0

Brahmagupta's Formula for Solving Quadratic Equations

Description: Test your understanding of Brahmagupta's Formula for Solving Quadratic Equations.
Number of Questions: 14
Created by:
Tags: brahmagupta's formula quadratic equations indian mathematics
Attempted 0/14 Correct 0 Score 0

What is the general form of a quadratic equation?

  1. $$ax^2 + bx + c = 0$$

  2. $$ax^2 - bx + c = 0$$

  3. $$ax^2 + bx - c = 0$$

  4. $$ax^2 - bx - c = 0$$


Correct Option: A
Explanation:

The general form of a quadratic equation is $$ax^2 + bx + c = 0$$, where a, b, and c are constants and $$a \ne 0$$.

What is Brahmagupta's Formula for solving quadratic equations?

  1. $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

  2. $$x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

  3. $$x = \frac{-b \pm \sqrt{b^2 - 2ac}}{2a}$$

  4. $$x = \frac{-b \pm \sqrt{b^2 + 2ac}}{2a}$$


Correct Option: A
Explanation:

Brahmagupta's Formula for solving quadratic equations is $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$, where a, b, and c are the coefficients of the quadratic equation.

What is the discriminant of a quadratic equation?

  1. $$b^2 - 4ac$$

  2. $$b^2 + 4ac$$

  3. $$b^2 - 2ac$$

  4. $$b^2 + 2ac$$


Correct Option: A
Explanation:

The discriminant of a quadratic equation is $$b^2 - 4ac$$. It determines the nature of the roots of the equation.

What are the possible values of the discriminant?

  1. Positive

  2. Negative

  3. Zero

  4. All of the above


Correct Option: D
Explanation:

The discriminant can be positive, negative, or zero. The value of the discriminant determines the nature of the roots of the equation.

What is the nature of the roots of a quadratic equation if the discriminant is positive?

  1. Real and distinct

  2. Real and equal

  3. Imaginary

  4. None of the above


Correct Option: A
Explanation:

If the discriminant is positive, the roots of the quadratic equation are real and distinct.

What is the nature of the roots of a quadratic equation if the discriminant is negative?

  1. Real and distinct

  2. Real and equal

  3. Imaginary

  4. None of the above


Correct Option: C
Explanation:

If the discriminant is negative, the roots of the quadratic equation are imaginary.

What is the nature of the roots of a quadratic equation if the discriminant is zero?

  1. Real and distinct

  2. Real and equal

  3. Imaginary

  4. None of the above


Correct Option: B
Explanation:

If the discriminant is zero, the roots of the quadratic equation are real and equal.

Solve the quadratic equation $$x^2 + 4x + 3 = 0$$ using Brahmagupta's Formula.

  1. $$x = -1 \pm \sqrt{2}$$

  2. $$x = -2 \pm \sqrt{2}$$

  3. $$x = -3 \pm \sqrt{2}$$

  4. $$x = -4 \pm \sqrt{2}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-4 \pm \sqrt{4^2 - 4(1)(3)}}{2(1)}$$. Simplifying this, we get $$x = -1 \pm \sqrt{2}$$. Therefore, the solution set is ({-1 \pm \sqrt{2})).

Solve the quadratic equation $$2x^2 - 5x + 2 = 0$$ using Brahmagupta's Formula.

  1. $$x = \frac{5 \pm \sqrt{21}}{4}$$

  2. $$x = \frac{5 \pm \sqrt{29}}{4}$$

  3. $$x = \frac{5 \pm \sqrt{37}}{4}$$

  4. $$x = \frac{5 \pm \sqrt{41}}{4}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(2)}}{2(2)}$$. Simplifying this, we get $$x = \frac{5 \pm \sqrt{21}}{4}$$. Therefore, the solution set is ({\frac{5 \pm \sqrt{21}}{4})).

Solve the quadratic equation $$3x^2 + 7x - 6 = 0$$ using Brahmagupta's Formula.

  1. $$x = \frac{-7 \pm \sqrt{85}}{6}$$

  2. $$x = \frac{-7 \pm \sqrt{91}}{6}$$

  3. $$x = \frac{-7 \pm \sqrt{97}}{6}$$

  4. $$x = \frac{-7 \pm \sqrt{103}}{6}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-7 \pm \sqrt{7^2 - 4(3)(-6)}}{2(3)}$$. Simplifying this, we get $$x = \frac{-7 \pm \sqrt{85}}{6}$$. Therefore, the solution set is ({\frac{-7 \pm \sqrt{85}}{6})).

Solve the quadratic equation $$4x^2 - 12x + 9 = 0$$ using Brahmagupta's Formula.

  1. $$x = \frac{6 \pm \sqrt{15}}{2}$$

  2. $$x = \frac{6 \pm \sqrt{21}}{2}$$

  3. $$x = \frac{6 \pm \sqrt{27}}{2}$$

  4. $$x = \frac{6 \pm \sqrt{33}}{2}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(4)(9)}}{2(4)}$$. Simplifying this, we get $$x = \frac{6 \pm \sqrt{15}}{2}$$. Therefore, the solution set is ({\frac{6 \pm \sqrt{15}}{2})).

Solve the quadratic equation $$5x^2 + 2x - 3 = 0$$ using Brahmagupta's Formula.

  1. $$x = \frac{-1 \pm \sqrt{23}}{5}$$

  2. $$x = \frac{-1 \pm \sqrt{29}}{5}$$

  3. $$x = \frac{-1 \pm \sqrt{31}}{5}$$

  4. $$x = \frac{-1 \pm \sqrt{37}}{5}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-2 \pm \sqrt{2^2 - 4(5)(-3)}}{2(5)}$$. Simplifying this, we get $$x = \frac{-1 \pm \sqrt{23}}{5}$$. Therefore, the solution set is ({\frac{-1 \pm \sqrt{23}}{5})).

Solve the quadratic equation $$6x^2 - 11x + 3 = 0$$ using Brahmagupta's Formula.

  1. $$x = \frac{11 \pm \sqrt{109}}{12}$$

  2. $$x = \frac{11 \pm \sqrt{113}}{12}$$

  3. $$x = \frac{11 \pm \sqrt{127}}{12}$$

  4. $$x = \frac{11 \pm \sqrt{131}}{12}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-(-11) \pm \sqrt{(-11)^2 - 4(6)(3)}}{2(6)}$$. Simplifying this, we get $$x = \frac{11 \pm \sqrt{109}}{12}$$. Therefore, the solution set is ({\frac{11 \pm \sqrt{109}}{12})).

Solve the quadratic equation $$7x^2 - 13x + 6 = 0$$ using Brahmagupta's Formula.

  1. $$x = \frac{13 \pm \sqrt{121}}{14}$$

  2. $$x = \frac{13 \pm \sqrt{127}}{14}$$

  3. $$x = \frac{13 \pm \sqrt{133}}{14}$$

  4. $$x = \frac{13 \pm \sqrt{139}}{14}$$


Correct Option: A
Explanation:

Using Brahmagupta's Formula, we have $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. Substituting the values of a, b, and c, we get $$x = \frac{-(-13) \pm \sqrt{(-13)^2 - 4(7)(6)}}{2(7)}$$. Simplifying this, we get $$x = \frac{13 \pm \sqrt{121}}{14}$$. Therefore, the solution set is ({\frac{13 \pm \sqrt{121}}{14})).

- Hide questions