Trigonometric Equations
Description: Test your understanding of Trigonometric Equations with this quiz. | |
Number of Questions: 15 | |
Created by: Aliensbrain Bot | |
Tags: trigonometry trigonometric equations angles identities |
Solve the equation (2\sin^2\theta + \sqrt{3}\sin\theta - 1 = 0) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (\tan^2\theta - \tan\theta - 2 = 0) in the interval ([0, 2\pi)).
Solve the equation (2\cos^2\theta + 3\sin\theta - 5 = 0) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (\sec^2\theta - 2\sec\theta - 3 = 0) in the interval ([0, 2\pi)).
Solve the equation (\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta = 1) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (2\sin^2\theta - 3\sin\theta + 1 = 0) in the interval ([0, 2\pi)).
Solve the equation (\tan^2\theta + 2\tan\theta + 1 = 0) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (\sec^2\theta - \tan^2\theta = 1) in the interval ([0, 2\pi)).
Solve the equation (\sin^2\theta - \cos^2\theta = \frac{1}{2}) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (\cot^2\theta - 3\cot\theta + 2 = 0) in the interval ([0, 2\pi)).
Solve the equation (2\cos^2\theta + \sin\theta - 1 = 0) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (\tan^2\theta + \sec\theta - 1 = 0) in the interval ([0, 2\pi)).
Solve the equation (\sin^2\theta + \cos^2\theta - \sin\theta - \cos\theta = 0) for (0 \le \theta \le 2\pi).
Find all solutions of the equation (\csc^2\theta - 2\csc\theta - 3 = 0) in the interval ([0, 2\pi)).
Solve the equation (2\sin^2\theta - 3\sin\theta + 1 = 0) for (0 \le \theta \le 2\pi).