0

Trapeziums and kites - class-V

Attempted 0/57 Correct 0 Score 0

Diagonals of trapezium $ABCD$ with $AB\parallel DC$ intersect each other at the point $O$. If $AB=2CD$, find the ratio of the areas of triangles $AOB$ and $COD$.

  1. $4:1$

  2. $4:3$

  3. $3:1$

  4. $4:7$


Correct Option: A
Explanation:

Given: $AB \parallel CD$ and $AB = 2 CD$
In $\triangle OAB$ and $\triangle OCD$
$\angle AOB = \angle COD$ (Vertically opposite angles)
$\angle ODC = \angle OBA$ (Alternate angles)
$\angle OCD = \angle OAB$ (Alternate angles)
thus, $\triangle OAB \cong \triangle OCD$ (AAA rule)
$\dfrac{A(\triangle OAB)}{A(\triangle OCD)} = \dfrac{AB^2}{CD^2}$ (Similar triangle Property)
$\dfrac{A(\triangle OAB)}{A(\triangle OCD)} = \dfrac{(2 CD)^2}{CD^2}$
$\dfrac{A(\triangle OAB)}{A(\triangle OCD)} = 4 : 1$

A quadrilateral which has exactly one pair of parallel sides is called as?

  1. a parallelogram

  2. a rectangle

  3. a trapezium

  4. a kite


Correct Option: C
Explanation:

$\because$ Trapezium is having exactly one pair of parallel sides

Option $C$  is correct.

If ABCD is an isosceles trapezium, $\angle{C}$ is equal to 

  1. $\angle{B}$

  2. $\angle{A}$

  3. $90^\circ$

  4. $\angle{D}$


Correct Option: D
Explanation:

If ABCD is a isosceles trapezium , $\angle C\quad will\quad be\quad equal\quad to\quad \angle D $
because angles on either side of the bases are same measure/size(congruent) in a isosceles trapezium.

Square is not a

  1. rhombus

  2. rectangle

  3. trapezium

  4. parallelogram


Correct Option: C
Explanation:

The definition of a square does not comply with the definition of a trapezoid. 

The definition of a trapezoid is a quadrilateral (a closed plane figure with 4 sides) with exactly one pair of parallel sides. 

On the other hand, a square is a very special kind of quadrilateral; 
A square is also a rectangle because it has two sets of parallel sides and four right angles. 
A square is also a parallelogram because its opposite sides are parallel. 
A square is always a rhombus. A rhombus is a quadrilateral with four congruent sides. If the rhombus has 4 right angles it may also be called a square. So every square is a rhombus.

Hence square is not a trapezium.

If angles P, Q, R and S of the quadrilateral PQRS, taken in order, are in the ratio 3:7:6:4 then PQRS is a

  1. rhombus

  2. parallelogram

  3. trapezium

  4. kite


Correct Option: C
Explanation:

Let the ABCD is a quadrilateral witch $\angle A, \angle B,\angle Cand \angle D$ in ratio  3:7:6:4

Sum of ratio 3+7+6+4=20
$\angle A+ \angle B+\angle C + \angle D=360^{0}$
$\therefore \angle A=\frac{3}{20}\times 360=54^{0}$
$\therefore \angle B=\frac{7}{20}\times 360=126^{0}$
$\therefore \angle c=\frac{6}{20}\times 360=108^{0}$
$\therefore \angle D=\frac{4}{20}\times 360=72^{0}$
Then  ABCD is a quadrilateral is trapezium

Which of the following is not an example of a trapezium ?

  1. Kite

  2. Rhombus

  3. Square

  4. Parallelogram


Correct Option: A
Explanation:

Kite has no set of parallel lines , while trapezium at least has one set of parallel lines.
Therefore, A is the correct answer.

A kite has only .................. pair of equal angles.

  1. $1$

  2. $4$

  3. $6$

  4. $3$


Correct Option: A
Explanation:

A kite is a quadrilateral which is not a parallelogram and its adjacent sides are equal which make the angles by the adjacent pairs are also equal.
Therefore, A is the correct answer.

A quadrilateral that is not a parallelogram but has exactly two equal opposite angles is a _____.

  1. rhombus

  2. trapezium

  3. square

  4. kite


Correct Option: D
Explanation:

The mentioned statement is the property of kite so correct option is D

A trapezium in which no parallel sides are equal is said to be ___________.

  1. Right trapezium

  2. Equilateral trapezium

  3. Isosceles trapezium

  4. None of these


Correct Option: C
Explanation:

Isosceles trapezium doesn't have parallel sides equal but it has a property that there is a line of symmetry bisecting one pair of opposite sides.

In a trapezium  $A B C D , A B |D C$  and  $D C = 2 A B .EF$  drawn parallel to  $AB$  cuts $AD$  in  $F$  and  $B C$  in E such that $ \dfrac { BE }{ EC } =\dfrac { 3 }{ 4 } $ Diagonal $DB $  intersects  $ EF$  at  $G$  then $7 \mathrm { FE } = 10 \mathrm { AB } .$

  1. True

  2. False


Correct Option: A

The ratio of the measures of the consecutive angles of a quadrilateral is 1:2:3:4. What type of quadrilateral is it

  1. Trapezium

  2. Kite

  3. Parallelogram

  4. Rectangle


Correct Option: A
In a kite shaped figure $ ABCD $, $ AB= AD $  and $ CB= CD $. Points $ P, Q $ and $ R $ are mid-points of sides $ AB, BC $ and $ CD $ respectively. Then, find $ \angle PQR  $
  1. $45^{\circ}$

  2. $30^{\circ}$

  3. $90^{\circ}$

  4. $60^{\circ}$


Correct Option: C
Explanation:

Given: ABCD is a kite shaped figure. $AB = AD$, $BC = CD$, P, Q< R are mid points of AB, BC and CD respectively


To Prove: $\angle PQR = 90^{\circ}$

Construction: Join AC and BD

In $\triangle ABC$

P is mid point of AB and Q is mid point of BC

Then, $PQ \parallel AC$ (By Mid point theorem)

In $\triangle BCD$

Q is mid point of BC and R is mid point of CD

Then, $QR \parallel BD$ (mid point theorem)

We know, diagonals of the Kite shaped figure, bisect at right angles.
thus, $AC \perp BD$ 

hence, $PQ \perp QR$ (Angle made between two lines is same as the angle between their corresponding parallel sides)
or $\angle PQR = 90^{\circ}$

State whether True or False:
All kites are rhombuses

  1. True

  2. False

  3. Ambiguous

  4. Data insufficient


Correct Option: B
Explanation:
Since all kites do not have equal sides.
Hence, the answer is the statement is false.

If angles P, Q, R and S of the quadrilateral PQRS taken in order are in the ratio 3 : 7 : 6 : 4 then PQRS is a

  1. rhombus

  2. parallelogram

  3. trapezium

  4. kite


Correct Option: C
Explanation:

$\Rightarrow$  $\angle P:\angle Q:\angle R:\angle S=3:7:6:4$    [ Given ]

$\Rightarrow$  Let $\angle P=3x,\,\angle Q=7x\,\angle R=6x$ and $\angle S=4x$.
$\Rightarrow$  In quadrilateral PQRS,
$\Rightarrow$  $\angle P+\angle Q+\angle R+\angle S=360^o$
$\therefore$   $3x+7x+6x+4x=360^o$
$\therefore$   $20x=360^o$
$\therefore$   $x=18^o$
$\Rightarrow$  $\angle P=3\times 18^o=54^o$
$\Rightarrow$  $\angle Q=7\times 18^o=126^o$
$\Rightarrow$  $\angle R=6\times 18^o=108^o$
$\Rightarrow$  $\angle S=4\times 18^o=72^o$
$\Rightarrow$  Now, $\angle P+\angle Q=54^o+126^o=180^o$
$\Rightarrow$  and $\angle R+\angle S=180^o+ 72^o=180^o$
$\Rightarrow$  If transversal intersects two lines in such a way that a pair of consecutive interior angles are supplementary, then the two lines are parallel.
$\therefore$    $PS\parallel QR$
$\therefore$  Quadrilateral $PQRS$ is a trapezium.

The area of a trapezium is $24{ cm }^{ 2 }$. The distance between its parallel sides is $4 cm$. If one of the parallel sides is $7 cm$. What is the measure of the other parallel side ?

  1. $5 cm$

  2. $8 cm$

  3. $12 cm$

  4. $7 cm$


Correct Option: A
Explanation:

Given that,


The area of the trapezium $A = 24c{m^2}$
Height $h = 4cm$

One of the side $a = 7cm$
Let the other side be $x$

SInce,
$A = \dfrac{1}{2} \times \left( {a + x} \right) \times h$
$24 = \dfrac{1}{2} \times \left( {7 + x} \right) \times 4$

$\dfrac{{24}}{2} = 7 + x$

$12 - 7 = x$

$x = 5$

Hence , the other side be the $5 \,cm$

If the diagonals of a quadrilateral are perpendicular to each other, the figure would always be included under the general classification:

  1. rhombus

  2. rectangle

  3. square

  4. isosceles trapezoid

  5. none of these


Correct Option: E
Explanation:

Diagonals of a square, rhombus are perpendicular but a quadrilateral with perpendicular diagonal need not be a square, rhombus. 

ABCD is a kite in which AB=AD and CB=CD, if $\angle ABD=40^{0},$ $then find \angle A+\angle C.$

  1. $220^{0}$

  2. $200^{0}$

  3. $180^{0}$

  4. $210^{0}$


Correct Option: B
Explanation:

we have,

$ABCD$ is a kite.

Then, Given that,

$ AB=AD\,\,\,\,\,.......\,\,\left( 1 \right) $

$ CB=CD\,\,\,\,\,.......\,\,\left( 2 \right) $

If $\angle ABD={{40}^{o}}$

Then, show Diagram,

$\angle ABD=\angle ADB={{40}^{o}}$

And

$ \angle ADB=\angle CBD={{40}^{o}}\,\,\left( \text{Alternate}\,\text{angle} \right) $

$ \angle ABD=\angle CDB={{40}^{o}}\,\,\,\left( \text{Alternate}\,\text{angle} \right) $

Then $\angle B+\angle D={{40}^{o}}+{{40}^{o}}+{{40}^{o}}+{{40}^{o}}={{160}^{o}}$

But, We know that,

In any quadrilateral

$ \angle A+\angle B+\angle C+\angle D={{360}^{o}} $

$ \angle A+\angle C={{360}^{o}}-{{160}^{o}} $

$ \angle A+\angle C={{200}^{o}} $

Hence, this is the answer.

$ABCD$ is trapezium with $AB||DC=30cm$ and $AB=50cm$. If $X$ and $Y$ are the mid point of $AD$ and $BC$, then $ar(DCYX)=\dfrac {5}{9}ar(XYBA)$.

  1. True

  2. False


Correct Option: B

The length of the parallel sides of a trapezium are 14 cm and 7 cm. If the length of third side is 8 cm and of fourth sides is c xm, then the number of possible integral value of x is :

  1. 12

  2. 13

  3. 14

  4. 17


Correct Option: A

A quadrilateral having one and only one pair of parallel sides is called 

  1. a parallelogram

  2. a kite

  3. a rhombus

  4. trapezoids


Correct Option: D
Explanation:

Quadrilateral with one pair of parallel sides is a trapezoid. If it has two pairs of parallel sides it is a parallelogram, but parallelograms are also trapezoids.

State 'true' or 'false'

The diagonals of a trapezium bisect each other.

  1. True

  2. False


Correct Option: B
Explanation:

False.
Diagonals of trapezium does not bisect each other.

The angles of a quadrilateral are in the ratio $3:\ 4:\ 5:\ 6$. Then the quadrilateral is a trapezium.

  1. True

  2. False


Correct Option: A
Explanation:

$Let\angle A,\angle B,\angle C\quad and\angle D\quad be\quad the\quad angles\quad of\quad quadilateral\ \angle A=3x,\angle B=4x,\angle C=5x\quad and\angle D=6x,where\quad x\quad is\quad a\quad constantIn\quad quadilateral\quad ABCD\quad \ \angle A+\angle B+\angle C+\angle D=360(Angle\quad sum\quad property)\ 3x+4x+5x+6x=360\ 18x=360\ x=20\ \angle A=3x=3\times 20=60\ \angle B=4x=4\times 20=80\ \angle C=5x=5\times 20=100\ \angle D=6x=6\times 20=120$
$In\quad quadilateral\quad ABCD\quad \ \angle A+\angle D=60+120=180\ \angle B+\angle C=80+100=180\ \therefore AB\parallel CD(Sum\quad of\quad consecutive\quad interior\quad angle\quad is\quad supplementary)\ But\quad \angle A+\angle B=60+80\neq 180\ \therefore AB\quad is\quad not\quad parallel\quad to\quad BC\ Hence\quad quadilateral\quad is\quad a\quad trapzium(as\quad it\quad has\quad only\quad one\quad pair\quad of\quad parallel\quad side)$\

If the angles A, B, C and D of a quadrilateral ABCD in the same order are in the ratio 3 : 7 : 6 : 4, then ABCD is a 

  1. parallelogram

  2. rhombus

  3. trapezium

  4. kite


Correct Option: C
Explanation:

Let angles be $3x, 7x, 6x$ and $4x$
Total sum of angles of a quadrilateral = $360^{\circ}$
$\Rightarrow 3x + 7x + 6x + 4x = 360^{\circ}$
$\Rightarrow 20x = 360^{\circ}$
$\Rightarrow x = 18^{\circ}$
$\therefore$ Angles are $ 3\, \times\, 18^{\circ} = 54^{\circ}$
 $ 7\, \times\, 18^{\circ} = 126^{\circ}$
 $ 6\, \times\, 18^{\circ} = 108^{\circ}$
 $ 4\, \times\, 18^{\circ} = 72^{\circ}$
All the angles of the figure ABCD are different, thus it is a trapezium.
Hence, option 'C' is correct.

If two parallel lines are cut by two distinct transversals, then the quadrilateral formed by these four lines will always be a:

  1. parallelogram

  2. rhombus

  3. square

  4. trapezium


Correct Option: D
Explanation:

Let $p$ and $q$ be the two parallel lines cut by two distinct transversals $l$ and $m$. The figure formed by the lines $AB, BC, CD, DA$ will always be a trapezium as at least one pair of given lines will be parallel.

The diagonals of an isosceles trapezium are

  1. unequal

  2. equal

  3. (1) and (2) both

  4. none of these


Correct Option: B
Explanation:

An isosceles trapezium have equal opposite sides. Therefore diagonals of  trapezium are equal.

If $ABCD$ is an isosceles trapezium $\displaystyle \angle C$ is equal to:

  1. $\displaystyle \angle B$

  2. $\displaystyle \angle A$

  3. $\displaystyle \angle D$

  4. Depends on the naming of the trapezium


Correct Option: D
Explanation:

$Properties\  of \ an \ isosceles\  trapezium:  $

It has a pair of parallel sides.

It has a pair of opposite sides that are congruent.

Both pairs of opposite angles are supplementary, that is they sum to $180°$.

Consecutive angles along both bases are congruent.

Diagonals are congruent.

$\therefore $In an isosceles trapezium the base angles are always equal. Hence, it depends how we name an isosceles trapezium.

The base angles of a issoceles trapezium are .....................

  1. unequal

  2. equal

  3. circular

  4. diagonals


Correct Option: B
Explanation:

If the trapezium is an isosceles trapezoid it has equal angles according to the trapezoid theorem.
Therefore, B is the correct answer.

State true or false:

Every parallelogram is a trapezium.

  1. True

  2. False


Correct Option: B
Explanation:

The pair of opposite sides of a parallelogram are equal and parallel but in the case of the trapezium, this is not true.

A quadrilateral-shaped photo-frame has all sides equal. Which of the following is not a possible shape for the photo-frame.

  1. Square

  2. Trapezium

  3. Rhombus

  4. None of these


Correct Option: B
Explanation:
A trapezium is a quadrilateral having one pair of opposite sides parallel. The other pair of opposite sides are non parallel and equal. Hence , the photo frame can be a square or a rhombus where all the sides are equal. The shape of the photo frame can not be a trapezium.

In trapezium $ABCD$ has $AD$ parallel to $BC,AC$ and $BD$ intersect at $P$. If $\dfrac {[ADP]}{[BCP]}=\dfrac {1}{2}$, find $\dfrac {[ADP]}{[ABCD]}$. (Here the notion $[P _{1}...P _{n}]$ denotes the area of the polygon ) $[P _{1}...P _{n}]$

  1. $2-\sqrt {3}$

  2. $3-2\sqrt {2}$

  3. $\sqrt {3}-\sqrt {2}$

  4. $2(\sqrt {3}-\sqrt {2})$


Correct Option: A

In trapezium $ABCD,\ \overline {AD} \parallel \overline {BC} $ and $\overline {AC} \bigcap  \overline {BD}=\left{P\right}$. If $PD=9,\ PA=5$ and $PB=7.2$ then $AC=........\ .$

  1. $4$

  2. $12$

  3. $13$

  4. $9$


Correct Option: D

Given that a right angled trapezium has an inscribed circle. then " the length of the right angled leg is the Harmonic mean of the lengths of bases. "that  statement is __

  1. True

  2. False


Correct Option: A

$ABCD$ is a trapezium with side $BC$  parallel to $AD$ . If E is midpoint of $AB$ and the line through E parallel to $DC$ meets $AD$ and $BC$ at $X$ and $Y$ respectively . these this relation is  $\left[ {ABCD} \right] = \left[ {XYCD} \right]$ . is ?

  1. True

  2. False


Correct Option: A

If $ABCD$ is a trapezium such that $AB\parallel CD$. Also $CD\bot BC$. If $\angle ADB=\theta, BC=p, CD=q$ then $AB$=?

  1. $(p^{2}+q^{2})\cos\theta/p\cos\theta+q\sin\theta$

  2. $(p^{2}+q^{2})\cos\theta/p\sin\theta+q\cos\theta$

  3. $(p^{2}+q^{2})\sin\theta/p\cos\theta+q\sin\theta$

  4. $(p^{2}+q^{2})\sin\theta/p\sin\theta+q\cos\theta$


Correct Option: A

In the case of trapezium, the ratio of its angles taken in order cannot be 

  1. 1:2:3:4

  2. 7:13::2:8

  3. 6:3:4:2

  4. 4:5:2:3


Correct Option: A

$ABCD$ is a trapezium in which $AB\parallel CD$. Which of the following is equal to $AC^{2}+BD{2}$?

  1. $AD^{2}+BC^{2}-2AB.CD$

  2. $AD^{2}+BC^{2}+2AB.CD$

  3. $AD^{2}-BC^{2}+2AB.CD$

  4. $AD^{2}-BC^{2}-2AB.CD$


Correct Option: A

In trapezium PQRS, PQ($23$cm) and RS($13$ cm) are the bases. Find the area of the trapezium if the diagonals bisect angles SPQ and PQR.

  1. $350$ $cm^2$

  2. $276$ $cm^2$

  3. $216$ $cm^2$

  4. $410$ $cm^2$


Correct Option: B

$ABCD$ is a trapezium in which $BC \parallel AD, BC=20\ cm$ and $AD=45\ cm$. If $P$ and $Q$ are the midpoints of $AB$ and $CD$ respectively, then the ratio of $ar(\Box PBCQ)$ to $ar(\triangle PQD)$ is

  1. $\dfrac{42}{13}$

  2. $\dfrac{13}{6}$

  3. $\dfrac{21}{13}$

  4. $\dfrac{13}{7}$


Correct Option: A

In trapezium $PQRS$, side $PQ\parallel SR$. Diagonals $PR$ and $QS$ intersect each other at point $M$.  $PM=3RM$ 

  1. True

  2. False


Correct Option: B

The area of a trapezium is  $385 { cm } ^ { 2 } .$  Its parallel sides are in the ratio  $3 : 4$  and the perpendicular distance between them is  $11 { cm } .$  Its longer side is

  1. $35 cm$

  2. $30 cm$

  3. $40 cm$

  4. $60 cm$


Correct Option: A

In a trapezium, the lengths of its parallel sides are $a$ and $b$. The length of the line joining the midpoints of its non-parallel sides is :

  1. $\dfrac{a-b}{2}$

  2. $\dfrac{a+b}{2}$

  3. $\dfrac{ab}{2}$

  4. $\dfrac{ab}{a+b}$


Correct Option: A

Find the height of a trapezium whose area is  $68 { cm } ^ { 2 }$  and whose bases are  $13 { cm }$  and  $26 { cm }.$

  1. $\dfrac { 15 }{ 16 } { cm }$

  2. $\dfrac { 9 }{ 8 } { cm }$

  3. $\dfrac { 10 }{ 3 } { cm }$

  4. $\dfrac { 9 }{ 5 } { cm }$


Correct Option: A

State true or false:

In trapezium $ ABCD  $, $ AB  $ is parallel to $ DC  $; $ P  $ and $ Q  $ are the mid-points of $ AD  $ and $ BC  $ respectively. $ BP $ produced meets $ CD $ produced at point $ E $. Hence, $ PQ $ is parallel to $ AB $

  1. True

  2. False


Correct Option: A
Explanation:

Given: ABCD is a trapezium. $AB \parallel DC$. P and Q are mid points of AD and BC respectively.
BP produced meets CD at E

Construction: Join BD. Draw a parallel line from P which meets BD on M such that $PM \parallel AB$ and a parallel line from Q which meets BD on N such that $QN \parallel CD$

Now, In $\triangle ADB$
P is mid point of AD and $PM \parallel AB$. Thus, M is mid point of BD.

In $\triangle BDC$
Q is mid point of BC and $QN \parallel DC$. Thus, N is mid point of BD

Hence, M and N are same points. Thus, PM or QN is a straight line, PQ
and $PQ \parallel AB \parallel DC$

State true or false:

In trapezium $ ABCD  $, $ AB $ is parallel to $ DC $;  $ P $ and $ Q  $ are the mid-points of $ AD  $ and $ BC  $ respectively. $ BP $ produced meets $ CD $ produced at point $ E $. Hence, point $ P  $ bisects, 

  1. $ BE  $

  2. $ AB  $

  3. $ BC  $

  4. none of the above


Correct Option: A
Explanation:

Given: ABCD is a trapezium. $AB \parallel DC$. P and Q are mid points of AD and BC respectively.
BP produced meets CD at E

To prove: P is mid point of BE.
In $\triangle APB$ and $\triangle EPD$
$\angle APB = \angle EPD$ (Vertically opposite angles)
$\angle EDP = \angle PAB$ (Alternate angles)
$PA = PD$ (P is mid point of AD)
Thus, $\triangle APB \cong \triangle DPE$ (ASA rule)
Hence, $PE = PB$ (By cpct)
thus, P is mid point of BE

In a trapezium ABCD, side AB is parallel to side DC; and the diagonals AC and BD intersect each other at a point
Such that:
$\displaystyle PA\times PD= PB\times PC.$

  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$ APB and $\triangle$ CPD,
$\angle APB = \angle CPD$ (Vertically opposite angles)
$\angle ABP = \angle CDP$ (Alternate angles of parallel sides AB and CD)
$\angle BAP = \angle DCP$ (Alternate angles of parallel sides AB and CD)
Hence, $\triangle APB \sim \triangle CPD$ (AAA rule)
Thus, $\frac{PA}{PC} = \frac{PB}{PD}$
$PA \times PD = PB \times PC$

State true or false:
In quadrilateral PQRS, $\angle P : \angle Q : \angle R : \angle S = 3 : 4 : 6 : 7$. The Quadrilateral PQRS is trapezium

  1. True

  2. False


Correct Option: A
Explanation:
Given in $\Box$ PQRS,$\angle P:\angle Q:\angle R:\angle S=3:4:6:7$

 Let $ \angle P=3x,\angle Q=4x,\angle R=6x,\angle S=7x$

Sum of interior angles of a quadrilateral$={ 360 }^{ o }$

So $\angle P+\angle Q+\angle R+\angle S=360^o$

$ \Rightarrow 3x+4x+6x+7x=360^o$

$ \Rightarrow 20x=360^o$

$ \Rightarrow x=\dfrac { 360 ^o}{ 20 } $

$ \Rightarrow x=18^o$

So $\angle P=3x=3\times 18^o={ 54 }^{ o }$

$\angle Q=4\times 18^o={ 72 }^{ o }$

$\angle R=6\times 18^o={ 108 }^{ o }$

$\angle S=7\times 18^o=126^{ o }$

Now  $\angle P+\angle S=54^o+126^o=180^o\quad \& \quad \angle Q+\angle R=72^o+108^o=180^o$

In  quadrilateral  PQRS,  $\angle P\& \angle S$ are supplementary  as  well  as  $\angle Q\& \angle R$  are supplementary.

This  is only possible when side PQ$\parallel$ SR ;  PS& QR are transversals &  the sum  of  interior  corresponding  angles  on  the  same side  of the  transversals  are  supplementary.

 So $PQ\parallel SR$.

Now $\angle P+\angle Q\neq 180 ^o\&  \angle S+\angle R\neq 180^o$

In quadrilateral PQRS, $\angle P\& \angle Q$ are not supplementary as well as $\angle S\& \angle R$ are not supplementary.

So QR is not parallel to SP.

So one pair of opposite sides are parallel.

None of the opposite angles are equal. 

None of the sides are given as equal.

The $\Box$ PQRS can only be a Trapezium.

State true or false:
In a trapezium $ABCD$ in which $AB$ is parallel to $DC$ and $AD= BC$, then $\angle ADC= \angle BCD$

  1. True

  2. False


Correct Option: A
Explanation:

Draw $DM\perp AB$ and $CN\perp AB$.$\triangle DAM\cong \triangle CBN$

By R.H.S. $\therefore \angle DAB= \angle CBA$.$\Rightarrow \angle ADC= \angle BCD$

If the angles $A, B, C, D$ of a quadrilateral , taken in order are in the ratio $7:13:12:8$, then $ABCD$ is:

  1. rhombus

  2. parallelogram

  3. trapezium

  4. kite


Correct Option: C
Explanation:

Let the angles be $7x, 13x, 12x$ and $8x$
Then, $7x+13x+12x+8x={360}^{o}$
$\Rightarrow$ $40x={360}^{o}$ $\Rightarrow$ $x={9}^{o}$
$\therefore$ $40x={360}^{o}$
$\therefore$ The angles taken in order are ${63}^{o}, {117}^{o}, {108}^{o}, {72}^{o}$ 
This shows that tow pairs of adjacent angles are supplementary $({63}^{o}+{117}^{o}={108}^{o}$ and ${108}^{o}+{72}^{o}={180}^{o}$), but opposite angles are not equal.
Therefore, the given quadrilateral will be a trapezium.

In a trapezium ABCD, AB || CD. If angle A = $60^{\circ}$ then angle D =?

  1. $110^{\circ}$

  2. $120^{\circ}$

  3. $70^{\circ}$

  4. $300^{\circ}$


Correct Option: B
Explanation:

AB I I CD, we have
$\angle A\, +\, \angle D\, =\, 180$ ($\because$ angles at the same side of transversal)
$\Rightarrow\, \angle D\, = 180^{\circ} - 60^{\circ} = 120^{\circ}$

Given a trapezium ABCD in which $AB||CD$ and $AD=BC$. If $\angle C=76^{\circ}$, then $\angle D$ equals

  1. $14^{\circ}$

  2. $104^{\circ}$

  3. $76^{\circ}$

  4. None of these


Correct Option: C
Explanation:

In trapezium ABCD, $AB \parallel CD$, $AD = BC$
Draw a perpendicular from A on CD to meet CD at M and a perendicular from B on CD to meet at N.
Now, in $\triangle ADM$ and $\triangle BNC$
$\angle AMD = \angle BNC$ (Each $90^o$)
$AM = BN$ (distance between parallel lines)
$AD = BC$ (Given)
Thus, $\triangle ADM \cong \triangle BCN$ (SAS rule)
Hence, $\angle D = \angle C = 76^{\circ}$ (by CPCT)

The line joining the mid points of the diagonals of a trapezium has length $3$cm. If the longer base is $97$cm then the shorter base is:

  1. $94$cm

  2. $92$cm

  3. $91$cm

  4. $90$cm


Correct Option: C
Explanation:

The line joining the mid point of the diagonals of a trapezium is half the length of the difference between the two sides.
Let the smaller side be $x$
Then, $3 = \dfrac{97 -x}{2}$
$6= 97 - x$
$x = 91$ cm

The consecutive angles of a trapezium form an arithmetic sequence. If the smallest angle is $\displaystyle 75^{\circ}$, then the largest angle is

  1. $\displaystyle 100^{\circ}$

  2. $\displaystyle 105^{\circ}$

  3. $\displaystyle 110^{\circ}$

  4. $\displaystyle 115^{\circ}$


Correct Option: B
Explanation:

Since, sum of all the four angles of a quadrilateral is $360^o$.

Angle 1 $=75^o$, Angle 2 $=75^o+x$, Angle 3 $=75^o+2x$, Angle 4 $=75^o+3x$
Angle 1 $+$ Angle 2 $+$ Angle 3 $+$ Angle 4 $=360^o$
$\therefore   75^o+75^o+x+75^o+2x+75^o+3x=360^o$
$\Rightarrow 300+6x=360\Rightarrow 6x=60 \Rightarrow x=10$
$\therefore$ Largest angle (Angle 4)$=75^o+3x=75^o+3\times 10=105^o$

Hence, option B.

In a trapezium. ABCD, $\angle ADC = 110^o$. Find $\angle A$.

  1. $50^o$

  2. $60^o$

  3. $70^o$

  4. $80^o$


Correct Option: C
Explanation:

In a trapezium,     AB || CD
$\therefore$ sum of adjacent angles $= 180^o$
$\angle D + \angle A = 180^o$
$\angle A = 180^o - \angle D = 180^o - 110^o$
$\angle A= 70^o$

In isoceles trapezoid ABCD, side CD is parallel to to side AB, line segment AC is congruent to line segment BD.The degree measure of angle BDC = $80^o$. Find the measures of the $\angle A$.

  1. $90^o$

  2. $100^o$

  3. $110^o$

  4. $120^o$


Correct Option: B
Explanation:

As per the property of isosceles trapezoid, 
Opposite sides of an isosceles trapezoid are the same length (congruent) and the angles on either side of the bases are the same size (congruent).
So, Angle C = $80^o$
Since the top and bottom angles are supplementary, we know that,
Angle A = $180 - 80$
Angle A = $100^o$
Similarly, the Angle of B = $100^o$

State whether true or false:

All trapeziums are parallelograms.

  1. True

  2. False


Correct Option: B
Explanation:

There is some disagreement whether parallelograms, which have two pairs of parallel sides, should be regarded as trapezoids. Some define a trapezoid as a quadrilateral having only one pair of parallel sides (the exclusive definition), thereby excluding parallelograms

In the trapezium PQRS, PQ is  parallel to RS and the diagonals intersect at O. If $OP.SR= m(OR . PQ)$, then the value of m is :

  1. $\dfrac{1}{4}$

  2. $\dfrac{1}{3}$

  3. $1$

  4. $\dfrac{1}{2}$


Correct Option: C
Explanation:

In Trapezium PQRS, $\Delta OPQ$ is similar to $\Delta OSR$ by AA similarity.
$\therefore \dfrac{OP}{OR}=\dfrac{OS}{OQ}=\dfrac{PQ}{SR}$
$\therefore OP.SR=OR.PQ$
Hence, $m=1$

The parallel sides of a trapezium are $x$ and $y$ in length. The length of the line segment joining the mid points of the non parallel sides is:

  1. $\dfrac{x+y}{2}$

  2. $x+y$

  3. $\dfrac{2x+3y}{2}$

  4. $\dfrac{xy}{2}$


Correct Option: A
Explanation:

The line segment joining the mid points of non parallel sides of a trapezium is the average of sum of the parallel sides.
Hence, $= \dfrac{x+y}{2}$

- Hide questions