De moivre’s theorem and its applications - class-XII
Description: de moivre’s theorem and its applications | |
Number of Questions: 38 | |
Created by: Rekha Rai | |
Tags: maths demoivre's theorem complex numbers |
If $iz^4 + 1 = 0$, then z can take the value
The product of the values of $\displaystyle{\left[ {\cos {\pi \over 3} + i\sin {\pi \over 3}} \right]^{{3 \over 4}}}$ is
Number of integral values of n for which the quantity ${n+i}^{4}$ where ${i}^{2}=-1$, is an integer is
De Moivre's theorem
$(\cos\theta +i\sin \theta )=\cos n\theta $ if n is an integer and $\cos n\theta +i \sin n\theta $ is one of the values of $(\cos\theta +i\sin\theta )^{n}$, if n is a fraction.
Corollary : The q values of ($(\cos\theta +i\sin\theta )^{\frac{1}{q}}$ are obtained from
cos $\frac{2n\pi +\theta }{q}+i\sin\frac{2n\pi +\theta }{q}$ by putting n = 0, 1, 2, ..., (q - 1).
If $a = {\mathop{\rm cis}\nolimits} \alpha ,b = cis\beta ,c = cis\gamma $ then $\dfrac{{{a^3}{b^3}}}{{{c^2}}} = $
If $a=\cos { \left( \cfrac { 8\pi }{ 11 } \right) } +i\sin { \left( \cfrac { 8\pi }{ 11 } \right) } $, then $Re(a+{a}^{2}+{a}^{3}+{a}^{4}+{a}^{5})=$
For ${ Z } _{ 1 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ 1+i\sqrt { 3 } } } $, ${ Z } _{ 2 }=\sqrt [ 6 ]{ \dfrac { 1-i }{ \sqrt { 3 } +i } } $, ${ Z } _{ 3 }=\sqrt [ 6 ]{ \dfrac { 1+i }{ \sqrt { 3 } -i } } $ which of the following holds goods?
Given z is a complex number with modulus 1. Then the equation $\left[\dfrac{(1+ia)}{(1-ia)}\right]^4$ = z has
If $\sqrt{5 - 12i} + \sqrt{-5 - 12i} = z$, then principal value of arg z can be
The value of $\displaystyle { \left( \frac { 1+i }{ \sqrt { 2 } } \right) }^{ 8 }+{ \left( \frac { 1-i }{ \sqrt { 2 } } \right) }^{ 8 }$ is equal to
The number of solutions of equation $z^{10}-z^{5}+1=0$ are
If $\displaystyle z=1+\cos \frac{2\pi }{3}+i\sin \frac{2\pi }{3}$, then
Construct an equation whose roots are $n^{th}$ powers of the roots of the equation $\displaystyle x^{2}-2x\cos \theta +1= 0.$
If $z = \left(\displaystyle\frac{\sqrt3}{2} + \displaystyle\frac{i}{2}\right)^{2009}+\left(\displaystyle\frac{\sqrt3}{2} - \displaystyle\frac{i}{2}\right)^{2009}$, then
The roots of $\displaystyle \left ( -64a^{4} \right )^{\tfrac14}$ are
The value of $(iz+z^5+z^8)$ when $z=\dfrac{\sqrt{3}+i}{2}$ is?
The value of $\displaystyle \left ( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right )^{8}$
If $z=\cos 2\theta +i\sin 2\theta $ then which is correct
Put in the form A +iB
If $z = \left(\displaystyle\frac{\sqrt3}{2}+\displaystyle\frac{i}{2}\right)^5 + \left(\displaystyle\frac{\sqrt3}{2}-\displaystyle\frac{i}{2}\right)^5,$ then
If $z + z^{-1} = 1$, then $z^{100} + z^{-100}$ is equal to
The modulus and amplitude of the complex number $[e^{3-i \tfrac{\pi}{4}}]^3$ are respectively.
If $\displaystyle\alpha =\cos { \left( \frac { 8\pi }{ 11 } \right) } +i\sin { \left( \frac { 8\pi }{ 11 } \right) } ,$ then $Re\left( \alpha +{ \alpha }^{ 2 }+{ \alpha }^{ 3 }+{ \alpha }^{ 4 }+{ \alpha }^{ 5 } \right) $ is equal to
If $x = \cos \theta + i \sin \theta$ the value of $x^n + \dfrac{1}{x^n}$ is
If $\alpha, \beta$ are the roots of the equation $u^2-2u+2=0$ and if $\cot\theta=x+1$, then $[(x+\alpha)^n-(x+\beta)^m]/[\alpha-\beta]$ is equal to
If $z _{1}$ and $\bar {z} _{1}$ represent adjacent of a regular polygon of $n$ sides with centre at the origin & if $\dfrac{Im\ z _{1}}{Re\ z _{1}}=\sqrt{2}-1$ then the value of $n$ is equal to:
What is the real part of $(\sin x + i \cos x)^{3}$ where $i = \sqrt {-1}$?
If $(\cos \theta + i \sin \theta)(\cos 2 \theta
+ i \sin 2 \theta) ... (\cos n \theta + i \sin n \theta) = 1$, then the value of $\theta$ is , $m\in N$
Statement 1: The product of all values of $(cos\alpha+i sin \alpha)^{\frac {3}{5}}$ is $cosn 3\alpha+i sin 3\alpha$.
Statement 2: The product of fifth roots of unity is 1.
If $z _1$ and $z _2$ are the complex roots of the equation $(x-3)^3+1 = 0$, then $z _1 + z _2$ equals to
If $\left ( 2+z \right )^{6}+\left ( 2-z \right )^{6}=0$ and $\omega =\dfrac{2+z}{2-z}$
Given $z$ is a complex number with modulus $1$. Then the equation $\dfrac{(1+ia)}{(1-ia)}$ = $z$ has
If n is a natural number$ \ge$ 2, such that $z^n = (z+ 1)^n$, then
For positive integers $\displaystyle n _{1}$ and $\displaystyle n _{2}$ the value of the expression $\displaystyle (1+i)^{n _{1}}+(1+i^{3})^{n _{1}}+(1+i^{5})^{n _{2}}+(1+i^{2})^{n _{2}}$ where
$\displaystyle i= \sqrt{-1}$ is a real number iff
If ${ x }^{ 6 }={ \left( 4-3i \right) }^{ 5 }$, then the product of all of its roots is (where $\displaystyle \theta =-\tan ^{ -1 }{ \frac { 3 }{ 4 } } $)
If $C _{o},C _{1},C _{2}...C _{n}$ are the Binomial coefficient in the expansion of $\left ( 1+x \right )^{n}$ then which is not correct
If $ x+\dfrac{1}{x}=2\cos \theta \ and \ y+\dfrac{1}{y}=2\cos \phi$ then which of the following is not correct?
Let $\mathrm{z}=\cos\theta+\mathrm{i}\sin\theta$. Then the value of $\displaystyle \sum _{\mathrm{m}=1}^{15}{\rm Im}(\mathrm{z}^{2\mathrm{m}-1})$ at $\theta =2^{\mathrm{o}}$ is