Laplace Transforms

Description: This quiz is designed to assess your understanding of Laplace transforms, a mathematical tool used to solve differential equations and analyze linear systems.
Number of Questions: 15
Created by:
Tags: laplace transforms differential equations linear systems
Attempted 0/15 Correct 0 Score 0

The Laplace transform of the function $f(t) = e^{at}$ is:

  1. $F(s) = \frac{1}{s - a}$

  2. $F(s) = \frac{1}{s + a}$

  3. $F(s) = \frac{a}{s - a}$

  4. $F(s) = \frac{a}{s + a}$


Correct Option: A
Explanation:

The Laplace transform of $e^{at}$ is $\frac{1}{s - a}$.

Which of the following is a property of the Laplace transform?

  1. Linearity

  2. Time shifting

  3. Frequency shifting

  4. All of the above


Correct Option: D
Explanation:

The Laplace transform has the properties of linearity, time shifting, and frequency shifting.

The inverse Laplace transform of $F(s) = \frac{1}{s^2 + 4}$ is:

  1. $f(t) = \frac{1}{2} \sin(2t)$

  2. $f(t) = \frac{1}{2} \cos(2t)$

  3. $f(t) = \frac{1}{2} e^{2t}$

  4. $f(t) = \frac{1}{2} e^{-2t}$


Correct Option: A
Explanation:

The inverse Laplace transform of $\frac{1}{s^2 + 4}$ is $\frac{1}{2} \sin(2t)$.

The Laplace transform of the function $f(t) = t^2$ is:

  1. $F(s) = \frac{2}{s^3}$

  2. $F(s) = \frac{2}{s^4}$

  3. $F(s) = \frac{2!}{s^3}$

  4. $F(s) = \frac{2!}{s^4}$


Correct Option: C
Explanation:

The Laplace transform of $t^2$ is $\frac{2!}{s^3}$.

The Laplace transform of the function $f(t) = \sin(at)$ is:

  1. $F(s) = \frac{a}{s^2 + a^2}$

  2. $F(s) = \frac{s}{s^2 + a^2}$

  3. $F(s) = \frac{1}{s^2 + a^2}$

  4. $F(s) = \frac{s}{s^2 - a^2}$


Correct Option: A
Explanation:

The Laplace transform of $\sin(at)$ is $\frac{a}{s^2 + a^2}$.

The Laplace transform of the function $f(t) = \cos(at)$ is:

  1. $F(s) = \frac{s}{s^2 + a^2}$

  2. $F(s) = \frac{a}{s^2 + a^2}$

  3. $F(s) = \frac{1}{s^2 + a^2}$

  4. $F(s) = \frac{s}{s^2 - a^2}$


Correct Option: A
Explanation:

The Laplace transform of $\cos(at)$ is $\frac{s}{s^2 + a^2}$.

The Laplace transform of the function $f(t) = e^{at} \sin(bt)$ is:

  1. $F(s) = \frac{b}{(s - a)^2 + b^2}$

  2. $F(s) = \frac{a}{(s - a)^2 + b^2}$

  3. $F(s) = \frac{1}{(s - a)^2 + b^2}$

  4. $F(s) = \frac{s}{(s - a)^2 + b^2}$


Correct Option: A
Explanation:

The Laplace transform of $e^{at} \sin(bt)$ is $\frac{b}{(s - a)^2 + b^2}$.

The Laplace transform of the function $f(t) = e^{at} \cos(bt)$ is:

  1. $F(s) = \frac{s - a}{(s - a)^2 + b^2}$

  2. $F(s) = \frac{s + a}{(s - a)^2 + b^2}$

  3. $F(s) = \frac{1}{(s - a)^2 + b^2}$

  4. $F(s) = \frac{s}{(s - a)^2 + b^2}$


Correct Option: A
Explanation:

The Laplace transform of $e^{at} \cos(bt)$ is $\frac{s - a}{(s - a)^2 + b^2}$.

The Laplace transform of the function $f(t) = \sinh(at)$ is:

  1. $F(s) = \frac{a}{s^2 - a^2}$

  2. $F(s) = \frac{s}{s^2 - a^2}$

  3. $F(s) = \frac{1}{s^2 - a^2}$

  4. $F(s) = \frac{s}{s^2 + a^2}$


Correct Option: A
Explanation:

The Laplace transform of $\sinh(at)$ is $\frac{a}{s^2 - a^2}$.

The Laplace transform of the function $f(t) = \cosh(at)$ is:

  1. $F(s) = \frac{s}{s^2 - a^2}$

  2. $F(s) = \frac{a}{s^2 - a^2}$

  3. $F(s) = \frac{1}{s^2 - a^2}$

  4. $F(s) = \frac{s}{s^2 + a^2}$


Correct Option: A
Explanation:

The Laplace transform of $\cosh(at)$ is $\frac{s}{s^2 - a^2}$.

The Laplace transform of the function $f(t) = t^n$ is:

  1. $F(s) = \frac{n!}{s^{n+1}}$

  2. $F(s) = \frac{n!}{s^n}$

  3. $F(s) = \frac{n!}{s^{n-1}}$

  4. $F(s) = \frac{n!}{s^{n+2}}$


Correct Option: A
Explanation:

The Laplace transform of $t^n$ is $\frac{n!}{s^{n+1}}$.

The Laplace transform of the function $f(t) = \frac{1}{t}$ is:

  1. $F(s) = \ln(s)$

  2. $F(s) = \frac{1}{s}$

  3. $F(s) = \frac{1}{s^2}$

  4. $F(s) = \frac{1}{s^3}$


Correct Option: A
Explanation:

The Laplace transform of $\frac{1}{t}$ is $\ln(s)$.

The Laplace transform of the function $f(t) = \delta(t)$ is:

  1. $F(s) = 1$

  2. $F(s) = 0$

  3. $F(s) = \infty$

  4. $F(s) = \frac{1}{s}$


Correct Option: A
Explanation:

The Laplace transform of $\delta(t)$ is $1$.

The Laplace transform of the function $f(t) = u(t - a)$ is:

  1. $F(s) = \frac{1}{s} e^{-as}$

  2. $F(s) = \frac{1}{s} e^{as}$

  3. $F(s) = e^{-as}$

  4. $F(s) = e^{as}$


Correct Option: A
Explanation:

The Laplace transform of $u(t - a)$ is $\frac{1}{s} e^{-as}$.

The Laplace transform of the function $f(t) = t u(t - a)$ is:

  1. $F(s) = \frac{1}{s^2} e^{-as}$

  2. $F(s) = \frac{1}{s^2} e^{as}$

  3. $F(s) = e^{-as}$

  4. $F(s) = e^{as}$


Correct Option: A
Explanation:

The Laplace transform of $t u(t - a)$ is $\frac{1}{s^2} e^{-as}$.

- Hide questions