LU Decomposition
Description: This quiz will test your understanding of LU Decomposition, a method for solving systems of linear equations. | |
Number of Questions: 14 | |
Created by: Aliensbrain Bot | |
Tags: linear algebra lu decomposition systems of equations |
What is the LU decomposition of a matrix?
What are the advantages of using LU decomposition to solve systems of linear equations?
What is the LU decomposition of the matrix (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix})?
What is the solution to the system of linear equations (\begin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?
What is the time complexity of LU decomposition?
Which of the following matrices cannot be decomposed using LU decomposition?
What is the determinant of a matrix that has been decomposed using LU decomposition?
What is the inverse of a matrix that has been decomposed using LU decomposition?
What is the LU decomposition of the matrix (\begin{bmatrix} 2 & 1 & 1 \ 4 & 3 & 3 \ 6 & 5 & 5 \end{bmatrix})?
What is the solution to the system of linear equations (\begin{bmatrix} 2 & 1 & 1 \ 4 & 3 & 3 \ 6 & 5 & 5 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?
What is the LU decomposition of the matrix (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix})?
What is the solution to the system of linear equations (\begin{bmatrix} 1 & 2 & 3 \ 2 & 5 & 4 \ 3 & 1 & 2 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?
What is the LU decomposition of the matrix (\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix})?
What is the solution to the system of linear equations (\begin{bmatrix} 3 & 2 & 1 \ 2 & 3 & 2 \ 1 & 2 & 3 \end{bmatrix}\begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix})?