Tag: bond energies and enthalpy changes

Questions Related to bond energies and enthalpy changes

The enthalpies of combustion of carbon and carbon monoxide are -393.5 KJ and -283 KJ respectively the enthalpy of formation of carbon monoxide is :

  1. -676.5 KJ

  2. -110.5 KJ

  3. 110.5 KJ

  4. 676.5 KJ


Correct Option: C

The incorrect statement is :

  1. $ \Delta _{ So| }H^{ 0 }={ \Delta } _{ Lattice }H^{ 0+ }\Delta _{ Hyd }H^{ 0 } $

  2. The enthalpy on dilution is independent on original concentration.

  3. $ N \equiv N > C \equiv N > C \equiv C $ [value of mean bond enthalpy in KJ/mol]

  4. $ H _2O(S) \overset { 1\quad bar }{ \rightleftharpoons } H _2O(I) 273 K $


    $ \Delta U= +Ve; \Delta H = +ve; W= +ve; q = +ve $


Correct Option: B

The enthalpy of tetramerization of $X$ in gas phase $(4X(g)\rightarrow { X } _{ 4 }(g))$ is $-100\ kJ/mol$ at $300\ K$. The enthalpy of vaporisation for liquid $X$ and ${X} _{4}$ are respectively $30\ kJ/mol$ and $72\ kJ/mol$ respectively.
$\Delta S$ for tetramerization of $X$ in liquid phase is $-125\ J/K mol$ at $300\ K$.
What is the $\Delta G$ at $300\ K$ for tetramerization of $X$ in liquid phase?

  1. $-52\ kJ/mol$

  2. $-98\ kJ/mol$

  3. $-14.5\ kJ/mol$

  4. $None\ of\ these$


Correct Option: A

Heat of formation of $2$ moles of ${NH} _{3}(g)$ is $-90kJ$; bond energies of $H-H$ and$N-N$ bonds are $435kJ$ and $390kJ$ ${mol}^{-1}$ respectively. The value of the bond energy of $N\equiv N$ will be:

  1. $-472.5\ kJ$

  2. $-945\ kJ$

  3. $472.5\ kJ$

  4. $945\ kJ$ ${mol}^{-1}$


Correct Option: D
Explanation:

$\Delta { H } _{ reaction }=\sum { { \left( BE \right)  } _{ reactants } } -\sum { { \left( BE \right)  } _{ products } } $
$-90=x+3\times 435-6\times 390$
$x=945kJ$ ${mol}^{-1}$

The standard enthalpy of formation of ${NH} _{3}$ is $-46kJ{ mol }^{ -1 }$. If the enthalpy of formation of ${H} _{2}$ from its atoms is $-436kJ{ mol }^{ -1 }$ and that of ${N} _{2}$ is $-712kJ{ mol }^{ -1 }$, the average bond enthalpy of $N-H$ bond in ${NH} _{3}$ is:

  1. $+1056kJ{ mol }^{ -1 }\quad $

  2. $-1102kJ{ mol }^{ -1 }\quad $

  3. $-964kJ{ mol }^{ -1 }\quad $

  4. $+352kJ{ mol }^{ -1 }\quad $


Correct Option: D
Explanation:

${ H } _{ reaction }=\sum { { BE } _{ reactants } } -\sum { { BE } _{ products } } $
$-46=(\cfrac(712)+\cfrac{3}{2}(436))-3x$
$x=+352\ kJ{ mol }^{ -1 } $

Calculate $ \Delta { H }^{ o }$ of the reaction:

$ { CH } _{ 2 }={ CH } _{ 2 }+3O=O\longrightarrow 2O=C=O+2H-O-H$

The average bond enthelpies of various bond are:

$Bond \quad \quad \quad\quad \quad C-H\quad \quad O=O\quad \quad C=O\quad \quad O-H\quad \quad C=C$
$Bond\ enthalpy$:     414               499               724           460               619
[kJ/mol]

  1. -364kJ

  2. -564kJ

  3. -964kJ

  4. -1654kJ


Correct Option: C

$H _{2}+Cl _{2}\rightarrow 2HCl+44\ K.Cal$. Heat of decomposition of $HCl$ is:

  1. $-44\ K.Cal$

  2. $+44\ K.Cal$

  3. $-22\ K.Cal$

  4. $+22\ K.Cal$


Correct Option: D
Explanation:

$H _2+Cl _2 \longrightarrow 2HCl+44Kcal$

Heat of decomposition of $HCl$ :-
$2HCl \longrightarrow \Delta H _{decomp}=+44 Kcal$
$1 HCl \longrightarrow \Delta H _{decomp}=+22 Kcal$
So, Heat of decomposition of $HCl=+22Kcal$

Two moles of an ideal gas expended isothermally and reversibly from 1 litre to 10 litre at 300 K. The enthalpy change (in kJ) for the process is:

  1. 11.4

  2. -11.4

  3. 0

  4. 4.8


Correct Option: B
Explanation:
Work done in a reversible isothermal process is:

$W = -2.303 \; nRT \; \log{\cfrac{{V} _{f}}{{V} _{i}}} ..... \left( 1 \right)$

Given:-
$n = 2 \text{ moles}$
$T = 300 \; K$
${V} _{f} = 10 \; L$
${V} _{i} = 1 \; L$
$R =$ Gas constant $= 8.314 \; {J}/{K-mol}$

Substituting these values in ${eq}^{n} \left( 1 \right)$, we have

$W = - 2.303 \times 2 \times 8.314 \times 300 \times \log{\cfrac{10}{1}}$

$\Rightarrow W = -11488.285 \; J = -11.4 \; kJ$

Now as we know that,

$\Delta{H} = \Delta{U} + W$

For an isothermal process,

$\Delta{U} = 0$

$\therefore \Delta{H} = W = -11.4 \; kJ$

Hence the enthalpy change for the given process is $-11.4 \; kJ$.

Hence, the correct option is $\text{B}$

The standard enthalpies of n-pentane, isopentane and neopentane are $-35.0,\ -37.0$ and $-40.0$ $K \ cal/mole$ respectively. The most stable isomer of pentane in terms of energy is ____________.

  1. n-pentane

  2. isopentane

  3. neopentane

  4. n-pentane and isopentane


Correct Option: C
Explanation:

The standard enthalpies of n-pentane, isopentane and neopentane are -35.0, -37.0 and -40.0 K.cal/mole respectively. The most stable isomer of pentane in terms of energy is neopentane as it has most negative value of the standard enthalpy.

Calculate P - CI bond enthalpy 
Given : $\Delta f H(PCl _3, g) = 306 KJ/mol;$     $\Delta H _{atomization} (P, s) = 314 KJ / mol;$
$\Delta f H (Cl, g) = 121 KJ / mol$

  1. 123.66 KJ/mol

  2. 371 KJ / mol

  3. 19 KJ/ mol

  4. None of these


Correct Option: A