0

Real numbers on number line - class-VIII

Attempted 0/37 Correct 0 Score 0

A rectangular veranda is of dimension $18$m $72$cm $\times 13$ m $20$ cm. Square tiles of the same dimensions are used to cover it. Find the least number of such tiles.

  1. $4290$

  2. $4540$

  3. $4620$

  4. $4230$


Correct Option: A
Explanation:

The edge of rectangular veranda are $18\ m\ 72\ cm=1872\ cm$ and $13\ m\ 20\ cm=1320\ cm$.


On taking $HCF$ of $1872$ and $1320$, we get

$HCF=24$

Therefore,
No. of tiles required $=$ $\dfrac{Area\ of\ Veranda}{Area\ of\ tiles}$

                                  $=\dfrac{1872\times 1320}{24\times 24}$

                                  $=4290$

Hence, this is the answer.

What is the H.C.F. of two co-prime numbers ?

  1. $1$

  2. $0$

  3. $2$

  4. none of these


Correct Option: A
Explanation:

The two numbers which have only 1 as their common factor are called co-primes.

For example, Factors of $ 5 $  are $ 1, 5 $
Factors of $ 3 $ are $ 1, 3 $

Common factors is $ 1 $.
$ => HCF = 1 $

The HCF of $256,442$ and $940$ is

  1. $2$

  2. $14$

  3. $142$

  4. none


Correct Option: A
Explanation:

Prime factors of numbers are 

$256=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\ 442=2\times 13\times 17\ 940=2\times 2\times 5\times 47\ Hence,\quad HCF=2$
So, correct answer is option A. 

HCF of $x^2 -y^2$ and $x^3-y^3$ is

  1. $x-y$

  2. $x^3-y^3$

  3. $(x^2-y^2)$

  4. $(x+y)(x^2+xy+y^2)$


Correct Option: A
Explanation:

Since, $x^2-y^2=(x+y)(x-y)$
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$H.C.F.=(x-y)$
Option A is correct.

Determine the HCF of $a^2 - 25, a^2 -2a -35$ and $a^2+12a+35$

  1. (a-5)(a+7)

  2. (a+5)(a-7)

  3. (a-7)

  4. (a+5)


Correct Option: D
Explanation:

Since, $a^2 - 25 = (a-5)(a+5) $
$ a^2 -2a -35 = a^2 -7a +5a -35 $
                         $= a(a-7)+5(a-7) $
                         $= (a+5)(a-7) $
and
$a^2+ 12a + 35 =a^2 +7a +5a +35 $
                          $=(a+7)(a+5) $
Clearly HCF of $a^2 - 25, a^2 -2a -35$ and $a^2+ 12a + 35$ i.e $ (a-5)(a+5), (a+5)(a-7)$ and $(a+7)(a+5)$ is $a+5$
Option D is correct.

H.C.F. of $x^3 -1$ and $x^4 + x^2 + 1$ is

  1. $x^2+x+1$

  2. $x-1$

  3. $x^3-1$

  4. $x^4+x^2+1$


Correct Option: A
Explanation:

$x^3 -1=(x-1)(x^2+x+1)$
$x^4+x^2+1=(x^2+x+1)(x^2-x+1)$
Clearly H.C.F of $x^3 -1$ and $x^4 + x^2 + 1$
i.e.H.C.F of $(x-1)(x^2+x+1)$ and $(x^2+x+1)(x^2-x+1)$ is  $(x^2+x+1)$
Option A is correct.

H.C.F. of $x^2-1$ and $x^3-1$ is

  1. $(x^2-1)^2$

  2. $(x-1)$

  3. x+1

  4. $x^2+x+1$


Correct Option: B
Explanation:

$x^2-1 = (x + 1) (x -1)$
$x^3 -1 = (x -1) (x^2 + x + 1)$
$\therefore H.C.F. = (x - 1)$
Option B is correct.

Find the HCF of $x^3y^2, x^2y^3$ and $x^4y^4$

  1. $x^3y^4$

  2. xy

  3. $x^2y^2$

  4. $x^4y^4$


Correct Option: C
Explanation:

$x^3y^2=x^3\times y^2$
$x^2y^3=x^2\times y^3$
and $x^4y^4=x^4\times y^4$
$\therefore$ HCF $=x^2\times y^2=x^2y^2$.
Option C is correct.

The LCM of 54 90 and a third number is 1890 and their HCF is 18 The third number is

  1. 36

  2. 180

  3. 126

  4. 108


Correct Option: C
Explanation:

Given the LCM two numbers 54, 90 and third number is 1890 and HCF is 18

Let the number is 18x because one factor is also 18 the common factor HCF
Then factor 54,90 ,18 =$18\times 3,18\times 5,18\times 18\times x$

$\therefore 18\times 3\times 5\times x=1890\Rightarrow 270x=1890\Rightarrow x=7$
Then third number is $18\times 7=126$ 

HCF of the two numbers =

  1. Product of numbers + their LCM

  2. Product of numbers - their LCM

  3. Product of numbers $\times$ their LCM

  4. Product of numbers $\div$ their LCM

  5. Answer required


Correct Option: D
Explanation:

The product of highest common factor $(H.C.F.)$ and lowest common multiple $(L.C.M.)$ of two numbers is equal to the product of two numbers.

If two numbers are $a$ and $b$ then
$HCF\ \times LCM=a\times b$ 

Hence,
$HCF=\dfrac{ab}{LCM}$

For example: 
Let $a=10\Rightarrow 2\times 5$ and $b=15\Rightarrow 3\times 5$
So, the $LCM$ of both numbers $=2\times 3\times 5\Rightarrow 30$
Then 
$HCF=\dfrac{10\times 15}{30}\Rightarrow 5$

Hence,
$HCF=\dfrac{Product\ of\ numbers}{Their\ LCM}.$

What is the HCF of $4x^{3} + 3x^{2}y - 9xy^{2} + 2y^{3}$ and $x^{2} + xy - 2y^{2}$?

  1. $x - 2y$

  2. $x - y$

  3. $(x + 2y)(x - y)$

  4. $(x - 2y)(x - y)$


Correct Option: C
Explanation:

Let $f(x, y) = 4x^{2} + 3x^{2}y - 9xy^{2} + 2y^{3}$
and $g(x, y) = x^{2} + xy - 2y^{2}$
Clearly $(x - y) = 0$ or $x = y$ satisfy both equation, since for $x = y$ makes both equations zero. 

Hence, $(x - y)$ is the H.C.F. 
Similarly $(x + 2y) = 0$ i.e., $x = -2y$ also makes both equations zero. 
Thus, $(x + 2y)(x - y)$ is the H.C.F.

H.C.F. of $(10224, 1608)$ is _________.

  1. $12$

  2. $24$

  3. $48$

  4. $96$


Correct Option: B
Explanation:

$10224 = 2^{4}\times3^{2}\times71$

$1608 = 2^{3}\times3\times67$

$\therefore$ H.C.F$(10224,1608) = 2^{3}\times3=24$

The greatest number that will divided $398, 436$ and $542$ leaving $7,11$ and $14$ remainders, respectively, is

  1. $16$

  2. $17$

  3. $18$

  4. $19$


Correct Option: B
Explanation:

Out of tour choices only $17$ is the number that divides $398,436$ and $542$ leaving $7,11$ and $15$ as remainder

The smaller value of n for which $x^{2} - 2x - 3$ and $x^{3} - 2x^{2} - nx - 3$ have an H.C.F. involving $x$ is

  1. 0

  2. 1

  3. 2

  4. 3


Correct Option: C

The number of possible pairs of number, whose product is 5400 and the HCF is 30 is

  1. 1

  2. 2

  3. 3

  4. 4


Correct Option: B
Explanation:

$ Given\quad that\quad product\quad of\quad the\quad number\quad is\quad 5400=30\times 3\times 2\times 30.\ \therefore \quad Possible\quad pairs\quad as\quad per\quad the\quad requirment\quad are-\ (1)\quad 30\times (3\times 2\times 30)=30\times 180\ (2)\quad (30\times 3)\times (2\times 30)=90\times 60\ \therefore \quad Total\quad number\quad of\quad pairs=2\quad \quad (Ans) $

If HCF of numbers $408$ and $1032$ can be expressed in the form of $1032x -408 \times 5$, then find the value of $x$.

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: C
Explanation:
$408=2\times2\times2\times3\times17$

$1032=2\times2\times2\times3\times43$

Hence, $HCF=2\times2\times2\times3=24$

Now, $1032x-408\times5=24\Rightarrow 1032x=2064\Rightarrow x=2$

Find the LCM and HCF of the following integers by the prime factorization mass

  1. 12, 15 and 21

  2. 17, 23, and 29

  3. 8, 9 and 25

  4. 72 and 108

  5. 72 and 108

  6. 306 and 657


Correct Option: A

The ratio of two numbers is 15:11. If their HCF be 13 then these numbers will be

  1. 15, 11

  2. 75, 55

  3. 105, 77

  4. 195, 143


Correct Option: A

Mark the correct alternative of the following.
The HCF of $100$ and $101$ is _________.

  1. $1$

  2. $7$

  3. $37$

  4. None of these


Correct Option: A
Explanation:

The given number $100$ and $101$ are consecutive numbers and respectively even and odd numbers.

So the HCF is $1$.

If HCF of $210$ and $55$ is of the form $(210) (5) + 55 y$, then the value of $y$ is :

  1. $-19$

  2. $-18$

  3. $5$

  4. $55$


Correct Option: A
Explanation:

  HCF of 210 and 55 is 5

Given HCF = $(210)(5)+55y$
$5 =(210)(5)+55y$
On solving this equation we get $y=-19$
 So correct answer will be option A

When the HCF of $468$ and $222$ is written in the form of  $ 468 x + 222y$ then the value of $ x$ and $y$ is 

  1. $x =-9 \ and \ y =19$

  2. $x =9 \ and \ y = -19$

  3. $x =9\  and \ y = 19$

  4. $x =-9 \ and \ y =- 19$


Correct Option: A
Explanation:

HCF of $468$ and $222$
$468 = \left(222 \times 2\right) + 24$
$222 = \left(24\times\ 9\right) + 6$
$24 = \left(6\times\ 4\right) + 0$
$\therefore HCF = 6$

$6 = 222 - \left(24\times\ 9\right)$
$ = 222 - \left[\left(468 -222 \times 2\right) \times\ 9\right]  $ [where $468 = 222 \times 2 + 24$]
$ = 222 - \left[468 \times 9 -222 \times 2 \times 9\right]$
$= 222 - \left(468 \times9\right) - \left(222\times 18\right)$
$ = 222 + \left(222 \times 18\right) - \left(468 \times9\right)$
$= 222\left[1 + 18\right]-  468 \times 9$
$= 222 \times19-  468 \times 9$
$  = 468 \times -9 + 222\times 19$
$\therefore x=-9$ and $y=19$.

If the H.C.F. of $A$ and $B$ is $24$ and that of $C$ and $D$ is $56,$ then the H.C.F. of $A, B, C$ and $D$ is

  1. $4$

  2. $12$

  3. $8$

  4. $3$


Correct Option: C
Explanation:

Given the H.C.F. of $A$ and $B$ is $24$ and that of $C$ and $D$ is $56.$
Then the H.C.F. of $A, B, C$ and $D$ is the HCF of $24$ and $56$ which is $8.$

The HCF of $136 ,170 \ and \ 255$ is 

  1. $13$

  2. $15$

  3. $17$

  4. $1$


Correct Option: C
Explanation:

136)170(1

  -    136
-------------------
          34)136(4
                136
----------------------------
                 0</div>

34)255(7
   -  238
-------------------
        17)34(2
             34
------------------------
              0

The H.C.F. of two expressions is x and their L.C.M is $ \displaystyle x^{3}-9x  $  IF one of the expression is $ \displaystyle x^{2}+3x  $  then,the other expression is 

  1. $ \displaystyle x^{2}-3x $

  2. $ \displaystyle x^{3}-3x $

  3. $ \displaystyle x^{2}+9x $

  4. $ \displaystyle x^{2}-9x $


Correct Option: A
Explanation:

Let two expressions $p(x)$ and $q(x)$ then

$p(x)\times q(x)=L.C.M.\ \times\ H.C.F.$

Since $p(x)=x^2+3x$
$(x^2+3x)\times q(x)=(x^3-9x) \times\ x$
$(x^2+3x)\times q(x)=(x^2-3x) \times\ (x^2+3x)$

$q(x)=(x^2-3x)$
Hence, this is the required solution.

The HCF of the numbers $0.48, 0.72$ and $0.108$  is

  1. $1$

  2. $12$

  3. $0.12$

  4. $0.012$


Correct Option: D
Explanation:

$480=2^5\times 3\times 5$
$720=2^4\times 3^2\times 5$
$108=2^2\times 3^2$
$HCF=2^2\times 3=12$

HCF of $0.48, 0.72$ and $0.108 = 0.012$
So, option $D$ is correct.

The the HCF of $248$ and $492$ is equal to

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: C
Explanation:

$248=2^3 \times 31$

$492=2^2 \times 3 \times 41$
HCF is $4.$

Find the HCF of $26$ and $455$

  1. $11$

  2. $12$

  3. $13$

  4. none of the above


Correct Option: C
Explanation:

$26=13\times 2$

$455=5\times 13\times 7$
HCF is $13.$

The H.C.F. of the numbers $16.5, 0.90$ and $15$ is

  1. $16.5$

  2. $0.90$

  3. $15$

  4. $0.3$


Correct Option: D
Explanation:

$1650 = 2\times 3\times 5^{2}\times 11$
$90 = 2\times 3^{2} \times 5^{1}$
$1500 = 2^{2} \times 3^{1} \times 5^{3}$
H.C.F. of $1650, 90$ and $1500$ is $2\times 3\times 5 = 30$

Therefore, H.C.F. of $16.5, 0.90$ and $15$ is $0.30$.
So, option D is correct.

The HCF of two consecutive even numbers is

  1. $6$

  2. $3$

  3. $4$

  4. $2$


Correct Option: D
Explanation:

$HCF$ of two consecutive even numbers is always $2$. For example:


$HCF$ of $2$ and $4$ is $2$ and similarly,

$HCF$ of $22$ and $24$ is $2$ and we can do so on..

The HCF of two consecutive odd numbers is

  1. $28$

  2. $30$

  3. $1$

  4. $5$


Correct Option: C
Explanation:


Let's take two odd numbers $15$ and $17$.
Factors of $15 = 1, 3, 5$
Factors of $17 = 1, 17$
HCF is $1$
Therefore, $C$ is the correct answer.
OR
HCF of $25$ and $27$ is also $1$

There are five odd numbers $1, 3, 5, 7, 9$. What is the HCF of these odd numbers?

  1. $2$

  2. $1$

  3. $6$

  4. $5$


Correct Option: B
Explanation:
$3=3 \times 1$
$5=5 \times 1$
$7=7 \times 1$
$9=3 \times 3$
HCF is $1$ for the five odd numbers.
Therefore, $B$ is the correct answer.

Find HCF of $70$ and $245$ using Fundamental Theorem of Arithmetic. 

  1. $35$

  2. $30$

  3. $15$

  4. $25$


Correct Option: A
Explanation:
using Fundamental Theorem of Arithmetic
$70 =2\times 5\times 7$
$245=5\times 7 \times 7 $
Common factors of 70 and 245 are 5 and 7.
$\therefore HCF = 5\times 7=35$
hence, option $A$ is correct.

Three ropes are $7\ m, 12\ m\ 95\ cm$ and $3\ m\ 85\ cm$ long. What is the greatest possible length that can be used to measure these ropes?

  1. $35\ cm$

  2. $55\ cm$

  3. $1\ m$

  4. $65\ cm$


Correct Option: A
Explanation:

The given three ropes are $7$m, $12$ m $95$cm and $3$m$85$cm long. We know that $1$m=$100$cm, therefore,


The length of the respective ropes will be:

1st rope $=7\times 100=700$cm
2nd rope $=(12\times 100)+95=1200+95=1295$cm
3rd rope $=(3\times 100)+85=300+85=385$cm

Now, let us factorize the length of the ropes as follows:

$700=2\times 2\times 5\times 5\times 7\ 1295=5\times 7\times 37\ 385=5\times 7\times 11$

The highest common factor (HCF) is $5\times 7=35$

Hence, the greatest possible length that can be used to measure these ropes is $35$cm.

H.C.F. of $26$ and $91$ is:

  1. $13$

  2. $2366$

  3. $91$

  4. $182$


Correct Option: A
Explanation:

$26=2*13$
$91=7*13$
$HCF=13$
As it is the only common factor

H.C.F. of $6, 72$ and $120$ is:

  1. $6$

  2. $2$

  3. $3$

  4. $1$


Correct Option: A
Explanation:

Factors of 6 are $1,2,3,6$
Factors of 72 are $1,2,3,4,6,8,9,12,18,24,36,72$
Factors of 120 are $1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120$
The highest factor in all the three is 6 .

Sum of all two digit numbers divisible by $7$ leaves remainder $2$ or $5$ is 

  1. 1300

  2. 1345

  3. 1465

  4. 1356


Correct Option: D
- Hide questions