0

Modal Logic and Belief

Description: This quiz covers the basics of Modal Logic and Belief, including the concepts of possibility, necessity, and belief.
Number of Questions: 14
Created by:
Tags: modal logic belief philosophy logic
Attempted 0/14 Correct 0 Score 0

Which of the following is a modal operator?

  1. *

  2. +

  3. !

  4. ?


Correct Option: C
Explanation:

The modal operator ! is used to express necessity.

What is the dual of the possibility operator ?

  1. *

  2. +

  3. !

  4. ?


Correct Option: C
Explanation:

The dual of the possibility operator is the necessity operator.

What is the formula for the law of necessitation?

  1. $ \vdash \phi \rightarrow \Box \phi $

  2. $ \vdash \Box \phi \rightarrow \phi $

  3. $ \vdash \phi \rightarrow \Diamond \phi $

  4. $ \vdash \Diamond \phi \rightarrow \phi $


Correct Option: A
Explanation:

The law of necessitation states that if a formula is provable, then its necessity is also provable.

What is the formula for the law of distribution of conjunction over possibility?

  1. $ \Diamond (\phi \wedge \psi) \leftrightarrow \Diamond \phi \wedge \Diamond \psi $

  2. $ \Diamond (\phi \vee \psi) \leftrightarrow \Diamond \phi \vee \Diamond \psi $

  3. $ \Box (\phi \wedge \psi) \leftrightarrow \Box \phi \wedge \Box \psi $

  4. $ \Box (\phi \vee \psi) \leftrightarrow \Box \phi \vee \Box \psi $


Correct Option: A
Explanation:

The law of distribution of conjunction over possibility states that the possibility of a conjunction is equivalent to the conjunction of the possibilities.

What is the formula for the law of distribution of disjunction over necessity?

  1. $ \Box (\phi \wedge \psi) \leftrightarrow \Box \phi \wedge \Box \psi $

  2. $ \Box (\phi \vee \psi) \leftrightarrow \Box \phi \vee \Box \psi $

  3. $ \Diamond (\phi \wedge \psi) \leftrightarrow \Diamond \phi \wedge \Diamond \psi $

  4. $ \Diamond (\phi \vee \psi) \leftrightarrow \Diamond \phi \vee \Diamond \psi $


Correct Option: B
Explanation:

The law of distribution of disjunction over necessity states that the necessity of a disjunction is equivalent to the disjunction of the necessities.

What is the formula for the axiom of reflexivity for belief?

  1. $ \vdash B\phi \rightarrow \phi $

  2. $ \vdash \phi \rightarrow B\phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The axiom of reflexivity for belief states that if an agent believes a proposition, then the proposition is true.

What is the formula for the axiom of positive introspection for belief?

  1. $ \vdash B\phi \rightarrow B B\phi $

  2. $ \vdash B B\phi \rightarrow B\phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The axiom of positive introspection for belief states that if an agent believes a proposition, then the agent believes that they believe the proposition.

What is the formula for the axiom of negative introspection for belief?

  1. $ \vdash B\phi \rightarrow B B\phi $

  2. $ \vdash B B\phi \rightarrow B\phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option:
Explanation:

The axiom of negative introspection for belief states that if an agent does not believe a proposition, then the agent believes that they do not believe the proposition.

What is the formula for the rule of necessitation for belief?

  1. $ \vdash B\phi \rightarrow B \Box B\phi $

  2. $ \vdash B \Box B\phi \rightarrow B\phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The rule of necessitation for belief states that if an agent believes a proposition, then the agent believes that it is necessary that they believe the proposition.

What is the formula for the rule of distribution of belief over conjunction?

  1. $ \vdash B(\phi \wedge \psi) \leftrightarrow (B\phi \wedge B\psi) $

  2. $ \vdash B(\phi \vee \psi) \leftrightarrow (B\phi \vee B\psi) $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The rule of distribution of belief over conjunction states that an agent believes a conjunction if and only if the agent believes both conjuncts.

What is the formula for the rule of distribution of belief over disjunction?

  1. $ \vdash B(\phi \wedge \psi) \leftrightarrow (B\phi \wedge B\psi) $

  2. $ \vdash B(\phi \vee \psi) \leftrightarrow (B\phi \vee B\psi) $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: B
Explanation:

The rule of distribution of belief over disjunction states that an agent believes a disjunction if and only if the agent believes at least one disjunct.

What is the formula for the rule of generalization for belief?

  1. $ \vdash B\phi \rightarrow B \forall x \phi $

  2. $ \vdash B \forall x \phi \rightarrow B\phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The rule of generalization for belief states that if an agent believes a proposition, then the agent believes the universal generalization of that proposition.

What is the formula for the rule of instantiation for belief?

  1. $ \vdash B\forall x \phi \rightarrow B\phi [t/x] $

  2. $ \vdash B\phi [t/x] \rightarrow B\forall x \phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The rule of instantiation for belief states that if an agent believes a universal generalization, then the agent believes the instance of that generalization obtained by substituting any term for the variable.

What is the formula for the rule of modus ponens for belief?

  1. $ \vdash B(\phi \rightarrow \psi) \wedge B\phi \rightarrow B\psi $

  2. $ \vdash B(\phi \rightarrow \psi) \wedge B\psi \rightarrow B\phi $

  3. $ \vdash \Diamond B\phi \rightarrow B\phi $

  4. $ \vdash B\phi \rightarrow \Diamond B\phi $


Correct Option: A
Explanation:

The rule of modus ponens for belief states that if an agent believes a conditional proposition and the antecedent of that proposition, then the agent believes the consequent of that proposition.

- Hide questions