Test 2 - Control System | Electronics and Communication (ECE)

Description: Topic wise test for Control System (ECE) of GATE Electronics and Communication
Number of Questions: 20
Created by:
Tags: ECE Control System
Attempted 0/20 Correct 0 Score 0

Group I lists a set of four transfer functions. Group II gives a list of possible step response y (t). Match the step responses with the corresponding transfer functions.

  1. P - 3, Q - 1, R - 4, S - 2

  2. P - 3, Q - 2, R - 4, S - 1

  3. P - 2, Q - 1, R - 4, S - 2

  4. P - 3, Q - 4, R - 1, S - 2


Correct Option: D
Explanation:

The transfer function of a compensator is given as Gc(s) = (s +1)/(s +2)

The phase of the above lead compensator is maximum at

  1. $\sqrt2$rad/s

  2. $\sqrt3$rad/s

  3. $\sqrt6$rad/s

  4. 1/ $\sqrt3$rad/s


Correct Option: A
Explanation:

 In lead compensator |Z| < |P|            Here we compare the given equation            then we get Z= 1 and P = 2           So W = √(Z *P) = √2 rad/s                     

A linear system is described by the following state equation:

X(t) = AX (t) + BU (t), A =$\left[ \begin{array} \ 0 & 1 \\ -1 & 0 \end{array} \right]$

The state-transition matrix of the system is

  1. $\left[ \begin{array} \ cost & sint \\ -sint & cost \end{array} \right]$

  2. $\left[ \begin{array} \ -cost & sint \\ -sint & -cost \end{array} \right]$

  3. $\left[ \begin{array} \ -cost & -sint \\ -sint & cost \end{array} \right]$

  4. $\left[ \begin{array} \ cost & -sint \\ sint & cost \end{array} \right]$


Correct Option: A
Explanation:

The transfer function Y(s)/R(s) of the system shown is

  1. 0

  2. $\dfrac{1}{s+1}$

  3. $\dfrac{2}{s+1}$

  4. $\dfrac{2}{s+3}$


Correct Option: B
Explanation:

The given solution is right. Here R(s) is the input transfer function when it passes through the circuit it converts into E(s) output transfer function. Here Y(s) is the final output transfer function. Here H(s) is the output transfer function out from the circuit finally.                   

The root locus plot for a system is given below. The open loop transfer function corresponding to this plot is given by

  1. G(s)H(s) = k $\dfrac{s(s+1)}{(s+2)(s+3)}$

  2. G(s)H(s) = k$\dfrac{(s+1)}{s(s+2)(s+3)^2}$

  3. G(s)H(s) = k$\dfrac{s(s+1)}{s(s+1)(s+2)(s+3)}$

  4. G(s)H(s) = k $\dfrac{(s+1)}{s(s+2)(s+3)}$


Correct Option: B
Explanation:

The signal flow graph of a system is shown below.

Which of the following is the state variable representation of the system?

  1. $ x = \left[ \begin{array} \ 1 & 1 \\ -1 & 0 \end{array} \right] x + \left[ \begin{array} \ 0 \\ 2 \end{array} \right] u $ y = [0 & 0.5] x

  2. $ x = \left[ \begin{array} \ -1 & 1 \\ -1 & 0 \end{array} \right] x + \left[ \begin{array} \ 0 \\ 2 \end{array} \right] u $ y = [0 & 0.5] x

  3. $ x = \left[ \begin{array} \ 1 & -1 \\ -1 & 0 \end{array} \right] x + \left[ \begin{array} \ 0 \\ 2 \end{array} \right] u $ y = [0.5 & 0.5] x

  4. $ x = \left[ \begin{array} \ -1 & 1 \\ -1 & 0 \end{array} \right] x + \left[ \begin{array} \ 0 \\ 2 \end{array} \right] u $ y = [0.5 & 0.5] x


Correct Option: D
Explanation:

If A = $ x = \left[ \begin{array} \ -2 & 2 \\ 1 & -3 \end{array} \right] $, then sin At is

  1. $\dfrac{1}{3}$$ x = \left[ \begin{array} \ sin(-4t) + 2sin(-t) - 2sin(-4t) + 2sin(-t) \\ -sin(-4t) + sin(-t)2sin(-4t) + sin(-t) \end{array} \right] $

  2. $\left[ \begin{array} \ sin(-2t) sin(2t) \\ sin(t) sin(-3t) \end{array} \right]$

  3. $\dfrac{1}{3}$$ x = \left[ \begin{array} \ sin(4t) + 2sin(t) 2sin(-4t) - 2sin(-t) \\ -sin(-4t) + sin(t)2sin(4t) + sin(t) \end{array} \right] $

  4. $\dfrac{1}{3}$$ x = \left[ \begin{array} \ cos(-t) + 2cos(t) 2cos(-4t) + 2cos(-t) \\ -cos(-4t) + cos(-t)-2cos(-4t) + cos(-t) \end{array} \right] $


Correct Option: A
Explanation:

The zero-input response of a system given by the state-space equation is

  1. $\left[ \begin{array} \ te^t \\ t \end{array} \right]$

  2. $\left[ \begin{array} \ e^t \\ t \end{array} \right]$

  3. $\left[ \begin{array} \ e^t \\ te^t \end{array} \right]$

  4. $\left[ \begin{array} \ t \\ te^t \end{array} \right]$* 1/2


Correct Option: C
Explanation:

A linear system is equivalently represented by two sets of state equations; $\bar X = AX + BU$ and W = CW + DU. The eigen values of the representations are also computed as $[\lambda]$ and $[\mu]$. Which of the following statements is true?

  1. $[\lambda] = [\mu] \ and \ X =W $

  2. $[\lambda] = [\mu] \ and \ X \ne W $

  3. $[\lambda] \ne [\mu] \ and \ X = W $

  4. $[\lambda] \ne [\mu] \ and \ X \ne W $


Correct Option: C
Explanation:

The transfer function of a plant is T (s) = $ \dfrac{5}{(s+5)(s^2+s+1)} $. The second - order approximation of T(s) using dominate pole concept is

  1. $ \dfrac{1}{(s+5)(s+1)} $

  2. $ \dfrac{5}{(s+5)(s+1)} $

  3. $ \dfrac{5}{(s^2+s+1)} $

  4. $ \dfrac{1}{(s^2+s+1)} $


Correct Option: D
Explanation:

The figure shows the Nyquist plot of the open-loop transfer function G(s)H(s) of a system. If G(s)H(s) has one right hand pole, the closed loop system is

  1. always stable

  2. unstable with one closed loop right hand pole

  3. unstable with two closed loop right hand poles

  4. unstable with three closed loop right hand poles


Correct Option: A
Explanation:

The Nyquist plot of G (j$\omega$) H (j$\omega$) for a closed loop control system, passes through (- 1, j0) point in the GH-plane. The gain margin of the system in dB is equal to

  1. infinite

  2. greater than zero

  3. less than zero

  4. zero


Correct Option: D
Explanation:

The signal flow graph of a system is shown below.

The transfer function of the system is

  1. $ \dfrac{s+1}{(s^2+1)} $

  2. $ \dfrac{s-1}{(s^2+1)} $

  3. $ \dfrac{s+1}{(s^2+s+1)} $

  4. $ \dfrac{s-1}{(s^2+s+1)} $


Correct Option: C
Explanation:

The unit step response of an under-damped second order system has steady state value of -2. Which one of the following transfer functions has theses properties?

  1. $ \dfrac{-2.24}{(s^2+2.59s+1.12)} $

  2. $ \dfrac{-3.82}{(s^2+1.91s+1.91)} $

  3. $ \dfrac{-2.24}{(s^2-2.59s+1.12)} $

  4. $ \dfrac{-3.82}{(s^2-1.91s+1.91)} $


Correct Option: B
Explanation:

The magnitude of frequency responses of an underdamped second order system is 5 at 0 rad/sec and peaks to $\dfrac{10}{\sqrt3}$ at 5 $\sqrt2$ rad/sec. The transfer function of the system is

  1. $ \dfrac{500}{(s^2+10s+100)} $

  2. $ \dfrac{375}{(s^2+5s+75)} $

  3. $ \dfrac{720}{(s^2+12s+144)} $

  4. $ \dfrac{1125}{(s^2+25s+225)} $


Correct Option: A
Explanation:

Consider the signal flow graph shown in figure. The gain $ \dfrac{x_5}{x_1} $ is

  1. $ \dfrac{1 - (be+cf+dg)}{abcd} $

  2. $ \dfrac{bedg}{1 - (be+cf+dg)} $

  3. $ \dfrac{bedg}{1 - (be+cf+dg) + bedg} $

  4. $ \dfrac{1 - (be+cf+dg) + bedg}{abcd} $


Correct Option: C
Explanation:

The polar diagram of a conditionally stable system for open loop gain K = 1 is shown in figure. The open loop transfer function of the system is known to be stable. The closed loop system is stable for

  1. $k<5\ and \ \dfrac{1}{2} < k < \dfrac{1}{8}$

  2. $k<\dfrac{1}{8}\ and \ \dfrac{1}{2} < k < 5$

  3. $k<\dfrac{1}{8}\ and \ 5 < k$

  4. $k>\dfrac{1}{8}\ and \ k < 5$


Correct Option: B
Explanation:

null

A second-order system has the transfer function $\dfrac{C(s)}{R(s)}$ = $\dfrac{4}{s^2+4s+4}$ with r(t) as the unit-step function, the response c(t) of the system is represented by


Correct Option: D
Explanation:

The block diagram of a system with one input it and two outputs y1 and y2 is given below:

A state space model of the above system in terms of the state vector x and the output vector y = [y1 y2]T is

  1. $\bar x$ = [2]x + [1]u; y = [1 2]x

  2. $\bar x$ = [- 2]x + [1]u; y = $ \left[ \begin{array} \ 1 \\ 2 \end{array} \right] $x

  3. $\bar x$ = $ \left[ \begin{array} \ -2 & 0 \\ 0 & -2 \end{array} \right] $x + $ \left[ \begin{array} \ 1 \\ 1 \end{array} \right] $u; y = $ \left[ \begin{array} \ 1 & 2 \end{array} \right] $x

  4. $\bar x$ = $ \left[ \begin{array} \ 2 & 0 \\ 0 & 2 \end{array} \right] $x + $ \left[ \begin{array} \ 1 \\ 2 \end{array} \right] $u; y = $ \left[ \begin{array} \ 1 \\ 2 \end{array} \right] $x


Correct Option: B
Explanation:

A system with transfer function $ \left[ \begin{array} \ Y(s) \\ X(s) \end{array} \right] $ = $\dfrac{s}{s+p}$has an output y(t) = cos $ \left( \begin{array} \ 2t - \dfrac{\pi}{3} \end{array} \right) $for the input signal x(t) = p cos $ \left( \begin{array} \ 2t - \dfrac{\pi}{2} \end{array} \right) $. Then, the system parameter ‘p’ is

  1. $\sqrt3$

  2. $\dfrac{2}{\sqrt3}$

  3. 1

  4. $\dfrac{\sqrt3}{2}$


Correct Option: B
Explanation:

- Hide questions