Tag: trigonometrical ratios

Questions Related to trigonometrical ratios

Find number of solutions to the equation:$[ \sin x + \cos x ] = 3 + [ - \sin x ] + [ - \cos x ]$

  1. 0

  2. 1

  3. 2

  4. Infinite


Correct Option: D
Explanation:
$\sin {x}+\cos x=3-\sin x-\cos x$
$2(\sin x+\cos x)=3$
$\sin x+\cos x=1.5$
so these are infinite value of $x$ for which this equation will satisfy

if $\displaystyle Sin\theta =\frac{3}{5}$ what is the value of $\displaystyle  \left ( \tan \theta +\sec \theta  \right )^{2}$?

  1. $2$

  2. $3$

  3. $4$

  4. $-4$


Correct Option: C
Explanation:

$Sin \theta=\dfrac{P}{H}=\dfrac{3}{5}$

According to the Pythagorean therom
$H^2=B^2+P^2$
$\Rightarrow B=\sqrt{h^2-p^2}$
$\Rightarrow B=\sqrt{5^2-3^2}$
$\Rightarrow B=\sqrt{16}$
$\Rightarrow B=4 cm$
$\therefore tan \theta= \dfrac{P}{B}=\dfrac{3}{4}$
$sec \theta=\dfrac{H}{B}=\dfrac{5}{4}$
$\therefore (tan \theta+sec \theta)^2=(\dfrac{3}{4}+\dfrac{5}{4})^2$
$\Rightarrow (\dfrac{8}{4})^2=(2)^2=4$

The side opposite to the right angle in a right angled triangle is called

  1. Base

  2. Perpendicualr

  3. Hypotenuse

  4. None of these


Correct Option: C
Explanation:

The side opposite to the right angle in a right angled triangle is called Hypotenuse.

The area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the difference of the areas of the semicircles drawn on the other two sides of the triangles.

  1. True

  2. False


Correct Option: B

If $E. \ tan(x -
30^{\circ}) = j. \ tan(x+120^{\circ})$, then $\frac{E + J}{E-J} =$

  1. $\ sin 2x$

  2. $2 \ cos 2x$

  3. $\ tan2x$

  4. None of these.


Correct Option: B
Explanation:
Given $E\tan (x-30^{\circ})=J\tan (x+120^{\circ})$

$\implies \dfrac{E}{J}=\dfrac{\tan (x+120^{\circ})}{\tan (x-30^{\circ})}$

Applying compoundo and dividendo rule

$\dfrac{E+J}{E-J}=\dfrac{\tan (x-30^{\circ})+\tan (x+120^{\circ})}{\tan (x+120^{\circ})-\tan (x-30^{\circ})}=\dfrac{\frac{\sin (x-30^{\circ})}{\cos (x-30^{\circ})}+\frac{\sin (x+120^{\circ})}{\cos (x+120^{\circ})}}{\frac{\sin (x+120^{\circ})}{\cos (x+120^{\circ})}-\frac{\sin (x-30^{\circ})}{\cos (x-30^{\circ})}}$

                                                        $=\dfrac{\sin (x-30^{\circ})\cos(x+120^{\circ})+\sin (x+120^{\circ})\cos(x-30^{\circ})}{\sin (x+120^{\circ})\cos(x-30^{\circ})-\sin (x-30^{\circ})\cos (x+120^{\circ})}$

                                                       $=\dfrac{\sin (x-30^{\circ}+x+120^{\circ})}{\sin (x+120^{\circ}-x+30^{\circ})}$

                                                      $=\dfrac{\sin (90^{\circ}+2 x)}{\sin 150^{\circ}}$

                                                      $=2\cos 2 x$

A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height 5 meters. At point on the plane, the angle of elevation of the bottom and top of the flag staff are respectively 30$^{\circ}$ and 60$^{\circ}$. The height of tower is

  1. 2m

  2. 5m

  3. 2.5m

  4. 3m


Correct Option: C
Explanation:

Let AB be the tower of height h meter and BC be the height of flag staff surmounted on the tower. Let the point of the plane be D at a distance m meter from the foot of the tower.

In $\bigtriangleup$ ABD,

$\displaystyle tan 30^{\circ} = \frac{AB}{BD}$

$\displaystyle \Rightarrow \frac{1}{\sqrt3} = \frac{h}{x} \Rightarrow x = \sqrt 3 h$.......(1)

In $\displaystyle \bigtriangleup ADC, tan 60^{\circ} = \frac{AC}{AD}$

$\displaystyle \Rightarrow \sqrt3 = \frac{5+h}{x} \Rightarrow x = \frac{5 +h}{\sqrt3}$ .....(2)

From (1) and (2), $\displaystyle \sqrt 3h = \frac{5+h}{\sqrt 3}$

$\Rightarrow 3h = 5 + h \Rightarrow 2h = 5$

$\Rightarrow \displaystyle h = \frac{5}{2} = 2.5 m$

So, the height of tower = 2.5m

If the angle of elevation of a cloud from a point 200 meter above a lake is $\displaystyle 30^{\circ}$ and the angle of depression of its reflection in the lake is $\displaystyle 60^{\circ}$ then the height of the cloud (in meters )above the lake is 

  1. $200$

  2. $300$

  3. $500$

  4. $None$


Correct Option: D
Explanation:

$\tan { 60°=\sqrt { 3 }  } =\dfrac { p }{ b } $

$\tan { 30°=\dfrac { \sqrt { 3 }  }{ 3 }  } =\dfrac { p }{ b } $
$b=200\sqrt { 3 } $
$\tan { 60°=\sqrt { 3 }  } =\dfrac { p }{ 200 } $
$p=200\sqrt { 3 } $
height of the cloud (in meters )above the lake = $200+200\sqrt { 3 } $
Answer none 

If the distance between a 13-foot ladder and a vertical wall is $5$ feet along the ground, how high can a person climb if the ladder is inclined against wall?

  1. $18$ feet

  2. $65$ feet

  3. $\cfrac{13}{5}$ feet

  4. $8$ feet

  5. $12$ feet


Correct Option: E
Explanation:

Length of Ladder = 13 ft

Length between Ladder and Wall = 5 ft
by pythagoras theorum
(hypotenuse)^2 = (perpendicular)^2 + (base)^2
(13)^2 = (height of wall)^2+(5)^2
by solving
Height of Wall = 12 ft

If $sin\theta = 3sin(\theta +2\alpha)$, then the value of $tan(\theta+\alpha)+ 2tan\alpha$ is

  1. 3

  2. 2

  3. 1

  4. 0


Correct Option: D
Explanation:
$\sin \theta =3\sin \left( \theta +2\alpha\right)$

$\Rightarrow 3\sin \left( \theta +\alpha +\alpha \right)=\sin \theta$

      $3\sin \left(\theta+\alpha\right)\cos \alpha +3\cos \left(\theta+\alpha\right)\sin \alpha =\sin \left(\theta+\alpha-\alpha \right)$

      $3\sin \left(\theta+\alpha\right)\cos\alpha +3\cos \left(\theta+\alpha\right)\sin \alpha  =\sin \left(\theta+\alpha\right) \cos \alpha -\sin \alpha \cos \left(\theta+\alpha\right)$

      $2\sin\left(\theta+\alpha\right)\cos \alpha =-4\cos \left(\theta+\alpha\right)\sin \alpha$

      $2\tan \left(\theta+\alpha\right)=-4\tan \alpha$

      $\tan \left(\theta+\alpha\right)=-2\tan \alpha$

$\Rightarrow \tan \left(\theta+\alpha\right)+2\tan \alpha=0$

Hence, the answer is $0.$