0

Exterior angles of polygon - class-VII

Attempted 0/41 Correct 0 Score 0

The interior angle of a regular polygon is double the exterior angle. Then the number in the polygon is 

  1. $6$

  2. $8$

  3. $9$

  4. None of these


Correct Option: A
Explanation:

Let the number of sides in the polygon is $n$

Let the measure of exterior angles be $x$ respectively.
$\therefore$   Measure of interior angle $=2x$
So,
$\Rightarrow$  $n\times 2x=(2n-4)\times 90^o$
$\Rightarrow$  $nx=(n-2)\times 90^o$               ----- ( 1 )
Again we know that,
$\Rightarrow$  $nx=360^o$
$\Rightarrow$  $(n-2)\times 90^o=360^o$               [ From ( 1 ) ]
$\Rightarrow$  $n-2=4$
$\Rightarrow$  $n=6$
$\therefore$   The number of sides in the polygon are $6.$

State true or false:
Is it possible to have a regular polygon whose each exterior angle is $\displaystyle 32^{\circ}$
  1. True

  2. False


Correct Option: B
Explanation:
Each exterior angle of regular polygon of n sides is given by $\dfrac{360}{n}$ degree
$\text{According to the question}$
$\dfrac{360}{n} degree=32^0$
$\Rightarrow n=\dfrac{360}{32}$
$\Rightarrow n=\dfrac{45}4$
$\text{Which is not possible because number of sides can never be in fraction.}$

State true or false:
Is it possible to have a regular polygon whose each exterior angle is $\displaystyle 20^{\circ}$

  1. True

  2. False


Correct Option: A
Explanation:
$\text{Each exterior angle of regular polygon of n sides is given by}\dfrac{360}{n} degree$
$\text{According to question}$
$\dfrac{360}{n} degree=20^0$
$\Rightarrow n=\dfrac{360}{20}$
$\Rightarrow n=18$
$\text{Clearly there is a polygon of sides 18 whose each exterior angle is 20}^0$

Two alternate sides of a regular polygon, when produced, meet at a right angle, then find the value of each exterior angle of the polygon.

  1. $\displaystyle 45^{\circ}$

  2. $\displaystyle 32^{\circ}$

  3. $\displaystyle 62^{\circ}$

  4. $\displaystyle 15^{\circ}$


Correct Option: A
Explanation:

$We\quad know\quad External\quad angles\quad of\quad a\quad regular\quad polygon\quad are\quad equal.$


$\ When\quad the\quad two\quad alternate\quad sides\quad of\quad a\quad regular\quad polygon\quad are\quad produced,\quad they\quad meet\quad at\quad right\quad angle.$

$\ These\quad two\quad extended\quad sides\quad form\quad a\quad triangle\quad with\quad the\quad side\quad of\quad the\quad polygon\quad in\quad between.$

$\ Sum\quad of\quad all\quad interior\quad angles\quad of\quad a\quad \triangle ={ 180 }^{ o }$

$\ \Rightarrow 2\times External\quad angle\quad +\quad { 90 }^{ o }\quad =180$

$\ \Rightarrow 2\times External\quad angle=180-90=90$

$\ \Rightarrow External\quad angle=\dfrac { 90 }{ 2 }$

$ \ \Rightarrow External\quad angle={ 45 }^{ o }
$

State true or false: 

Is it possible to have a regular polygon whose each exterior angle is 40% of a right angle.

  1. True

  2. False


Correct Option: A
Explanation:

Given, regular polygon whose each exterior angle is 40% of a right angle = $ 90^o \times \dfrac{40}{100} = 36^o $
Sum of all exterior angle of any polygon is $ 360^o $
Now,
$ 36^o \times$  number    of   angles  = $ 360^o $
The number  of  angles =$ 10 $
Any polygon have equal number of angles and sides.
Therefore the number of side of the polygon is 10.
Since the number of sides is an integer, therefore their exist a polygon whose each exterior angle is 40% of a right angle. 

State true or false.
Is it possible to have a regular polygon whose each exterior angle is $32^{\circ}$

  1. True

  2. False


Correct Option: B
Explanation:

Given, a regular polygon whose each exterior angle is $32^o $
Each exterior angle of a regular polygon = $ \dfrac {360^o}{n} $, where n = number of side
Now,
$ \dfrac {360^o}{n} = 32^o $
$=> n = \dfrac{45}{4} $
Since, n should be an integer, so it is not possible a regular polygon whose each exterior angle is $32^o $

State true or false: 
Is it possible to have a regular polygon whose each exterior angle is $80^o$
80∘

  1. True

  2. False


Correct Option: B
Explanation:

Let the number of sides of the polygon is n. (which must be an integer)
If each exterior angle is $ 80^o $, then sum of all exterior angle is $ n \times 80^o $.
And Sum of all exterior angles = $ 180^o $
$=>  n \times 80^o = 180^o $
$=> n = 1.25 $
So, it is not possible to have a regular polygon whose each exterior angle is $ 80^o $

State true or false.
Is it possible to have a regular polygon whose each exterior angle is $20^{\circ}$

  1. True

  2. False


Correct Option: A
Explanation:

Given, a regular polygon whose each exterior angle is $20^o $
Each exterior angle of a regular polygon = $ \dfrac {360^o}{n} $, where n = number of side
Now,
$ \dfrac {360^o}{n} = 20^o $
$=> n = 18 $
Since, n should be an integer, so their exist a regular polygon whose each exterior angle is $20^o $

How many sides does a regular polygon have if the measure of an exterior angle is $24^o$?

  1. $15$

  2. $12$

  3. $14$

  4. $16$


Correct Option: A

Find the measure of exterior angle of a regular polygon of 15 sides

  1. $36^o$

  2. $24^o$

  3. $48^o$

  4. none of the above


Correct Option: B
Explanation:

The sum of the exterior angles of a regular polygon is $360^o$

Number of sides of polygon $=15$
As each of the exterior angles are equal,

Exterior angle $=\dfrac{360^o}{15}=24^o$

Find the measure of exterior angle of a regular polygon of 9 sides

  1. $40^o$

  2. $60^o$

  3. $50^o$

  4. $30^o$


Correct Option: A
Explanation:

Each exterior angle of a regular polygon of 9 sides
$=\dfrac {360^o}{n}$, where $n=9=\left (\dfrac {360^o}{9}\right )^o=40^o$

If the sum of all interior angles of a convex polygon is 1440, then the number of sides of the polygon is

  1. 8

  2. 10

  3. 11

  4. 12


Correct Option: B
Explanation:

If n is the number of sides of the polygon, then $(2n -4)\times 90^o = 1440$
or 2n = 20          or          n = 10

An exterior angle of regular polygon is $\displaystyle 12^{\circ}$ the sum of all the interior angles is

  1. $\displaystyle 4040^{\circ}$

  2. $\displaystyle 5040^{\circ}$

  3. $\displaystyle 6040^{\circ}$

  4. $\displaystyle 7040^{\circ}$


Correct Option: B
Explanation:

Given the exterior angle of regular polygon is 12

We know each  exterior angle of regular polygon=$\dfrac{360}{n}$ where n is the sides of polygon
$\dfrac{360}{n}=12\Rightarrow n=30$
we know that interior angle of  regular polygon=$180(n-2)=180(30-2)=5040^{0}$

The measure of the external angle of a regular hexagon is 

  1. ${\pi/3}$

  2. ${\pi/4}$,

  3. ${\pi/6}$

  4. None


Correct Option: A
Explanation:

$\Rightarrow$ Sum of exterior angles of a regular hexagon $=360^o$

$\Rightarrow$  Number of sides of regular hexagon $=6$
$\Rightarrow$  The measure of the external angle of a regular hexagon $=\dfrac{360^o}{6}=60^o$
In radian $=60^o\times \dfrac{\pi}{180^o}=\dfrac{\pi}{3}$ 

Is it possible to have a regular polygon with measure of each exterior angle as $22^o$?

  1. not possible

  2. possible

  3. cannot be determined

  4. none of the above


Correct Option: A
Explanation:

Since the number of sides of a regular polygon
$=\dfrac {360}{\text {Exterior angle}}$
$\therefore$ The number of sides of a regular polygon
$=\dfrac {360}{22}[\because$ Exterior angle $=22^o$, given]
$=\dfrac {180}{11}$
Which is not a whole number.
$\therefore$ A regular polygon with measure of each exterior angle as $22^o$ is not possible.

The measure of the external angle of a regular octagon is 

  1. ${\pi/4}$

  2. ${\pi/6}$

  3. ${\pi/8}$

  4. ${\pi/12}$


Correct Option: A
Explanation:

$\Rightarrow$  The sum of the exterior angles of regular octagon is $360^o$.

$\Rightarrow$ Number of sides of octagon $=8$
$\Rightarrow$  The measure of the external angles $=\dfrac{360^o}{8}=45^o$
In radian $=45^o\times \dfrac{\pi}{180^o}=\dfrac{\pi}{4}$
$\therefore$  The measure of the external angle of a regular octagon is $\dfrac{\pi}{4}$

Each exterior angle of a regular hexagon is of

  1. $120^\circ$

  2. $80^\circ$

  3. $100^\circ$

  4. $60^\circ$


Correct Option: D

The exterior angle of a regular polygon is one-third of its interior angle. How many sides does the polygon has?

  1. $10$

  2. $8$

  3. $9$

  4. $13$


Correct Option: B
Explanation:

Let no of sides of the polygon is $n$ 

Exterior angle will be $\dfrac{360}{n}$
Interior angle will be $\left ( 180-\dfrac{360}{n}\right)$
Exterior angle is $\dfrac{1}{3}$ of the interior angle
$\Rightarrow \dfrac{360}{n}=\dfrac{1}{3} \left (180-\dfrac{360}{n}\right)$
$\Rightarrow n=8$

The number of sides of a regular polygon whose each exterior angle has a measure of $45^o$ is __________.

  1. $4$

  2. $6$

  3. $8$

  4. $10$


Correct Option: C
Explanation:

The exterior angle of a regular polygon is $\dfrac{360}{n}$.

Given, $45^\circ$
$\Rightarrow \dfrac{360}{n}=45$

$\Rightarrow n=8$

The measure of each exterior angle of an n-sided regular polygon is $(\dfrac{180^0}{n})$.

  1. True

  2. False


Correct Option: A

If the difference between an interior angle of a regular polygon of $\displaystyle \left ( n+1 \right )$ sides and an interior angle of a regular polygon of $n$ sides is $\displaystyle 4^{\circ}$; find the value of $n$. Also, state the difference between their exterior angles.

  1. $\displaystyle n =9$ and difference between exterior angles $\displaystyle 4^{\circ}$

  2. $\displaystyle n =5$ and difference between exterior angles $\displaystyle 22^{\circ}$

  3. $\displaystyle n =11$ and difference between exterior angles $\displaystyle 12^{\circ}$

  4. None of these


Correct Option: A
Explanation:
An interior angle of (n + 1) sided regular polygon = $ \dfrac{180^o((n+1) -2)}{(n+1)} $
An interior angle of n sided regular polygon = $ \dfrac{180^o(n-2)}{n} $
Their difference is $ 4^o $
So, $\dfrac{180^o((n+1) -2)}{(n+1)} - \dfrac{180^o(n-2)}{n}= 4^o$
$=> 45 [  \dfrac{(n-1)}{(n+1)} -  \dfrac{(n-2)}{n} ]= 1 $ 
$=> 45 \dfrac{2}{n(n+1)} = 1 $
$=> n^2 + n -90 = 0$
$=> (n-9)(n+10) = 0$
$=> n = 9, -10$ 
Since n should be a positive number. So, $n = 9$

State true or false.
Is it possible to have a regular polygon whose each exterior angle is $\displaystyle \frac{1}{8}$ of a right angle.

  1. True

  2. False


Correct Option: A
Explanation:

Given, a regular polygon whose each exterior angle is $ \dfrac{1}{8}$ of a right angle = $ \dfrac {1}{8} \times 90^o = \dfrac {45^o}{4} $
Each exterior angle of a regular polygon = $ \dfrac {360^o}{n} $, where n = number of side
Now,
$ \dfrac {360^o}{n} = \dfrac {45^o}{4}  $
$=> n = 8 $
Since, n should be an integer, so their exist a regular polygon whose each exterior angle is $ \frac{1}{8}$ of a right angle.

Three of the exterior angles of a hexagon are $40^{\circ}$, $51^{\circ}$ and $86^{\circ}$. If each of the remaining exterior angles is $x^{\circ}$, find the value of $x$.

  1. $58$

  2. $61$

  3. $65$

  4. none of the above


Correct Option: B
Explanation:

Three of the exterior angles of a hexagon are $ 40^o, 51^o$  and  $86^o $. Each of the remaining exterior angles is $ x^o $.
Sum of all exterior angle of any polygon is $ 360^o $
$ 40^o + 51^o + 86^o + 3 \times x^o = 360^o $
$ => 3 \times x^o = 183^o $
$ => x^o = 61^o $

The sides of a hexagon are produced in order. If the measures of exterior angles so obtained are $\displaystyle (6x-1)^{\circ}, (10x+2)^{\circ}, (8x+2)^{\circ}, (9x-3)^{\circ}, (5x+4)^{\circ}$ and $(12x+6)^{\circ};$. Find each exterior angle.

  1. $41^{\circ}, 62^{\circ}, 58^{\circ}, 60^{\circ}, 39^{\circ} , 90^{\circ}$

  2. $41^{\circ}, 86^{\circ}, 56^{\circ}, 60^{\circ}, 39^{\circ} , 80^{\circ}$

  3. $41^{\circ}, 72^{\circ}, 58^{\circ}, 60^{\circ}, 39^{\circ} , 90^{\circ}$

  4. $41^{\circ}, 82^{\circ}, 60^{\circ}, 60^{\circ}, 36^{\circ} , 100^{\circ}$


Correct Option: C
Explanation:

The sum of the exterior angles of any polygon is always equal to 360.
Exterior angles are 
$\displaystyle (6x-1)^{\circ}, (10x+2)^{\circ}, (8x+2)^{\circ}, (9x-3)^{\circ}, (5x+4)^{\circ}  and  (12x+6)^{\circ} $
Now, 
 $\displaystyle (6x-1)^{\circ}+ (10x+2)^{\circ}+ (8x+2)^{\circ} + (9x-3)^{\circ} + (5x+4)^{\circ} +  (12x+6)^{\circ} = 360^o $
$ => (50x + 10)^o = 360^o $
$ => x = 7 $
Each Exterior angle 
$ => (6x -1)^o = 6 \times 7 -1 =41^o $
$ => (10x +2)^o = 10 \times 7 +2 =72^o $
$ => (8x +2)^o = 8 \times 7 +2 =58^o $
$ => (9x -3)^o = 9 \times 7 -3 =60^o $
$ => (5x +4)^o = 5 \times 7 +4  =39^o $
$ => (12x +6)^o = 12 \times 7 + 6 =90^o $

Two alternate sides of a regular polygon, when produced, meet at a right angle. Find the number of sides of the polygon. 

  1. $3$

  2. $8$

  3. $2$

  4. $9$


Correct Option: B
Explanation:

In a regular polygon all the exterior angles have the same measure. 


When two alternate sides of a polygon are extended a triangle.

If AB, BC and CD are the sides of a regular polygon and AB and CD when produced meet at P forming a right triangle.

Now, in $ \triangle CPB, \angle PCB = \angle PBC = 45^o $

Therefore, exterior angle of the polygon = $ 45^o $
Exterior angle of a regular polygon = $ \dfrac {360^o}{n} $
$=> 45^o = \dfrac {360^o}{n} $
$ => n = 8 $ 
Number of sides of the polygon = $8$

State true or false:
Is it possible to have a regular polygon whose each interior angle is $\displaystyle 175^{\circ}$

  1. True

  2. False


Correct Option: A
Explanation:

Each interior angle of regular polygon of $n$ sides is given by $\dfrac{180^o(n-2)}{n}$
According to question

$\dfrac{180^o(n-2)}{n} =175^0$
$\Rightarrow 180^o(n-2)=175n$
$\Rightarrow 180n-360^o=175n$
$\Rightarrow 5n=360^o$
$\Rightarrow n=72$
Clearly there is a polygon of sides $72$ whose each interior angle is $175^0$

The sum of the interior angles of a polygon is four times the sum of its exterior angles. Find the number of sides in the polygon.

  1. $10$

  2. $12$

  3. $8$

  4. $7$


Correct Option: A
Explanation:

The sum of the interior angles of a polygon is four times the sum of its exterior angles.
The sum of the exterior angles of a polygon is always equal to $360^o$.
The sum of the interior angles of polygon = $180 (n-2)$
=> $180 (n-2) = 4 \times 360$
=> $n -2 = 8$ 
=> $n =10$ 
Number of sides in the polygon = $10$

There is a regular polygon whose each interior angle is $175^{\circ}$

State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

Given, a polygon whose each interior angles is $ 175^o $
Sum of interior angles of a polygon is =  $ 180^o (n-2) $
Each interior angle of a polygon = $ \dfrac {180^o (n-2)}{n} $
$ \dfrac {180^o (n-2)}{n}  = 175^o $
$  180^o n - 175^o n = 360^o $
$ n = \dfrac {360}{5} $
$ n = 72 $
Since, n (number of sides) is an integer, therefore there exist a polygon whose each interior angles is $ 175^o $

Find the sum of exterior angles obtained on producing, in order, the sides of a polygon with 7 sides.

  1. $360^{\circ}$

  2. $340^{\circ}$

  3. $380^{\circ}$

  4. $390^{\circ}$


Correct Option: A
Explanation:

No matter what type of polygon, the sum of the exterior angles is always equal to $360^o$.
It does not depends upon number of sides of polygon.  

How many sides does a polygon have if the sum of the measures of its internal angles is five times as large as the sum of the measures of its exterior angles?

  1. $20$

  2. $12$

  3. $15$

  4. $10$


Correct Option: B
Explanation:

Sum of measure of Interior angles of a regular polygon is calculated as,
$(n-2)180$ where,
n: Number of sides of a regular polygon.
Sum of exterior angles of a regular polygon always add up to $360^{o}$
$\therefore$ ,$(n-2)180=5(360)$
$\therefore n=12$

Two times the interior angle of a regular polygon is equal to seven times is exterior angle. Find the interior angle of the polygon and the number of sides in it.

  1. $130^{\circ}$ and n $=$ 9

  2. $140^{\circ}$ and n $=$ 9

  3. $160^{\circ}$ and n $=$ 9

  4. $170^{\circ}$ and n $=$ 9


Correct Option: B
Explanation:

Two times the interior angle of a regular polygon is equal to seven times is exterior angle.
Each Interior angle of a polygon = $ \dfrac {180^o (n-2)}{n} $
Each Exterior angle of a polygon = $ \dfrac{360^o}{n} $
Now,
$ 2 \times \dfrac {180^o (n-2)}{n} = 7 \times  \dfrac{360^o}{n}  $
$=> n -2 = 7 $
$=> n = 9 $
Number of sides of polygon is 9.
Each Interior angle of a polygon = $ \dfrac {180^o (n-2)}{n} = \dfrac {180^o (9-2)}{9} = 140^o  $

The measurement of each angle of a polygon is $160$$^o$. The number of its sides is ?

  1. $15$

  2. $18$

  3. $20$

  4. $30$


Correct Option: B
Explanation:
Given, measure of each angle of a polygon $=160^o$
Exterior angle $= 180^o -$ Interior angle
$= 180^o - 160^o = 20^o$
$\therefore$ Number of sides $= \displaystyle \frac{360^o}{\text{Exterior angle}} = \frac{360}{20} = 18$
Therefore, number of sides of polygon are $18$.

The ratio of the measure of an exterior angle of a regular $7:2$ nonagon to the measure of one of its interior angles is:

  1. $7:2$

  2. $2:7$

  3. $4:3$

  4. $3:4$


Correct Option: B
Explanation:

Let $7a$ be the interior angle

and $2a$ be the exterior angle
Therefore, $ 7a+2a=180^{0}$
$\Rightarrow 9a=180^{0}$
$\Rightarrow a=20^{0}$
So, $2a=2\times 20$
$=40^{0}$
and $7a=7\times 20$
$=140^{0}$
For a regular polygon of $n$ sides, each exterior angle has a measure of $\dfrac{360}{n}$ degrees.

The measure of each interior angle is $140^{0}$.
Since the exterior angle of each angle has measure $40^{0}$, then the number of sides $n$.
$=\dfrac{360}{n}$
$=9$ sides.

A regular polygon is inscribed in a circle. If a side subtends an angle of $30^{\circ}$ at the centre, what is the number of its sides?

  1. $10$

  2. $8$

  3. $6$

  4. $12$


Correct Option: D
Explanation:

For a polygon of 'n' sides, the angle subtended at the centre is $ \dfrac {{360}^{o}}{n} $

Given, angle at the centre $ = {30}^{o} $
$ => \dfrac {{360}^{o}}{n}= {30}^{o} $
$ => n = 12 $

Hence, the polygon has $ 12 $ sides.

Exterior angles of a regular polygon is one-third of its interior angle. Find number of sides in polygon.

  1. 10

  2. 8

  3. 6

  4. 9


Correct Option: B
Explanation:
If we take $n$ as the number of sides of polygon and $E$ be the exterior angle and $I$ be the interior angle.

$\Rightarrow$   $E+I=180^\circ$  

According to the given question we get,
$\Rightarrow$  $E=\dfrac{1}{3} I$

$\Rightarrow$  So, $I=3E$

$\therefore$  $E+3E=180^\circ$

$\Rightarrow$  $E = 45^\circ$

$\Rightarrow$  Interior angle  $=135^\circ$

$\Rightarrow$  Interior angle $=\dfrac {(n-2)\times 180}{n}$

$\Rightarrow$  $135n=180n-360$

$\Rightarrow$  $-45=-360$

$\Rightarrow$  $n=8$

$\therefore$  Number of sides in polygon are $8$.

If the interior angle of a regular polygon exceeds the exterior angle by $ \displaystyle 132^{\circ}  $, then the number of sides of the polygon is :

  1. $15$

  2. $14$

  3. $13$

  4. $12$


Correct Option: A
Explanation:

Let the number of sides in the regular polygon be $n$

Thus each interior angle $=$ $\dfrac{(2n-4)\times 90^{\circ}}{n}$
And each exterior angle $=\dfrac{360^{\circ}}{n}$
Lets go according to question:
Therefore, $  \dfrac{(2n-4)\times 90^{\circ}}{n}-\dfrac{360^{\circ}}{n}=132^{\circ}$
$\Rightarrow 180n-360-360=132n$
$\Rightarrow 48n=720$
$\Rightarrow n=\dfrac{720}{48}=15$

Let the  formula relation the exterior angle and number of sides of a polygon be given as $nA = 360$.
The measure $A$, in degrees, of an exterior angle of a regular polygon is related to the number of sides, $n$, of the polygon by the formula above. If the measure of an exterior angle of a regular polygon is greater than $50$, what is the greatest number of sides it can have?

  1. 5

  2. 6

  3. 7

  4. 8


Correct Option: C
Explanation:

Sum of exterior angles for any polynomial is always $360$. 

Since polynomial has $n$ angles, each with exterior angle is $A$, then 
sum of exterior angles will be $nA$ 
Given, $nA = 360$ 
$\therefore A=\dfrac { 360 }{ n }$  
We are given that: $A > 50$ 
$\Rightarrow \dfrac { 360 }{ n } >50$ 
$\Rightarrow 360 > 50n$ 
$\Rightarrow n<\dfrac { 360 }{ 50 }$  
$\Rightarrow n < 7.2$ 
Hence, the greatest number of angles polygon can have is $7$.

If $B$ the exterior angle of a regular polygon of $n-sides$ and $A$ is any constant then $\cos A + \cos (A + B) + \cos (A + 2B) + .... n$ terms is equal to:

  1. $0$

  2. $\cos A$

  3. $1$

  4. $\dfrac {\sqrt {3}}{2}$


Correct Option: A
Explanation:
The sum of exterior angles of a polygon is $ 2\pi$ or $ 360^{\circ}$

If it is a regular polygon

Exterior Angles $ = \dfrac{2\pi}{n} $ 

n is no of sides

According to question

$ B = \dfrac{2\pi}{n}.$

$ \cos A + \cos (A+B) + \cos (A+2B)+ ...n+ terms $

$ = \cos A + \cos\left ( A + \dfrac{2 \pi}{n} \right )+ \cos \left ( A+2 \left ( \dfrac{2\pi}{n} \right ) \right )+...+ \cos \left ( A+ (n-2) \dfrac{2\pi}{n} \right ) + \cos \left ( A+(n-1) \dfrac{2\pi}{n} \right )$

$ \cos A+ \cos \left ( A+\dfrac{2\pi}{n} \right ) + \cos \left ( A+2 \left ( \dfrac{2\pi}{n} \right ) \right )+ ...+ \cos \left ( A+n \left ( \dfrac{2\pi}{n} \right )-2\left ( \dfrac{2\pi}{n} \right )\right ) + \cos \left ( A+n \left ( \dfrac{2\pi}{n} \right )-\dfrac{2\pi}{n}\right )$

$ = \cos A + \cos \left ( A +\dfrac{2\pi}{n} \right )+ \cos \left ( A+2 \left ( \dfrac{2\pi}{n} \right ) \right ) + ...+ \cos \left ( A+2\pi -2\left ( \dfrac{2\pi}{n} \right ) \right ) + \cos \left ( A + 2\pi- \dfrac{2\pi}{n} \right )$

$ = \cos A + \cos \left ( A+\dfrac{2\pi}{n} \right )+ \cos \left ( A+2\left ( \dfrac{2\pi}{n} \right ) \right ) + ...+ \cos\left ( A-2 \left ( \dfrac{2\pi}{n} \right ) \right )+ cos \left ( A - \dfrac{2\pi}{n} \right )$

$ \left \{ \because \cos (2\pi - \theta) = \cos \theta \right \}$

$ = \cos A + \cos (A) \, \cos \left ( \dfrac{2\pi}{n} \right )- \sin(A) . \sin\left ( \dfrac{2\pi}{n} \right )+ \cos A. \cos \dfrac{4\pi}{n}- \sin A $

$ \sin \dfrac{4\pi}{n}+ ...+ \cos A. \cos \dfrac{4\pi}{n}+ \sin A\, \sin \dfrac{4\pi}{n} + \cos A. \cos \dfrac{2\pi}{n} + \sin A . \sin \dfrac{\pi}{n}$

$ = \cos\,A + \cos\,A. \cos\dfrac{2\pi}{n}+ \cos A \,\cos\dfrac{4\pi}{n} + ... \cos A\, \cos \dfrac{4 \pi}{n} + \cos A.\cos \dfrac{2\pi}{n}.$

$ = \cos A \left \{ 1+ \cos\dfrac{2\pi}{n} + \cos \dfrac{4\pi}{n}+ ... \cos\dfrac{4\pi}{n}+ \cos\dfrac{2\pi}{n} \right \}$

$ = \cos A (1-1)$

$ =0 $

Which one of the following statements is not correct?

  1. if the exterior angle of a regular polygon is $30$ it has $12$ sides

  2. if the interior and exterior angles of a regular polygon are all equal, it is a rectangle

  3. if the exterior angle of a regular polygon is greater than its interior angle, it is an equilateral triangle

  4. in a regular pentagon, the exterior angle is half of the interior angle


Correct Option: D
Explanation:

A) Exterior angle of m-gon$=\cfrac { (m180)-(m-2)180 }{ m } $

If $m=12$, 
$\Longrightarrow $ Exterior angle$=30$.
Therefore A is correct.

B) If ABCD is a rectangle,
Interior$=$Exterior angle$={ 90 }^{ 0 }$ .
Therefore B is correct.

C) In equilateral triangle exterior angle ($120$)$>$ interior angle$60$.
Whereas in others it is less than or equal to interior angle.
Therefore C is true.

D) Exterior angle of pentagon$=72$.
Interior angle of pentagon$=108$.
Exterior angle $\neq \cfrac { 1 }{ 2 } $interior angle.
Therefore D is incorrect.

The sum of the exterior angles of a hexagon is?

  1. $360^{\circ}$

  2. $540^{\circ}$

  3. $720^{\circ}$

  4. none of these


Correct Option: A
Explanation:

Number of sides in hexagon $=6$
Sum of the interior angles of a polygon$=(n-2)\pi$
$n(Interior\ Angle)=(n-2)\pi$
$\Rightarrow $ Interior Angle $= \dfrac{4}{6}\pi$

Interior Angle $= 120^\circ$
Exterior Angle $=180- $Interior Angle
$\Rightarrow$ Exterior angle $=60^\circ$
Sum of Exterior angle $=6 \times$ Exterior Angle $=360^\circ$

How many sides does a regular polygon have if the measure of an exterior angle is $24^{0}$?

  1. $14$

  2. $13$

  3. $15$

  4. $18$


Correct Option: C
Explanation:

Here, let the number of sides of the polygon be $n$ 

So, the number of exterior angles is $n$ 
Since it is a regular polygon, each exterior angles are equal to one another.
$ \therefore$ The sum of the exterior angles $={ 360 }^{ o }$
$ \therefore$  Each angle $=\theta =\dfrac { { 360 }^{ o } }{ n }$ 
$\Longrightarrow n=\dfrac { { 360 }^{ o } }{ \theta  } $ 
Here $\theta ={ 24 }^{ o } $ 
$ \therefore  n=\dfrac { { 360 }^{ o } }{ { 24 }^{ o } } =15$
Hence, the answer is $15$.

- Hide questions