LU Decomposition

Description: This quiz will test your understanding of LU Decomposition, a method for solving systems of linear equations.
Number of Questions: 14
Created by:
Tags: linear algebra lu decomposition systems of equations
Attempted 0/14 Correct 0 Score 0

What is the LU decomposition of a matrix?

  1. A matrix can be expressed as the product of a lower triangular matrix and an upper triangular matrix.

  2. A matrix can be expressed as the sum of a lower triangular matrix and an upper triangular matrix.

  3. A matrix can be expressed as the product of a lower triangular matrix and a diagonal matrix.

  4. A matrix can be expressed as the sum of a lower triangular matrix and a diagonal matrix.


Correct Option: A
Explanation:

The LU decomposition of a matrix is a factorization of the matrix into the product of a lower triangular matrix and an upper triangular matrix.

What are the advantages of using LU decomposition to solve systems of linear equations?

  1. It is more efficient than other methods, such as Gaussian elimination.

  2. It is more accurate than other methods, such as Gaussian elimination.

  3. It is easier to implement than other methods, such as Gaussian elimination.

  4. All of the above.


Correct Option: D
Explanation:

LU decomposition is more efficient, more accurate, and easier to implement than other methods for solving systems of linear equations.

What is the LU decomposition of the matrix (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix})?

  1. (\begin{bmatrix} 1 & 0 & 0 \ 4 & 1 & 0 \ 7 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix})

  2. (\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix})

  3. (\begin{bmatrix} 1 & 2 & 3 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \ 4 & 1 & 0 \ 7 & 2 & 1 \end{bmatrix})

  4. (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 7 & 2 & 1 \end{bmatrix})


Correct Option: A
Explanation:

The LU decomposition of the matrix (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}) is (\begin{bmatrix} 1 & 0 & 0 \ 4 & 1 & 0 \ 7 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}).

What is the solution to the system of linear equations (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?

  1. (x = 1, y = 2, z = 3)

  2. (x = 2, y = 3, z = 4)

  3. (x = 3, y = 4, z = 5)

  4. (x = 4, y = 5, z = 6)


Correct Option: A
Explanation:

The solution to the system of linear equations (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}) is (x = 1, y = 2, z = 3).

What is the time complexity of LU decomposition?

  1. (O(n^2))

  2. (O(n^3))

  3. (O(n^4))

  4. (O(n^5))


Correct Option: B
Explanation:

The time complexity of LU decomposition is (O(n^3)).

Which of the following matrices cannot be decomposed using LU decomposition?

  1. A singular matrix

  2. A square matrix

  3. A rectangular matrix

  4. A diagonal matrix


Correct Option: A
Explanation:

A singular matrix cannot be decomposed using LU decomposition.

What is the determinant of a matrix that has been decomposed using LU decomposition?

  1. The product of the diagonal elements of the lower triangular matrix

  2. The product of the diagonal elements of the upper triangular matrix

  3. The product of the diagonal elements of both the lower and upper triangular matrices

  4. None of the above


Correct Option: C
Explanation:

The determinant of a matrix that has been decomposed using LU decomposition is the product of the diagonal elements of both the lower and upper triangular matrices.

What is the inverse of a matrix that has been decomposed using LU decomposition?

  1. The product of the inverse of the lower triangular matrix and the inverse of the upper triangular matrix

  2. The product of the inverse of the lower triangular matrix and the transpose of the upper triangular matrix

  3. The product of the transpose of the lower triangular matrix and the inverse of the upper triangular matrix

  4. The product of the transpose of the lower triangular matrix and the transpose of the upper triangular matrix


Correct Option: A
Explanation:

The inverse of a matrix that has been decomposed using LU decomposition is the product of the inverse of the lower triangular matrix and the inverse of the upper triangular matrix.

What is the LU decomposition of the matrix (\begin{bmatrix} 2 & 1 & 1 \ 4 & 3 & 3 \ 6 & 5 & 5 \end{bmatrix})?

  1. (\begin{bmatrix} 2 & 0 & 0 \ 2 & 1 & 0 \ 3 & 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix})

  2. (\begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1 \ 2 & 3 & 3 \ 3 & 5 & 5 \end{bmatrix})

  3. (\begin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1 \ 2 & 3 & 3 \ 3 & 5 & 5 \end{bmatrix})

  4. (\begin{bmatrix} 1 & 1 & 1 \ 2 & 3 & 3 \ 3 & 5 & 5 \end{bmatrix}\begin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix})


Correct Option: A
Explanation:

The LU decomposition of the matrix (\begin{bmatrix} 2 & 1 & 1 \ 4 & 3 & 3 \ 6 & 5 & 5 \end{bmatrix}) is (\begin{bmatrix} 2 & 0 & 0 \ 2 & 1 & 0 \ 3 & 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix}).

What is the solution to the system of linear equations (\begin{bmatrix} 2 & 1 & 1 \ 4 & 3 & 3 \ 6 & 5 & 5 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?

  1. (x = 1, y = 2, z = 3)

  2. (x = 2, y = 3, z = 4)

  3. (x = 3, y = 4, z = 5)

  4. (x = 4, y = 5, z = 6)


Correct Option: A
Explanation:

The solution to the system of linear equations (\begin{bmatrix} 2 & 1 & 1 \ 4 & 3 & 3 \ 6 & 5 & 5 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}) is (x = 1, y = 2, z = 3).

What is the LU decomposition of the matrix (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix})?

  1. (\begin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix})

  2. (\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix})

  3. (\begin{bmatrix} 1 & 2 & 3 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & -1 & 1 \end{bmatrix})

  4. (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix})


Correct Option: A
Explanation:

The LU decomposition of the matrix (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix}) is (\begin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{bmatrix}).

What is the solution to the system of linear equations (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?

  1. (x = 1, y = 2, z = 3)

  2. (x = 2, y = 3, z = 4)

  3. (x = 3, y = 4, z = 5)

  4. (x = 4, y = 5, z = 6)


Correct Option: A
Explanation:

The solution to the system of linear equations (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}) is (x = 1, y = 2, z = 3).

What is the LU decomposition of the matrix (\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix})?

  1. (\begin{bmatrix} 3 & 0 & 0 \ 2 & 1 & 0 \ 1 & -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix})

  2. (\begin{bmatrix} 3 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix})

  3. (\begin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix})

  4. (\begin{bmatrix} 1 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix}\begin{bmatrix} 3 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix})


Correct Option: A
Explanation:

The LU decomposition of the matrix (\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix}) is (\begin{bmatrix} 3 & 0 & 0 \ 2 & 1 & 0 \ 1 & -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 1 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix}).

What is the solution to the system of linear equations (\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?

  1. (x = 1, y = 2, z = 3)

  2. (x = 2, y = 3, z = 4)

  3. (x = 3, y = 4, z = 5)

  4. (x = 4, y = 5, z = 6)


Correct Option: A
Explanation:

The solution to the system of linear equations (\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}) is (x = 1, y = 2, z = 3).

- Hide questions