area of a sector of a circle of radius 'r' and angle 
$ \theta = \frac { \theta  }{ 360 } \pi {r}^{2}$
Hence, area of the sector of the circle of  radius $ 7 $ cm and angle $

{ 15 }^{ 0 } = \frac { 15 }{ 360 } \times \frac { 22 }{ 7 } \times 7 \times

7\quad = 6.42  {cm}^{2} $

A chord of a circle of radius 6 cm subtends an angle of $\displaystyle 60^{\circ}$ at the centre of the circle. The area of the minor segment is
(use $\displaystyle \pi =3.14$)

  1. 6.54 $\displaystyle cm^{2}$

  2. 0.327 $\displaystyle cm^{2}$

  3. 7.25 $\displaystyle cm^{2}$

  4. 3.27 $\displaystyle cm^{2}$


Correct Option: D
Explanation:

$\displaystyle \theta =60^{\circ}$, r = 6 cm
Area of minor segment = $\displaystyle \dfrac{36}{2}\left [ \dfrac{60\times 3.14}{180}-\dfrac{\sqrt{3}}{2} \right ]$
                                     = 3.27 $\displaystyle cm^{2}$

The area of a sector with  perimeter as  $45\ cm$ and radius as $6 \ cm$ is

  1. $44$ $ \displaystyle cm^{2} $

  2. $66$ $ \displaystyle cm^{2} $

  3. $88$ $ \displaystyle cm^{2} $

  4. $99$ $ \displaystyle cm^{2} $


Correct Option: D
Explanation:

$\Rightarrow$  Perimeter of a sector $=45\,cm$


$\Rightarrow$  Radius of a circle $(r)=6\,cm$


$\Rightarrow$  Arc of sector $(l)=Perimeter\,of\,sector-2r$
                             $=45-(2\times r)$
                             $=45-(2\times 6)$
                             $=45-12$
                             $=33\,cm$

$\Rightarrow$  Area of sector $=\dfrac{1}{2}\times r\times  l\\$
                               $=\dfrac{1}{2}\times 6\times 33\\$
                               $=3\times 33$
                               $=99\,cm^2$

Arc of a sector is equal to-

  1. Length of arc $\times$ radius

  2. $ \displaystyle \frac{sector angle}{360^{\circ}}\times circumference of circle $

  3. $ \displaystyle \frac{sector angle}{360^{\circ}}\times (area of circle) $

  4. None of these


Correct Option: C

Find the area of a sector in radians whose central angle is $45^o$ and radius is $2$.

  1. $\dfrac{\pi}{3}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{2}$

  4. $\dfrac{\pi}{6}$


Correct Option: C
Explanation:

Given: $\theta = 25^o = \dfrac{\pi}{4}$
Sector area $=$ $\dfrac{\theta}{2}r^2$
$=$ $\dfrac{\frac{\pi}{4}}{2}\times 2^2$ $=$ $\dfrac{\pi}{2}$

Find the area of a sector with an arc length of $20 cm$ and a radius of $6 cm$.

  1. $20$ $cm^2$

  2. $40$ $cm^2$

  3. $60$ $cm^2$

  4. $80$ $cm^2$


Correct Option: C
Explanation:

Area of sector $=$ $\dfrac { Arc.length }{ 2\pi r } \times \pi { r }^{ 2 }$


                         $=$ $\dfrac { 20 }{ 2\pi r } \times \pi \times 6\times 6=60{ cm }^{ 2 }$

The area of a sector with a radius of $2 cm$ is $12 $$cm^2$. Calculate the angle of the sector. 

(Assume $\pi = 3$)

  1. $360^o$

  2. $160^o$

  3. $90^o$

  4. $180^o$


Correct Option: A
Explanation:
$r = 2$cm
$A = 12cm^2$
Area of sector $=\dfrac {\theta}{360} \times \pi r^2$

$12 = \dfrac {\theta}{360} \times 3 \times 2^2$

$\theta = \dfrac {12 \times 360}{3 \times 4}$

$\theta = 360^o$

What is the area of a sector with a central angle of $100$ degrees and a radius of $5$? (Use $\pi = 3.14$)

  1. $21.80$

  2. $11.56$

  3. $12.46$

  4. $15.75$


Correct Option: A
Explanation:

Area = $\dfrac{n}{360}\pi r^2$
= $\dfrac{100}{360}\pi 5^2$
= $6.944\pi$
= 21.80

The area of a sector is $120\pi$ and the arc measure is $160^o$. What is the radius of the circle?

  1. $16.43$

  2. $11.43$

  3. $12.23$

  4. $10.43$


Correct Option: A
Explanation:

$A _{sector}= \dfrac{n}{360}\pi r^2$
$120\pi= \dfrac{160}{360}\pi r^2$
$270=r^2$
$r = 16.43$

Points $A$ and $B$ lie on circle $O$ (not shown). $AO=3$ and $\angle AOB ={120}^{o}$. Find the area of minor sector $AOB$.

  1. $\dfrac{\pi}{3}$

  2. $\pi$

  3. $3 \pi$

  4. $9 \pi$


Correct Option: C
Explanation:

Area of a sector is given by $\cfrac{\theta}{360} \times \pi \times r^2$ where $\theta$ is the angle made by the sector, $r$ is the radius of the circle.

Here, $\theta = 120^o$ and $r = 3$
$\therefore$ area of minor sector $= \cfrac{120}{360} \times \pi \times 9 = 3\pi$

The minute hand of a clock is $7\ cm$ long. Find the area traced by it on the clock face between $4{:}15$ p.m. and $4{:}35$ p.m.

  1. $59\ cm^{2}$

  2. $65\ cm^{2}$

  3. $51.3\ cm^{2}$

  4. $45\ cm^{2}$


Correct Option: C
Explanation:

Time $= 20$ min

Angle made by minute hand in 1 minute  $=\dfrac { { 360 }^{ 0 } }{ { 60 }^{ 0 } } ={ 6 }^{ 0 }$

$\therefore $  In $20$ min  $={ 6 }^{ 0 }\times 20={ 120 }^{ 0 }$

$\therefore $  Area swept  $=\dfrac { \theta  }{ { 360 }^{ 0 } } \times \pi { r }^{ 2 }=\dfrac { { 120 }^{ 0 } }{ { 360 }^{ 0 } } \times \dfrac { 22 }{ 7 } \times 7\times 7=\dfrac { 154 }{ 3 } =51.3{ cm }^{ 2 }$

Consider a circle with unit radius. There are seven adjacent sectors, $S _{1}, S _{2}, S _{3} ...S _{7}$, in the circle such that their total area is $\dfrac {1}{8}$ of the area of the circle. Further, the area of the $j^{th}$ sector is twice that of the $(j - i)^{th}$ sector, for $j = 2, .... 7$. Find the area of the sector $S _{1}$

  1. $\dfrac {\pi}{1016}$

  2. $\dfrac {\pi}{986}$

  3. $\dfrac {\pi}{116}$

  4. None


Correct Option: A

Find the area of a sector of a circle of radius $28$cm and central angle $45^0$.

  1. $616 cm^{2}$

  2. $308 cm^{2}$

  3. $508 cm^{2}$

  4. $154 cm^{2}$


Correct Option: B
Explanation:

Radius of sector $=28 cm$

Control angle $=45^{ o }$
Area of sector $=\cfrac { \theta  }{ 360° } \times \pi { r }^{ 2 }$
$=\cfrac { 45° }{ 360° } \times \cfrac { 22 }{ 7 } \times 28\times 28\ =308\quad { cm }^{ 2 }$

If a sector of a circle of diameter 21 cm subtends an angle of $120^{\circ}$ at the centre, then what is its area ? 

  1. $115.5 \ cm^2$.

  2. $84 \ cm^2$.

  3. $85.5 \ cm^2$.

  4. $78 \ cm^2$.


Correct Option: A
Explanation:

Area of sector = $\cfrac{120}{360} \times \pi \times (\cfrac{21}{2})^2$

Thus area = $\cfrac{1}{3} \times \cfrac{22}{7} \times \cfrac{441}{4} = 115.5 cm^2$

To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle $80^{\circ}$ to a distance of 16.5 km. The area of the sea over which the ships are warned is 190 $km^2$ (app.).

  1. True

  2. False

  3. Nither

  4. Either


Correct Option: A

If the sector of a circle of diameter $14 cm$ subtends an angle of $30^{\circ}$ at the centre, then its area is

  1. $49 \pi$

  2. $\displaystyle \frac{49 \pi}{12}$

  3. $\displaystyle \frac{242}{3\pi}$

  4. $\displaystyle \frac{121}{3\pi}$


Correct Option: B,D
Explanation:

Area of a sector $=\dfrac{\theta}{360^0} \times \pi r^2 =\dfrac{30}{360} \times \pi (7)^2 = \dfrac{49 \pi}{12}$


Also, 
$ \dfrac{121}{3\pi}=\dfrac{121 \times 7}{3 \times 22} = \dfrac{49 \times 22}{12 \times 7} = \dfrac{49 \pi}{12}$

A circular disc of radius 10 cm is divided into sectors with  angles $120^{\circ}$ and $150^{\circ}$ then  the ratio of the area of two  sectors is

  1. 4 : 5

  2. 5 : 4

  3. 2 : 1

  4. 8 : 7


Correct Option: A
Explanation:

Area of sector formed from angle $\theta$ = $\frac{\theta}{260} \pi r^2$, where r is the radius of the circle
Now, if angle is 120, 150 then the ratio of area of sector will be:
= $\frac{\frac{120}{360} \pi r^2}{\frac{150}{360} \pi r^2}$
= $\frac{120}{150}$ = 4:5

The area of a sector of a circle of angle $\displaystyle 60^{\circ}$ is $\displaystyle \frac{66}{7}cm^{2}$ then the area of the corresponding major sector is

  1. $\displaystyle 14cm^{2}$

  2. $\displaystyle \frac{55}{7}cm^{2}$

  3. $\displaystyle \frac{110}{7}cm^{2}$

  4. $\displaystyle \frac{330}{7}cm^2$


Correct Option: D
Explanation:

Area of a sector of a circle of radius 'r' and angle  $ \theta = \frac {

\theta  }{ 360 } \pi {r}^{2}$
Given, $ \frac { 60 }{ 360 } \times \frac {22}{7} \times {r}^{2} = \frac {66}{7}  {cm}^{2} $

$ {r}^{2} = 18 $
Now, area of sector with angle {300}^{o} $ = \frac

{ 300 }{ 360 } \times \frac {22}{7} \times {r}^{2} = \frac

{ 300 }{ 360 } \times \frac {22}{7} \times 18 = \frac {330}{7}  {cm}^{2} $




A Car has two wipers which do not cover mutual area. Length of each wiper is 25 cms and it makes angle of $\displaystyle 115^{\circ}$ while cleaning. The area of cleaning by the wiper in one movement will be-

  1. $\displaystyle \frac{152815}{126}cm^{2}$

  2. $\displaystyle \frac{185125}{128}cm^{2}$

  3. $\displaystyle \frac{215815}{126}cm^{2}$

  4. $\displaystyle \frac{158125}{126}cm^{2}$


Correct Option: D
Explanation:

Required area $\displaystyle =2\times \frac{115^{\circ}}{360^{\circ}}\pi \left ( 25 \right )^{2}$
$\displaystyle =2\times \frac{115}{360}\times \frac{22}{7}\times 625$


$\displaystyle=\frac{158125}{126}cm^{2}$

- Hide questions