Tag: de moivre’s theorem and its applications

Questions Related to de moivre’s theorem and its applications

If $iz^4 + 1 = 0$, then z can take the value

  1. $\displaystyle \frac{1 + i}{\sqrt 2}$

  2. $\cos \displaystyle \frac{\pi}{8} + i \sin \frac{\pi}{8}$

  3. $\displaystyle \frac{1}{4 i}$

  4. $i$


Correct Option: B
Explanation:
$iz^4 + 1 = 0 \Rightarrow z^4 = - \displaystyle \frac{1}{i} = \frac{i^2}{i} = i$
Let $z^4 = \cos  \displaystyle \frac{\pi}{2} + i  \sin  \frac{\pi}{2}$
$\therefore z = \displaystyle \left [ \cos  \frac{\pi}{2} + i  \sin  \frac{\pi}{2} \right ]^{1/4}$
U\sin g De-Moivre's theorem,
$(\cos   \theta + i  \sin  \theta)^n = \cos   n \theta + i  \sin   n \theta, n  \varepsilon I$
Hence, $z = \cos  \displaystyle \frac{\pi}{8} + i  \sin  \frac{\pi}{8}$

The product of the values of $\displaystyle{\left[ {\cos {\pi  \over 3} + i\sin {\pi  \over 3}} \right]^{{3 \over 4}}}$ is

  1. $-1$

  2. $1$

  3. $i$

  4. $-i$


Correct Option: B
Explanation:

Given: $\displaystyle{\left[ {\cos {\pi  \over 3} + i\sin {\pi  \over 3}} \right]^{{3 \over 4}}}$


$=[e^{i(\pi/3)}]^{(3/4)}=e^{i\pi(1/3)(3/4)}=e^{4\pi i}=cos4\pi+isin{4\pi}=1-0i=1$ 

Number of integral values of n for which the quantity ${n+i}^{4}$ where ${i}^{2}=-1$, is an integer is

  1. $1$

  2. $2$

  3. $3$

  4. Infinite


Correct Option: D
Explanation:

Simply $n+i^{4}$ = $n+1$ which is integer for every integral value of n .

So there are infinite values of n .

De Moivre's theorem

$(\cos\theta +i\sin \theta )=\cos n\theta $ if n is an integer and $\cos n\theta +i \sin n\theta $ is one of the values of $(\cos\theta +i\sin\theta )^{n}$, if n is a fraction.

Corollary : The q values of ($(\cos\theta +i\sin\theta )^{\frac{1}{q}}$ are obtained from

cos $\frac{2n\pi +\theta }{q}+i\sin\frac{2n\pi +\theta }{q}$ by putting n = 0, 1, 2, ..., (q - 1).


  1. Both are correct

  2. Only first statement is true.

  3. Only second ststement is true

  4. None 


Correct Option: A

If $a = {\mathop{\rm cis}\nolimits} \alpha ,b = cis\beta ,c = cis\gamma $ then $\dfrac{{{a^3}{b^3}}}{{{c^2}}} = $

  1. $cis(3\alpha + 3\beta + 2\gamma )$

  2. $cis(3\alpha + 3\beta - 2\gamma )$

  3. $cis( - 3\alpha - 3\beta + 2\gamma )$

  4. $cis(3\alpha - 3\beta + 2\gamma )$


Correct Option: B
Explanation:

$a=cis\alpha=Cos\alpha+iSin\alpha= \ e^{i\alpha}$

$b=cis\beta=Cos\beta+iSin\beta= \ e^{i\beta}$      

$a=cis\gamma=Cos\gamma+iSin\gamma= \ e^{i\gamma}$

$\therefore \dfrac{a^3b^3}{c^2}=\dfrac{({e^{i\alpha}})^3({e^{i\beta}})^3}{({e^{i\gamma}})^2}$

$=\dfrac{e^{3i\alpha}e^{3i\beta}} {e^{2i\gamma}}=\ e^{i(3\alpha+3\beta-2\gamma)}$

$=Cos(3\alpha+3\beta-2\gamma)+iSin(3\alpha+3\beta-2\gamma)$

$=cis(3\alpha+3\beta-2\gamma)$

If $a=\cos { \left( \cfrac { 8\pi  }{ 11 }  \right)  } +i\sin { \left( \cfrac { 8\pi  }{ 11 }  \right)  } $, then $Re(a+{a}^{2}+{a}^{3}+{a}^{4}+{a}^{5})=$

  1. $0$

  2. $-\cfrac{1}{2}$

  3. $\cfrac{1}{2}$

  4. $1$


Correct Option: B

For ${ Z } _{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 }  }  } $, ${ Z } _{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i }  } $, ${ Z } _{ 3 }=\sqrt [ 6 ]{ \dfrac { 1+i }{ \sqrt { 3 } -i }  } $ which of the following holds goods?

  1. $\sum { { \left| { Z } _{ 1 } \right| }^{ 2 } } =\dfrac { 3 }{ 2 } $

  2. ${ \left| { Z } _{ 1 } \right| }^{ 4 }+{ \left| { Z } _{ 2 } \right| }^{ 4 }={ \left| { Z } _{ 3 } \right| }^{ -8 }$

  3. $\sum { { \left| { Z } _{ 1 } \right| }^{ 3 }+{ \left| { Z } _{ 2 } \right| }^{ 3 }={ \left| { Z } _{ 3 } \right| }^{ -6 } } $

  4. $\ \ \ { \left| { Z } _{ 1 } \right| }^{ 4 }+{ \left| { Z } _{ 2 } \right| }^{ 4 }={ \left| { Z } _{ 3 } \right| }^{ 8 }$


Correct Option: A

Given z is a complex number with modulus 1. Then the equation $\left[\dfrac{(1+ia)}{(1-ia)}\right]^4$ = z has

  1. all roots real and distinct

  2. two real and one imaginary

  3. three roots real and one imaginary

  4. one root real and three imaginary


Correct Option: A
Explanation:

$\displaystyle { \left( \frac { 1+ia }{ 1-ia }  \right)  }^{ 4 }=z\quad $         ...(1)
$\displaystyle & \quad \left| z \right| =1$
$\displaystyle z=cisA=\cos { A } +i\sin { A } $
substitute z in equation (1)
$\displaystyle { \left( \frac { 1+ia }{ 1-ia }  \right)  }={ cisA }^{ \frac { 1 }{ 4 }  }=cis\frac { 2k\pi +A }{ 4 } $       ...{De Moivre's Theorem}
where $k=0,1,2,3$

Let $\displaystyle B=\frac { 2k\pi +A }{ 4 } $

$\displaystyle \Longrightarrow ia=\frac { -1+cisB }{ 1+cisB } =\frac { \sin { \frac { B }{ 2 } \left( i\cos { \frac { B }{ 2 }  } -\sin { \frac { B }{ 2 }  }  \right)  }  }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 }  } +i\sin { \frac { B }{ 2 }  }  \right)  }  } $

$\displaystyle \Longrightarrow ia=\frac { i\sin { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 }  } +i\sin { \frac { B }{ 2 }  }  \right)  }  }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 }  } +i\sin { \frac { B }{ 2 }  }  \right)  }  } $

$\displaystyle \Longrightarrow a=\tan { \frac { B }{ 2 }  } $

Therefore roots are real and distinct.

Ans: A

If $\sqrt{5 - 12i} + \sqrt{-5 - 12i} = z$, then principal value of arg z can be 

  1. $-\displaystyle\frac{\pi}{4}$

  2. $\displaystyle\frac{\pi}{4}$

  3. $-\displaystyle\frac{3\pi}{4}$

  4. $\displaystyle\frac{3\pi}{4}$


Correct Option: A,B,C,D
Explanation:

Dividing and multiplying by $\sqrt{13}$
$=\sqrt{13}[(\dfrac{5}{13}-\dfrac{12i}{13})^{\dfrac{1}{2}}+(-\dfrac{5}{13}-\dfrac{12i}{13})^{\dfrac{1}{2}}]$
$=\sqrt{13}[e^{i\dfrac{-\theta}{2}}+e^{i\dfrac{\theta-\pi}{2}}]$
$=\sqrt{13}[cos\dfrac{\theta}{2}-isin\dfrac{\theta}{2}+sin\dfrac{\theta}{2}-icos\frac{\theta}{2}]$
$=\sqrt{13}[cos\dfrac{\theta}{2}+sin\dfrac{\theta}{2}-i(sin\dfrac{\theta}{2}+cos\dfrac{\theta}{2})]$
$=z$
Here $\theta=sin^{-1}(\dfrac{12}{13})$
Hence
$|Re(z)|=|Im(z)|$
Hence argument of $Z$ is in the form of $\dfrac{2n-1(\pi)}{4}$ $n\epsilon::Integers$

The value of $\displaystyle { \left( \frac { 1+i }{ \sqrt { 2 }  }  \right)  }^{ 8 }+{ \left( \frac { 1-i }{ \sqrt { 2 }  }  \right)  }^{ 8 }$ is equal to

  1. $4$

  2. $6$

  3. $8$

  4. $2$


Correct Option: D
Explanation:

We have $\displaystyle { \left( \frac { 1+i }{ \sqrt { 2 }  }  \right)  }^{ 8 }+{ \left( \frac { 1-i }{ \sqrt { 2 }  }  \right)  }^{ 8 }$


$\displaystyle={ \left[ \cos { \frac { \pi  }{ 4 }  } +i\sin { \frac { \pi  }{ 4 }  }  \right]  }^{ 8 }+{ \left[ \cos { \frac { \pi  }{ 4 }  } -i\sin { \frac { \pi  }{ 4 }  }  \right]  }^{ 8 }$


$=\cos { 2\pi  } +i\sin { 2\pi  } +\cos { 2\pi  } -i\sin { 2\pi  } $      [by de-moivre's theorem]

$=2\cos { 2\pi  } =2\left( 1 \right) =2$