0

Composition of ratios - class-XII

Description: composition of ratios
Number of Questions: 95
Created by:
Tags: ratio and proportion maths ratio and proportions
Attempted 0/95 Correct 0 Score 0

The reciprocal of $\dfrac {-5}{13}$ is _____

  1. $\dfrac {5}{13}$

  2. $\dfrac {-13}{5}$

  3. $\dfrac {13}{5}$

  4. $\dfrac {-5}{13}$


Correct Option: B
Explanation:
The reciprocal (also known as the multiplicative inverse) is the number we have to multiply to get an answer equal to the multiplicative number with recipocal of it is 1.
Then $\frac{-5}{13}\times \frac{-13}{5}=1$.
So recipocal of $\frac{-5}{13}$ is $\frac{-13}{5}$.
So answer is (B) $\frac{-13}{5}$.

 

The subtriplicate ratio of $a : b$ is ____

  1. $a^{2} : b^{2}$

  2. $a^{3} : b^{3}$

  3. $\sqrt {a} : \sqrt {b}$

  4. $\sqrt [3]{a} : \sqrt [3]{b}$


Correct Option: D
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b} = (a)^{\frac {1}{3}} : (b)^{\frac {1}{3}}$

If $\dfrac {y}{x-z}=\dfrac{y+x}{z}=\dfrac{x}{y}$ then find $x:y:z$

  1. $1:2:3$

  2. $3:2:1$

  3. $4:2:3$

  4. $2:4:7$


Correct Option: C
Explanation:


$ \dfrac{y}{x-z}=\dfrac{y+x}{z}=\dfrac{x}{y} $

 

Now,

$ \dfrac{y}{x-z}=\dfrac{x}{y} $

$ {{y}^{2}}={{x}^{2}}-xz\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ......(1) $

 

And

$ \dfrac{y+x}{z}=\dfrac{x}{y} $

$ {{y}^{2}}+xy=xz\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ......(2) $

$ {{x}^{2}}-xz+xy=xz $

$ x-z+y=z $

$ 2z=x+y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ......(3) $

 

$ And $

$ \dfrac{y}{x-z}=\dfrac{y+x}{z} $

$ yz=xy-yz+{{x}^{2}}-xz $

$ 2yz=xy+{{x}^{2}}-xz $

$ 2yz=x\left( y+x \right)-xz $                    [From equation (3)]

$ 2yz=2xz-xz $

$ 2yz=xz $

$ 2y=x $

$ \dfrac{x}{y}=\dfrac{2}{1}\,\,\,\,\,\,\,\,......\,\,\left( 4 \right) $


Substituting this value in equation (3), we get

$ 2z=2y+y $

$ 2z=3y $

$ \dfrac{y}{z}=\dfrac{2}{3}\,\,\,\,\,......\,\,\left( 5 \right) $


By equation (4) and (5), we get

$ x:y:z=4:2:3 .$


Hence, this is the answer.

If $\left( {p - q} \right)\,:\left( {q - x} \right)\,$ be the duplicate ratio of $p:q$, then : $\dfrac{1}{p} + \dfrac{1}{q} = \dfrac{1}{x}$

  1. True

  2. False


Correct Option: A
Explanation:
$\left(p-x\right):\left(q-x\right)$ is the duplicate ratio of $p:q$

we know,
 if $a^2 : b^2$ is the duplicate  ratio of $a : b$
         now a/c to question,
$(p -x) : (q - x)$ is the duplicate ratio of $p : q$ 
so, from above rule,
$(p -x ) : (q - x ) = p^2 : q^2$


So,$\dfrac{{p}^{2}}{{q}^{2}}=\dfrac{p-x}{q-x}$

$\Rightarrow\,\dfrac{q-x}{{q}^{2}}=\dfrac{p-x}{{p}^{2}}$

$\Rightarrow\,\dfrac{q}{{q}^{2}}-\dfrac{x}{{q}^{2}}=\dfrac{p}{{p}^{2}}-\dfrac{x}{{p}^{2}}$

$\Rightarrow\,\dfrac{1}{q}-\dfrac{x}{{q}^{2}}=\dfrac{1}{p}-\dfrac{x}{{p}^{2}}$

$\Rightarrow\,\dfrac{1}{q}-\dfrac{1}{p}=\dfrac{x}{{q}^{2}}-\dfrac{x}{{p}^{2}}$

$\Rightarrow\,\dfrac{p-q}{pq}=\dfrac{x\left({p}^{2}-{q}^{2}\right)}{{p}^{2}{q}^{2}}$

$\Rightarrow\,p-q=\dfrac{x\left(p-q\right)\left(p+q\right)}{pq}$

$\Rightarrow\,1=\dfrac{x\left(p+q\right)}{pq}$

$\Rightarrow\,\dfrac{1}{x}=\dfrac{\left(p+q\right)}{pq}$

$\Rightarrow\,\dfrac{1}{x}=\dfrac{1}{q}+\dfrac{1}{p}$

$\therefore\,\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{x}$

Hence the given statement is true.

If $2x=3y$ and $4y=5z$, then $x:z=$

  1. $4:3$

  2. $8:15$

  3. $3:4$

  4. $15:8$


Correct Option: D
Explanation:

Given,

$2x=3y$

or, $\dfrac{x}{y}=\dfrac{3}{2}$.....(1).

Again 

$4y=5z$

or, $\dfrac{y}{z}=\dfrac{5}{4}$.....(2).

Now multiplying (4) and (5) we get,

$\dfrac xy \times \dfrac yz=\dfrac 32 \times \dfrac 54$

$\dfrac{x}{z}=\dfrac{15}{8}$

or, $x:z=15:8$

If $\cfrac{a}{2}=\cfrac{b}{3}=\cfrac{c}{4}$, then $a:b:c=$

  1. $2:3:4$

  2. $4:3:2$

  3. $3:2:4$

  4. None of these


Correct Option: A
Explanation:

Given, $\displaystyle \frac{a}{2} = \frac{b}{3} = \frac{c}{4}$


Lets take $\displaystyle \frac{a}{2} = \frac{b}{3} = \frac{c}{4} = k$


So, $\dfrac{a}{2}  = k$

$a = 2k$

$\dfrac{b}{3}  = k$

$b = 3k$

$\dfrac{c}{4} = k$

$c = 4k$

i.e., $a : b: c = 2k : 3k : 4k$

$a : b; c = 2 : 3 : 4$  

If $a:b=3:4$, then $4a:3b=$

  1. $4:3$

  2. $3:4$

  3. $1:1$

  4. None of these


Correct Option: C
Explanation:

Given $a:b=3:4$

or, $\dfrac{a}{b}=\dfrac{3}{4}$
or, $4a={3b}$.....(1).
Now,
$\dfrac{4a}{3b}$
$=\dfrac{3b}{3b}$ [ Using (1)]
$=\dfrac{1}{1}$.
So $4a:3b=1:1$.

What is the compounded ratio of $x : y, y : z$ and $z : w$

  1. $y : w$

  2. $x : w$

  3. $y : z$

  4. $x : z$


Correct Option: B
Explanation:

By the defination of compound ratio these ratio can be expressed as
$\dfrac {x}{y} \times \dfrac {y}{z}\times \dfrac {z}{w} = \dfrac {x}{w}$
Hence $x : w$

If $a:b=5:7$ and $b:c=6:11$, then $a:b:c=$

  1. $35:49:66$

  2. $30:42:77$

  3. $30:42:55$

  4. None of these


Correct Option: B
Explanation:

$\dfrac{a}{b} = \dfrac{5}{7} $       $\dfrac{b}{c} = \dfrac{6}{11}$


$\left.\begin{matrix} a = \dfrac{5}{7} b \end{matrix}\right|\begin{matrix} c = \dfrac{11 b}{6} \end{matrix}$

$a : b : c$

$\dfrac{5}{7} b : b : \dfrac{11b}{6}$

$\dfrac{5}{7} : 1 : \dfrac{11}{6}$

L.C.M of $7, 6$ is $42$

$\dfrac{5}{7} \times 42 : 42 \times 1 : \dfrac{11}{6} \times 42$

$5 \times 6 : 42 : 11 \times 7$

$30 : 42 : 77$

The compounded ratio of (2 : 3), (6 : 11), and (11 : 2) is

  1. 1:2

  2. 2:1

  3. 11:24

  4. 36:121


Correct Option: B
Explanation:

Required compounded ratio $\displaystyle=\frac{2}{3}\times\frac{6}{11}\times\frac{11}{2}=2:1$

Find the compounded ratio of $(x^{2} - y^{2}) : (x^{2} + y^{2})$ and $(x^{4} - y^{4}) : (x + y)^{4}$

  1. $(x - y)^{3} : (x + y)^{3}$

  2. $(x + y)^{2} : (x^{2} - y^{2})$

  3. $1 : 1$

  4. $(x - y)^{2} : (x + y)^{2}$


Correct Option: D
Explanation:

By the definition of compounded ratio these ratio can be expressed as
$\dfrac {(x^{2} - y^{2})}{(x^{2} + y^{2})} \times \dfrac {(x^{4} - y^{4})}{(x + y)^{4}}$
$\dfrac {(x^{2} - y^{2})}{(x^{2} + y^{2})} \times \dfrac {(x^{2} - y^{2})(x^{2} + y^{2})}{(x + y)^{4}}$
$= \dfrac {(x^{2} - y^{2})^{2}}{(x + y)^{4}}$
$= \dfrac {[(x - y) (x + y)]^{2}}{(x + y)^{4}}$
$= \dfrac {(x - y)^{2}}{(x + y)^{2}}$
Hence $(x - y)^{2} : (x + y)^{2}$

If $2a=3b=4c$, then $a:b:c=$

  1. $2:3:4$

  2. $3:4:6$

  3. $4:3:2$

  4. $6:4:3$


Correct Option: D
Explanation:

Given, 

$2a=3b=4c$

Now dividing both sides with LCM of $2,3,4$ i.e. $12$ we get,

$\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}$

So $a:b:c=6:4:3$

If $\cfrac{1}{a}:\cfrac{1}{b}:\cfrac{1}{c}=3:4:5$ then $a:b:c$

  1. $5:4:3$

  2. $20:15:12$

  3. $9:12:15$

  4. $12:15:20$


Correct Option: B
Explanation:

Given, $\displaystyle \frac{1}{a} : \frac{1}{b} : \frac{1}{c} = 3 : 4 : 5$


As, $\dfrac{1}{a} = 3$      So, $\dfrac{1}{3} = a$,


$\dfrac{1}{b} = 4$            So,  $\dfrac{1}{4} = b$,


$\dfrac{1}{c} = 5$             So, $\dfrac{1}{5} = c$


i.e., a : b : c = $\displaystyle \frac{1}{3} : \frac{1}{4} : \frac{1}{5}$

LCM of $3, 4$ and $5$ is $60$

So, multiply with $60$

We get, $\displaystyle \frac{60}{3} : \frac{60}{4} : \frac{60}{5}$

$= 20 : 15 : 12$

Find the compounded ratio of $4 : 5, 10 : 6$ and $3 : 5$

  1. $4 : 5$

  2. $3 : 5$

  3. $2 : 3$

  4. $9 : 11$


Correct Option: A
Explanation:

By the defination of compound ratio $4 : 5, 10 : 6$ and $3 : 5$ can be expressed as
$\dfrac {4}{5}\times \dfrac {10}{6} \times \dfrac {3}{5} = \dfrac {4}{5}$
Hence $4 : 5$

What is the compounded ratio of $3 : 5, 7 : 9$ and $15 : 28$

  1. $1 ; 4$

  2. $5 : 7$

  3. $9 : 8$

  4. $3 : 7$


Correct Option: A
Explanation:

By the defination of compound ratio these ratio can be expressed as
$\dfrac {3}{5}\times \dfrac {7}{9}\times \dfrac {15}{28} = \dfrac {1}{4}$
Hence $1 : 4$

Find the compounded ratio of $5 : 7, 12 : 8$ and $13 : 6$

  1. $65 : 28$

  2. $39 : 12$

  3. $5 : 8$

  4. $6 : 7$


Correct Option: A
Explanation:

By the defination of compound ratio $5 : 7, 12 : 8$ and $13 : 6$ can be expressed as
$\dfrac {5}{7}\times \dfrac {12}{8}\times \dfrac {13}{6} = \dfrac {65}{28}$
Hence $65 : 28$

What is the compounded ratio of $9 : 27$ and $4 : 12$

  1. $3 : 11$

  2. $2 : 11$

  3. $1 : 9$

  4. $2 : 9$


Correct Option: C
Explanation:

By the defination of compound ratio $9 : 27$ and $4 : 12$ can be expressed as
$\dfrac {9}{27} \times \dfrac {4}{12} = \dfrac {1}{9}$
Hence $1 : 9$

Find the compounded ratio of $\dfrac{3}{5}, \dfrac{7}{8}$ and $\dfrac{5}{10}$

  1. $\dfrac{21}{80}$

  2. $\dfrac{21}{10}$

  3. $\dfrac{80}{27}$

  4. $\dfrac{5}{11}$


Correct Option: A
Explanation:

let be $ a=\dfrac{3}{5}, b=\dfrac{7}{8}, c=\dfrac{5}{10}$
therefore the $ratio=a\times b\times c=\dfrac{3\times 7\times 5}{5\times 8\times 10}=\dfrac{21}{80}$

Find the compounded ratio of $5 : 7, 14 : 10$ and $2 : 3$

  1. $2 : 3$

  2. $3 : 5$

  3. $7 : 8$

  4. $9 : 11$


Correct Option: A
Explanation:

By the defination of compound ratio $5 : 7, 14 : 10$ and $2 : 3$ can be expressed as
$\dfrac {5}{7} \times \dfrac {14}{10}\times \dfrac {2}{3} = \dfrac {2}{3}$
Hence $2 : 3$

Find the compounded ratio of $l : m, m : n$ and $n : o$

  1. $l : n$

  2. $n : m$

  3. $l : o$

  4. $l : m$


Correct Option: C
Explanation:

By the defination of compound ratio $l : m, m : n$ and $n : o$ can be expressed as
$\dfrac {l}{m}\times \dfrac {m}{n} \times \dfrac {n}{o} = \dfrac {l}{o}$
Hence $l : o$

Find the compounded ratio of $18 : 9, 16 : 13$ and $6 : 9$

  1. $3 : 17$

  2. $5 : 8$

  3. $3 : 5$

  4. $64 : 39$


Correct Option: D
Explanation:

By the defination of compound ratio $18 : 9, 16 : 13$ and $6 : 9$ can be expressed as
$\dfrac {18}{9}\times \dfrac {16}{13}\times \dfrac {6}{9} = \dfrac {64}{39}$
Hence $64 : 39$

Find the compounded ratio of $2 : 3$ and $5 : 7$

  1. $14 : 15$

  2. $6 : 35$

  3. $41 : 32$

  4. $10 : 21$


Correct Option: D
Explanation:

By the defination of compound ratio $2 : 3$ and $5 : 7$ can be expressed as
$\dfrac {2}{3}\times \dfrac {5}{7} = \dfrac {10}{21}$
Hence $10 : 21$

What is the compounded ratio of $10 : 30$ and $60 : 80$

  1. $5 : 12$

  2. $12 : 9$

  3. $1 : 4$

  4. $5 : 8$


Correct Option: C
Explanation:

By the defination of compound ratio $10 : 30$ and $60 : 80$
$\dfrac {10}{30}\times \dfrac {60}{80} = \dfrac {1}{4}$
Hence $1 : 4$.

_____ is the duplicate ratio of $3a : 4b$

  1. $9a : 16b$

  2. $\sqrt {3a} : \sqrt {4b}$

  3. $3a^{2} : 4b^{2}$

  4. $9a^{2} : 16b^{2}$


Correct Option: D
Explanation:

The duplicate ratio of $a : b$ is $b : a$
$\therefore$ The duplicate ratio of $3a : 4b$ is $(3a)^{2} : (4b)^{2} = 9a^{2} : 16b^{2}$

_____ is the duplicate ratio of $\sqrt {2} : \sqrt {3}$

  1. $\sqrt {3} : \sqrt {2}$

  2. $4 : 9$

  3. $2 : 3$

  4. $\sqrt {6} : \sqrt {3}$


Correct Option: C
Explanation:

The duplicate ratio of $a : b$ is $b : a$
$\therefore$ The duplicate ratio of $\sqrt {2} : \sqrt {3}$ is $(\sqrt {2})^{2} : (\sqrt {3})^{2} = 2 : 3$

______ is the duplicate ratio of $5 : 7$

  1. $25 : 49$

  2. $35 : 7$

  3. $\sqrt {5} : \sqrt {7}$

  4. $125 : 343$


Correct Option: A
Explanation:

The duplicate ratio of $a : b$ is $a^{2} : b^{2}$.
$\therefore$ The duplicate ratio of $5 : 7$ is $5^{2} : 7^{2} = 25 : 49$

_____ is the duplicate ratio of $\dfrac {x}{2} : \dfrac {y}{3}$

  1. $\dfrac {x}{4} : \dfrac {y}{9}$

  2. $\dfrac {x^{2}}{4} : \dfrac {y^{2}}{9}$

  3. $\dfrac {2}{x} : \dfrac {3}{y}$

  4. $\sqrt {\dfrac {x}{2}} : \sqrt {\dfrac {y}{3}}$


Correct Option: B
Explanation:

The duplicate ratio of $a : b$ is $b : a$
$\therefore$ The duplicate ratio of $\dfrac {x}{2} : \dfrac {y}{3}$ is $\left (\dfrac {x}{2}\right )^{2} : \left (\dfrac {y}{3}\right )^{2} = \dfrac {x^{2}}{4} : \dfrac {y^{2}}{9}$

The triplicate ratio of $2 : 5$ is ____

  1. $8 : 125$

  2. $4 : 25$

  3. $\sqrt [3]{2} : \sqrt [3]{5}$

  4. $5 : 2$


Correct Option: A
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $2 : 5$ is $2^{3} : 5^{3} = 8 : 125$.

The duplicate ratio of $2\sqrt {2} : 3\sqrt {5}$ is _____

  1. $8 : 45$

  2. $16 : 250$

  3. $4 : 15$

  4. $16 : 45$


Correct Option: A
Explanation:

The duplicate ratio of $a : b$ is $a^{2} : b^{2}$
$\therefore$ The duplicate ratio of $2\sqrt {2} : 3\sqrt {5}$ is $(2\sqrt {2})^{2} : (3\sqrt {5})^{2} = 8 : 45$

What is the compound ratio of $\dfrac{6}{9}, \dfrac{15}{30}$ and $\dfrac{2}{6}$

  1. $\dfrac{1}{9}$

  2. $\dfrac{1}{3}$

  3. $\dfrac{5}{18}$

  4. $\dfrac{6}{13}$


Correct Option: A
Explanation:
let the $a=\dfrac{6}{9}  , b=\dfrac{15}{30} ,  c=\dfrac{2}{6}$
now,
$a\times b\times c=\dfrac{6\times 15\times 2}{9\times 30\times 6}=\dfrac{1}{9}$

The triplicate ratio of $a^{3} : b^{3}$ is _____

  1. $a : b$

  2. $a^{2} : b^{2}$

  3. $a^{3} : b^{3}$

  4. $a^{9} : b^{9}$


Correct Option: D
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $a^{3} : b^{3}$ is $(a^{3})^{3} : (b^{3})^{3} = a^{9} : b^{9}$

The triplicate ratio of $4 : 7$ is _____

  1. $49 : 16$

  2. $64 : 243$

  3. $16 : 49$

  4. $\sqrt [3]{4} : \sqrt [3]{7}$


Correct Option: B
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $4 : 7$ is $4^{3} : 7^{3} = 64 : 243$

What is the compounded ratio of $(a - b) : (a + b), (a - b)^{2} : (a + b)^{2}$ and $(a + b)^{3} : (a - b)^{3}$

  1. $8 : 9$

  2. $5 : 7$

  3. $1 : 1$

  4. $3 : 5$


Correct Option: C
Explanation:

By the defination of compound ratio these ratio can be expressed as
$\dfrac {a - b}{a + b}\times \dfrac {(a - b)^{2}}{(a + b)^{2}} \times \dfrac {(a + b)^{3}}{(a - b)^{3}} = \dfrac {1}{1}$
Hence, $1 : 1$.

The triplicate ratio of $\sqrt [3]{9} : \sqrt {8}$ is ____

  1. $9 : 16$

  2. $9 : 16\sqrt {2}$

  3. $9 : 8$

  4. $3 : 2$


Correct Option: B
Explanation:

$\sqrt [3]{9} : \sqrt {8} = (9)^{\dfrac {1}{3}} : (8)^{\dfrac {1}{2}}$
The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $\sqrt [3]{9} : \sqrt {8}$ is $[(9)^{\dfrac {1}{3}}]^{3} : [(8)^{\dfrac {1}{2}}]^{3}$
$= 9 : (2\sqrt {2})^{3}$
$= 9 : 8(\sqrt {2})^{3}$
$= 9 : 16\sqrt {2}$.

The sub-duplicate ratio of $25 m^{2} : 49 n^{2}$ is _____

  1. $49 m^{2} : 25 n^{2}$

  2. $25 m : 49 n$

  3. $7m : 5n$

  4. $5m : 7n$


Correct Option: D
Explanation:

The subduplicate ratio of a:ba:b

The sub-duplicate ratio of $9a^{2}b^{2} : 16r^{2} s^{2}$ is _____

  1. $3a : 4r$

  2. $4ab : 3rs$

  3. $3ab : 4rs$

  4. $3b : 4s$


Correct Option: C
Explanation:

The sub-duplicate ratio of $x : y$ is $\sqrt {x} : \sqrt {y}$
$\therefore$ The subduplicate ratio of $9a^{2}b^{2} : 16r^{2}s^{2}$ is $\sqrt {9a^{2}b^{2}} : \sqrt {16r^{2}s^{2}}$
$= 3ab : 4rs$

The subduplicate ration of $a^{4} : b^{4}$ is _____

  1. $a : b$

  2. $a^{2} : b^{2}$

  3. $a^{3} : b^{3}$

  4. $a^{8} : b^{8}$


Correct Option: B
Explanation:

The subduplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$
$\therefore$ The subduplicate ratio of $a^{4} : b^{4}$ is $\sqrt {a^{4}} : \sqrt {b^{4}} = a^{2} : b^{2}$

The sub-duplicate ratio of $\dfrac {1}{25} : \dfrac {1}{64}$ is _____

  1. $\dfrac {1}{5} : \dfrac {1}{8}$

  2. $5 : 4$

  3. $\dfrac {1}{125} : \dfrac {1}{252}$

  4. $1 : 1$


Correct Option: A
Explanation:

The subduplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$
$\therefore$ The subduplicate ratio of $\dfrac {1}{25} : \dfrac {1}{64}$ is $\sqrt {\dfrac {1}{25}} : \sqrt {\dfrac {1}{64}} = \dfrac {1}{5} : \dfrac {1}{8}$

The triplicate ratio of $\sqrt [3]{b^{2}} : \sqrt [3]{a^{2}}$ is _____

  1. $b^{2} : a^{2}$

  2. $a : b$

  3. $b^{3} : a^{3}$

  4. $a^{2} : b^{2}$


Correct Option: A
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $\sqrt [3]{b^{2}} : \sqrt [3]{a^{2}}$ is $(\sqrt [3]{b^{2}})^{3} : (\sqrt [3]{a^{2}})^{3} = b^{2} : a^{2}$.

The sub-duplicate ratio of $9 : 16$ is _____

  1. $3 : 4$

  2. $81 : 256$

  3. $4 : 3$

  4. $\sqrt {3} : \sqrt {4}$


Correct Option: A
Explanation:

The sub-duplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$.
$\therefore$ The subduplicate ratio of $9 : 16$ is $\sqrt {9} : \sqrt {16} = 3 : 4$

The triplicate ratio of $a^{2} : b^{2}$ is _____

  1. $\sqrt [3]{a^{2}} : \sqrt [3]{b^{2}}$

  2. $a^{3} : b^{3}$

  3. $a^{6} : b^{6}$

  4. $a^{9} : b^{9}$


Correct Option: C
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $a^{2} : b^{2}$ is $(a^{2})^{3} : (b^{2})^{3} = a^{6} : b^{6}$.

The triplicate ratio of $ab^{\frac {2}{3}} : a^{\frac {2}{3}}b$ is _____

  1. $1 : 1$

  2. $ab : 1$

  3. $a^{3}b^{2} : a^{2}b^{3}$

  4. $a : b$


Correct Option: D
Explanation:

The triplicate ratio of $ab^{\frac {2}{3}} : a^{\frac {2}{3}} b$ is $(ab^{\frac {2}{3}})^{3} : (a^{\frac {2}{3}}b)^{3}$
$= a^{3} \cdot b^{2} : a^{2}b^{3}$
$a^{3}b^{2} : a^{2}b^{3} = \dfrac {a^{3}b^{2}}{a^{2}b^{3}} = \dfrac {a}{b}$

______ is the triplicate ratio of $\dfrac {x}{2} : \sqrt [3]{x}$

  1. $\dfrac {x^{3}}{8} : x^{3}$

  2. $8 : x$

  3. $x^{3} : 8$

  4. $x^{2} : 8$


Correct Option: D
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $\dfrac {x}{2} : \sqrt [3]{x}$ is $\left (\dfrac {x}{2}\right )^{3} : \left (\sqrt [3]{x}\right )^{3} = \dfrac {x^{3}}{8} : x = \dfrac {x^{2}}{8}$
$\therefore x^{2} : 8$.

_____ is the subduplicate ratio of $49 : 169$

  1. $9 : 16$

  2. $7 : 13$

  3. $13 : 7$

  4. $169 : 49$


Correct Option: B
Explanation:

The subduplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$
$\therefore$ The subduplicate ratio of $49 : 169$ is $\sqrt {49} : \sqrt {169} = 7 : 13$

The subtriplicate ratio of $125y^{3} : 1000z^{6}$ is ____

  1. $5y : 10z^{3}$

  2. $5y : 10z^{2}$

  3. $1000z^{6} : 125y^{3}$

  4. $10^{3} : 5y$


Correct Option: B
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$.
$\therefore$ The subtriplicate ratio of $125y^{3} : 1000z^{6}$ is $\sqrt [3]{125y^{3}} : \sqrt [3]{1000z^{6}} = 5y : 10z^{2}$.

The subtriplicate ratio of $8x^{3} : y^{3}$ is ____

  1. $2x : y$

  2. $4x : y$

  3. $8x : y$

  4. $y^{3} : 8x^{3}$


Correct Option: A
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$.
$\therefore$ the subtriplicate ratio of $8x^{3} : y^{3}$ is $\sqrt [3]{8x^{3}} : \sqrt [3]{y^{3}} = 2x : y$

The subtriplicate ratio of $64m^{6} : 27n^{3}$ is ____

  1. $27n^{3} : 64 m^{6}$

  2. $4m : 3n$

  3. $4m^{2} : 3n$

  4. $4m^{3} : 3n$


Correct Option: C
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $64 m^{6} : 27 n^{3}$ is $\sqrt [3]{64m^{6}} : \sqrt [3]{27n^{3}}$
$= 4m^{2} : 3n$

_____ is the subduplicate ratio of $121 : 100$

  1. $121^{2} : 100^{2}$

  2. $100 : 121$

  3. $10 : 11$

  4. $11 : 10$


Correct Option: D
Explanation:

The subduplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$
$\therefore$ The subduplicate ratio of $121 : 100$ is $\sqrt {121} : \sqrt {100} = 11 : 10$

_____ is the sub-duplicate ratio of $\dfrac {1}{46} : \dfrac {1}{36}$

  1. $\dfrac {1}{4} : \dfrac {1}{6}$

  2. $\dfrac {1}{2} : \dfrac {1}{6}$

  3. $\dfrac {1}{6} : \dfrac {1}{2}$

  4. $\dfrac {1}{16} : \dfrac {1}{216}$


Correct Option: B
Explanation:

The subduplicate ratio of $\dfrac {1}{4} : \dfrac {1}{36}$ is $\sqrt {\dfrac {1}{4}} : \sqrt {\dfrac {1}{36}} = \dfrac {1}{2} : \dfrac {1}{6}$

The subduplicate ratio of $x^{4} : y^{4}$ is _____

  1. $y^{4} : x^{4}$

  2. $x^{4} : y^{4}$

  3. $x^{2} : y^{2}$

  4. $x : y$


Correct Option: C
Explanation:

The subduplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$
$\therefore$ The subduplicate ratio of $x^{4} : y^{4}$ is $\sqrt {x^{4}} : \sqrt {y^{4}} = x^{2} : y^{2}$.

_____ is the subduplicate ratio of $x^{4} : y^{2}$

  1. $x : \sqrt {y}$

  2. $x^{2} : y^{2}$

  3. $x^{2} : y$

  4. $x : y$


Correct Option: C
Explanation:

The subduplicate ratio of $x^{4} : y^{2}$ is $\sqrt {x^{4}} : \sqrt {y^{2}} = x^{2} : y$

The subtriplicate ratio of $27 : 125$ is _____

  1. $3 : 25$

  2. $3 : 5$

  3. $9 : 25$

  4. $27^{3} : 125^{3}$


Correct Option: B
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $27 : 125$ is $\sqrt [3]{27} : \sqrt [3]{125} = 3 : 5$.

The subtriplicate ratio of $a^{3} : b^{3}$ is ____

  1. $a^{2} : b^{2}$

  2. $a^{3} : b^{3}$

  3. $a^{6} : b^{6}$

  4. $a : b$


Correct Option: D
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $a^{3} : b^{3}$ is $\sqrt [3]{a^{3}} : \sqrt [3]{b^{3}} = a : b$.

What is the reciprocal ratio of $39 : 41$?

  1. $41 : 47$

  2. $53 : 51$

  3. $41 : 39$

  4. Not determined


Correct Option: C
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $39 : 41$ is $41 : 39$

If $a : b = 1 : 1$ and $b : c = 81 : 24$, then the subtriplicate ratio of $a : c$ is ____

  1. $1 : 24$

  2. $3 : 2$

  3. $2 : 3$

  4. $24 : 81$


Correct Option: B
Explanation:

$a : b = 1 : 1$ and $b : c = 81 : 24$
$\therefore \dfrac {a}{b} \times \dfrac {b}{c} = \dfrac {1}{1} \times \dfrac {81}{24} = \dfrac {27}{8}$
$\therefore a : c = 27 : 8$
$\therefore$ The subtriplicate ratio of $27 : 8$ is $\sqrt [3]{27} : \sqrt [3]{8} = 3 : 2$

The subtriplicate ratio of $4913 : 2744$ is ____

  1. $2744 : 4913$

  2. $17 : 14$

  3. $14 : 17$

  4. $23 : 29$


Correct Option: B
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $4913 : 2744$ is $\sqrt [3]{4913} : \sqrt [3]{2744} = 17 : 14$

The subtriplicate ratio of $\sqrt {x} : \sqrt {y}$ is ____

  1. $x^{\frac {1}{9}} : y^{\frac {1}{9}}$

  2. $\sqrt {y} : \sqrt {x}$

  3. $x^{\frac {1}{3}} : y^{\frac {1}{6}}$

  4. $x^{\frac {1}{6}} : y^{\frac {1}{6}}$


Correct Option: D
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $\sqrt {x} : \sqrt {y} = x^{\cfrac {1}{2}} : y^{\frac {1}{2}}$ is $(x^{\cfrac {1}{2}})^{\cfrac {1}{3}} : (y^{\cfrac {1}{2}})^{\cfrac {1}{3}}$
$= x^{\cfrac {1}{6}} : y^{\cfrac {1}{6}}$

_____ is the subtriplicate ratio of $64 : 729$

  1. $729 : 64$

  2. $16 : 81$

  3. $4 : 9$

  4. $2 : 3$


Correct Option: C
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$.
$\therefore$ The subtriplicate ratio of $64 : 729$ is $\sqrt [3]{64} = \sqrt [3]{729} = \sqrt [3]{(4)^{3}} : \sqrt [3]{(9)^{3}} = 4 : 9$.

The sub-triplicate ratio of $3 : 81$ is ____

  1. $81 : 3$

  2. $\sqrt {3} : 3$

  3. $1 : 3$

  4. $\sqrt {3} : 9$


Correct Option: C
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
Now, $3 : 81 = \dfrac {3}{81} = \dfrac {1}{27} = 1 : 27$
$\therefore$ The subtriplicate ratio of $1 : 27$ is $\sqrt [3]{1} : \sqrt [3]{27} = 1 : 3$

What is the reciprocal ratio of $4 : 9$

  1. $9 : 4$

  2. $16 : 18$

  3. $8 : 18$

  4. $81 : 16$


Correct Option: A
Explanation:

The reciprocal ratio of a:ba:b.

____ is the subtriplicate ratio of $216 : 1331$

  1. $8 : 11$

  2. $6 : 13$

  3. $6 : 12$

  4. $6 : 11$


Correct Option: D
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$.
$\therefore$ The subtriplicate ratio of $216 : 1331$ is $\sqrt [3]{216} : \sqrt [3]{1331} = \sqrt [3]{(6)^{3}} : \sqrt [3]{(11)^{3}}$
$= 6 : 11$

_____ is the subtriplicate ratio of $2 : 3$

  1. $\sqrt [3]{2} : \sqrt [3]{3}$

  2. $2 : 3$

  3. $3 : 2$

  4. $\sqrt {2} : \sqrt {3}$


Correct Option: A
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $2 : 3$ is $\sqrt [3]{2} : \sqrt [3]{3}$.

What is the reciprocal ratio of $2 : 3$

  1. $4 : 9$

  2. $3 : 2$

  3. $9 : 4$

  4. $6 : 4$


Correct Option: B
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $2 : 3$ is $3 : 2$

What is the reciprocal ratio of $9x^{2} : 11x^{2}$?

  1. $11x^{2} : 9x^{2}$

  2. $121x^{2} : 81x^{2}$

  3. $22x^{2} : 18x^{2}$

  4. $81x^{2} : 12x^{2}$


Correct Option: A
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $9x^{2} : 11x^{2}$ is $11x^{2} : 9x^{2}$

The reciprocal ratio of $217 : 218$ is ____

  1. $2 : 8$

  2. $217 : 218$

  3. $218 : 217$

  4. $\sqrt {217} : \sqrt {218}$


Correct Option: C
Explanation:

The reciprocal ratio of a:ba:b.

What is the reciprocal ratio of $121x^{3} : 25x^{3}$

  1. $25x^{3} : 121x^{3}$

  2. $5x^{3} : 11x^{3}$

  3. $11x^{3} : 5x^{3}$

  4. $25x^{2} : 121x^{2}$


Correct Option: A
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $121x^{3} : 25x^{3}$ is $25x^{3} : 121x^{3}$

What is the reciprocal ratio of $81 : 121$?

  1. $8 : 12$

  2. $11 : 9$

  3. $9 : 11$

  4. $121 : 81$


Correct Option: D
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $81 : 121$ is $121 : 81$.

What is the reciprocal ratio of $8 : 15$?

  1. $225 : 64$

  2. $16 : 30$

  3. $64 : 225$

  4. $15 : 8$


Correct Option: D
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $8 : 15$ is $15 : 8$

What is the reciprocal ratio of $(x - 5) : (x - 7)$

  1. $(x + 5) : (x + 7)$

  2. $(x + 7) : (x + 5)$

  3. $(x + 14) : (x + 28)$

  4. $(x - 7) : (x - 5)$


Correct Option: D
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $(x - 5) : (x - 7)$ is $(x - 7) : (x - 5)$

What is the reciprocal ratio of $(x + 12) : (x + 21)$?

  1. $(x + 21) : (x + 12)$

  2. $(x + 24) : (x + 42)$

  3. $(x + 6) : (x + 10)$

  4. $(x + 42) : (x + 24)$


Correct Option: A
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $(x + 12) : (x + 21)$ is $(x + 21) : (x + 12)$

The ratio compound of $2:3$ and sub-duplicate ratio of $4:9$ is __________.

  1. $16:81$

  2. $4:9$

  3. $2:1$

  4. $12:81$


Correct Option: B
Explanation:

we have to find the ratio compound of $2:3$ and sub-duplicate ratio of $4:9$ 

The duplicate ratio of $a:b$ is also called compound ratio of $a:b$ and is equal to $a^{2}:b^{2}$
 Similarly, sub-duplicate ratio of  $a:b$ is $\sqrt{a}:\sqrt{b}$  
Therefore compound ratio of $2:3=4:9$ 
Sub-duplicate ratio of $4:9=\sqrt{4}:\sqrt{9}=2:3$
 Ratio compound =$\left ( \dfrac{4/9}{2/3} \right )^{2}=4:9$

What is the reciprocal ratio of $21 : 31$?

  1. $42 : 62$

  2. $62 : 42$

  3. $35 : 37$

  4. $31 : 21$


Correct Option: D
Explanation:

The reciprocal ratio of $a : b$ is $b : a$
$\therefore$ reciprocal ratio of $21 : 31$ is $31 : 21$

The value of $x : y$ is _____, if $(4x + 7y) : (5x - y)$ is the duplicate ratio of $5 : 1$

  1. $32 : 121$

  2. $25 : 1$

  3. $1 : 5$

  4. $1 : 25$


Correct Option: A
Explanation:

$(4x + 7y) : (5x - y)$ is the duplicate ratio of $5 : 1$.
Also, the duplicate ratio of $5 : 1$ is $25 : 1$.
$\therefore \dfrac {4x + 7y}{5x - y} = \dfrac {25}{1}\Rightarrow 4x + 7y = 125x - 25y$
$\therefore 125x - 4x = 7y + 25y$
$\therefore 121x = 32y$
$\therefore \dfrac {x}{y} = \dfrac {32}{121}$
$\therefore x : y = 32 : 121$

If $(x + y) : (x - y)$ is equal to the duplicate ratio of $3 : 1$, then $x : y = $ _____

  1. $1 : 3$

  2. $4 : 5$

  3. $5 : 4$

  4. $3 : 1$


Correct Option: C
Explanation:

The duplicate ratio of $a : b$ is $a^{2}:b^{2}$
$\therefore$ The duplicate ratio of $3 : 1$ is $9 : 1$.
$\therefore \dfrac {x + y}{x - y} = \dfrac {9}{1}$
$\therefore x + y = 9x - 9y$
$\therefore y + 9y = 9x - x$
$\therefore 10y = 8x$
$\therefore \dfrac {x}{y} = \dfrac {10}{8} = \dfrac {5}{4}$
$\therefore x : y = 5 : 4$.

The value of $x$ is ____ if $(3x + 1) : (5x - 4)$ is the duplicate ratio of $5 : 6$

  1. $2$

  2. $4$

  3. $8$

  4. $6$


Correct Option: C
Explanation:

$(3x + 1) : (5x - 4)$ is the duplicate ratio of $5 : 6$.
Also, the duplicate ratio of $5 : 6$ is $5^{2} : 6^{2} = 25 : 36$
$\therefore \dfrac {3x + 1}{5x - 4} = \dfrac {25}{36}$
$\therefore 108 x + 36 = 125x - 100$
$\therefore 125x - 108x = 36 + 100$
$\therefore 17x = 136$
$\therefore x = \dfrac {136}{17} = 8$

The duplicate ratio of $\dfrac {1}{6} : \dfrac {1}{5}$ is ____

  1. $36 : 25$

  2. $\dfrac {1}{5} : \dfrac {1}{6}$

  3. $25 : 36$

  4. $30 : 15$


Correct Option: C
Explanation:

The duplicate ratio of $a : b$ is $a^{2} : b^{2}$
$\therefore$ The duplicate ratio of $\dfrac {1}{6} : \dfrac {1}{5}$ is $\left (\dfrac {1}{6}\right )^{2} : \left (\dfrac {1}{5}\right )^{2} = \left (\dfrac {1}{36}\right ) : \left (\dfrac {1}{25}\right )$
$= \dfrac {\dfrac {1}{36}}{\dfrac {1}{25}} = \dfrac {25}{36}$.

If $x : y = 4 : 9$ and $y : z = 3 : 8$, then the duplicate ratio of $x : z$ is ____

  1. $16 : 64$

  2. $9 : 64$

  3. $16 : 81$

  4. $1 : 36$


Correct Option: D
Explanation:

$x : y = 4 : 9$
$y : z = 3 : 8$
$\therefore \dfrac {x}{y} \times \dfrac {y}{z} = \dfrac {4}{9}\times \dfrac {3}{8}$
$\therefore \dfrac {x}{z} = \dfrac {1}{6}\Rightarrow x : z = 1 : 6$
$\therefore$ The duplicate ratio of $x : z$ is $(1)^{2} : (6)^{2} = 1 : 36$.

If $a : b = 2 : 3$ and $b : c = 9 : 8$ then the duplicate ratio of $a : c$ is ____

  1. $9 : 16$

  2. $4 : 9$

  3. $81 : 64$

  4. $4 : 64$


Correct Option: A
Explanation:

$a : b = 2 : 3$
$b : c = 9 : 8$
$\therefore \dfrac {a}{b} \times \dfrac {b}{c} = \dfrac {2}{3} \times \dfrac {9}{8}$
$\therefore \dfrac {a}{c} = \dfrac {3}{4} \Rightarrow a : c = 3 : 4$.
$\therefore$ The duplicate ratio of $3 : 4$ is $3^{2} : 4^{2} = 9 : 16$

One year ago the ratio between Laxman's and Gopal's salary was $3:4$. The ratio of their individual salaries between last year's and this year's salaries are $4:5$ and $2:3$ respectively. At present the total of their salary is $Rs. 4160$. At present, the salary of Laxman, is _______.

  1. $Rs. 1040$

  2. $Rs. 1600$

  3. $Rs. 2560$

  4. $Rs. 3120$


Correct Option: B
Explanation:

Let the salaries of Laxman and Gopal one year before be ${L} _{1} \; & \; {G} _{1}$ respectively and now be ${L} _{2} \; & \;  {G} _{2}$ respectively.

Therefore, as given:-
$\cfrac{{L} _{1}}{{G} _{1}} = \cfrac{3}{4} \; \longrightarrow {eq}^{n} (i)$
$\cfrac{{L} _{1}}{{L} _{2}} = \cfrac{4}{5} \; \longrightarrow {eq}^{n} (ii)$
$\cfrac{{G} _{1}}{{G} _{2}} = \cfrac{2}{3} \; \longrightarrow {eq}^{n} (iii)$
${L} _{2} + {G} _{2} = 4160 \; \longrightarrow {eq}^{n} (iv)$
From ${eq}^{n} \; (ii) \; & \; (iii)$, we get
${L} _{1} = \cfrac{4}{5} {L} _{2} \; & \; {G} _{1} = \cfrac{2}{3} {G} _{2}$
On putting the value of ${L} _{1} \; & \; {G} _{1} \; in \; {eq}^{n} (i)$, we get
$\cfrac{\cfrac{4}{5} {L} _{2}}{\cfrac{2}{3} {G} _{2}} = \cfrac{3}{4}$
$\Rightarrow \cfrac{12 {L} _{2}}{10 {G} _{2}} = \cfrac{3}{4}$
$\Rightarrow \cfrac{{L} _{2}}{{G} _{2}} = \cfrac{5}{8}$
$\Rightarrow {G} _{2} = \cfrac{8}{5} {L} _{2} \; \longrightarrow {eq}^{n} {v}$
On solving ${eq}^{n} (iv) \; & \; (v)$, we get
${L} _{2} + \cfrac{8}{5} {L} _{2} = 4160$
$\Rightarrow \cfrac{13}{5} {L} _{2} = 4160$
$\Rightarrow {L} _{2} = 4160 \times \cfrac{5}{13} = 1600$
Hence, the salary of Laxman, at present, is Rs.1600

If $(4x + 3) : (9x + 10)$ is the triplicate ratio of $3 : 4$, then the value of x is ___

  1. $6$

  2. $12$

  3. $5$

  4. $4$


Correct Option: A
Explanation:

The triplicate ratio of $3 : 4$ is $3^{3} : 4^{3} = 27 : 64$
$\therefore \dfrac {4x + 3}{9x + 10} = \dfrac {27}{64}$
$\Rightarrow 256x + 192 = 243x + 270$
$\Rightarrow 256x - 243x = 270 - 192$
$\Rightarrow 13x = 78$
$\Rightarrow x = \dfrac {78}{13} = 6$
$\Rightarrow x = 6$

If $(5x + 3) : (3x + 1)$ is the triplicate ratio of $4 : 3$, then $x =$ _____

  1. $57$

  2. $17$

  3. $\dfrac {17}{57}$

  4. $4$


Correct Option: C
Explanation:

The triplicate ratio of $4 : 3$ is $4^{3} : 3^{3}$
$\therefore \dfrac {5x + 3}{3x + 1} = \dfrac {64}{27}$
$\Rightarrow 135x + 81 = 192x + 64$
$\Rightarrow 192x - 135x = 81 - 64$
$\Rightarrow 57x = 17$
$\therefore x = \dfrac {17}{57}$

If $x : y = 2 : 5, y : z = 15 : 8$ and $z : w = 3 : 2$, then find the triplicate ratio of $x : w$

  1. $\sqrt [3]{9} : \sqrt [3]{8}$

  2. $3 : 4$

  3. $729 : 512$

  4. $81 : 64$


Correct Option: C
Explanation:

$x : y = 2 : 5, y : z = 15 : 8, z : w = 3 : 2$
$\therefore \dfrac {x}{y}\times \dfrac {y}{z}\times \dfrac {z}{w} = \dfrac {2}{5} \times \dfrac {15}{8}\times \dfrac {3}{2} = \dfrac {9}{8}$
$\therefore x : w = 9 : 8$
$\therefore$ The triplicate ratio of $9 : 8$ is $9^{3} : 8^{3} = 729 : 512$

The subduplicate ratio of $9 : 1$ is $(x + y) : (x - y)$. Then $x : y =$ _____

  1. $2 : 1$

  2. $1 : 2$

  3. $4 : 3$

  4. $6 : 4$


Correct Option: A
Explanation:

The subduplicate ratio of $9 : 1$ is $\sqrt {9} : \sqrt {1} = 3 : 1$
$\therefore \dfrac {x + y}{x - y} = \dfrac {3}{1} \Rightarrow x + y = 3x - 3y$
$\Rightarrow 2x = 4y \Rightarrow \dfrac {x}{y} = \dfrac {4}{2} = \dfrac {2}{1}$

The value of $x$ is ____ if $(x - 4) : (x + 2)$ is the triplicate ratio of $1 : 2$

  1. $\dfrac {34}{7}$

  2. $\dfrac {7}{34}$

  3. $\dfrac {30}{7}$

  4. $\dfrac {7}{30}$


Correct Option: A
Explanation:

The triplicate ratio of $1 : 2$ is $1^{3} : 2^{3} = 1 : 8$
$\therefore \dfrac {x - 4}{x + 2} = \dfrac {1}{8}\Rightarrow 8x - 32 = x + 2$
$\Rightarrow 8x - x = 2 + 32$
$\Rightarrow 7x = 34$
$\Rightarrow x = \dfrac {34}{7}$

The triplicate ratio of $(x + y)^{\frac {2}{3}} : (x - y)^{\frac {2}{3}}$ is _____

  1. $(x + y)^{2} : (x - y)^{2}$

  2. $(x + y) : (x - y)$

  3. $(x + y)^{3} : (x - y)^{3}$

  4. $(x + y)^{6} : (x - y)^{6}$


Correct Option: A
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $(x + y)^{\frac {2}{3}} : (x - y)^{\frac {2}{3}}$ is $[(x + y)^{\frac {2}{3}}]^{3} : [(x - y)^{\frac {2}{3}}]^{3}$
$= (x + y)^{2} : (x - y)^{2}$

The subduplicate ratio of $25x^{2} : 196y^{2}$ is _____

  1. $25x : 196 y$

  2. $x : y$

  3. $5x : 14y$

  4. $196 y^{2} : 25x^{2}$


Correct Option: C
Explanation:

The subduplicate ratio of $a : b$ is $\sqrt {a} : \sqrt {b}$
$\therefore$ The subduplicate ratio of $25x^{2} : 196y^{2}$ is $\sqrt {25x^{2}} : \sqrt {196y^{2}}$
$= 5x : 14y$.

The duplicate ratio of $\sqrt {16} : \sqrt {64}$ is ____

  1. $1 : 2$

  2. $1 : 4$

  3. $4 : 16$

  4. $2 : 1$


Correct Option: B
Explanation:

The given ratio can be simplified as $\sqrt {16} : \sqrt {64} = 4 : 8 = 1 : 2$
Now, the duplicate ratio of $a : b$ is $a^{2} : b^{2}$ and so that of $1 : 2$ is $1^{2} : 2^{2} = 1 : 4$.

The subduplicate ratio of $(x^{2} - y^{2})^{2} : (x + y)^{2}$ is _____

  1. $x^{2} - y^{2} : 1$

  2. $x - y : 1$

  3. $x + y : 1$

  4. $1 : x + y$


Correct Option: B
Explanation:

$\dfrac {(x^{2} - y^{2})^{2}}{(x + y)^{2}} = \dfrac {((x - y)(x + y))^{2}}{(x + y)^{2}} = \dfrac {(x - y)^{2}}{1}$
$\therefore$ The subduplicate ratio of $(x - y)^{2} : 1$ is $\sqrt {(x - y)^{2}} : \sqrt {1} = (x - y) : 1$.

If $x : y = 3 : 8$ and $y : z = 4 : 9$, then the triplicate ratio of $x : z$ is _____

  1. $27 : 512$

  2. $1 : 216$

  3. $64 : 729$

  4. $3 : 9$


Correct Option: B
Explanation:

$x : y = 3 : 8$ and $y : z = 4 : 9$
$\therefore \dfrac {x}{y}\times \dfrac {y}{z} = \dfrac {3}{8} \times \dfrac {4}{9} = \dfrac {1}{6}$
$\therefore x : z = 1 : 6$
$\therefore$ The triplicate ratio of $x : z$ is $x^{3} : z^{3} = (1)^{3} : (6)^{3} = 1 : 216$

If $x : y = 30 : 20$ and $y : z = 24 : 25$ then the subduplicate ratio of $x : z$ is ____

  1. $6 : 5$

  2. $36 : 25$

  3. $5 : 6$

  4. $30 : 25$


Correct Option: A
Explanation:

$x : y = 30 : 20$ and $y : z = 24 : 25$
$\therefore \dfrac {x}{y}\times \dfrac {y}{z} = \dfrac {30}{20} \times \dfrac {24}{25} = \dfrac {36}{25}$
$\therefore x : z = 36 : 25$
$\therefore$ The subduplicate ratio of $x : z$ is $\sqrt {36} : \sqrt {25} = 6 : 5$

If $x : y = 1 : 2$ and $y : z = 8 : 3$, then the reciprocal ratio of $z : x$ is ____

  1. $3 : 8$

  2. $1 : 3$

  3. $3 : 4$

  4. $4 : 3$


Correct Option: D
Explanation:

$x : y = 1 : 2$ and $y : z = 8 : 3$
$\therefore x : z = \dfrac {x}{y} \times \dfrac {y}{z} = \dfrac {1}{2} \times \dfrac {8}{3} = \dfrac {4}{3} = 4 : 3$
Now, the reciprocal ratio of $z : x$ is $x : z$
$\therefore x : z = 4 : 3$

The subtriplicate ratio of $(x^{4} - y^{4})^{3} : (x^{2} + y^{2})^{6}$ is ____

  1. $(x^{2} - y^{2}) : (x^{2} + y^{2})$

  2. $(x^{2} - y^{2}) : (x^{2} + y^{2})^{2}$

  3. $(x - y) : (x + y)$

  4. $(x^{2} + y^{2}) : xy$


Correct Option: A
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $(x^{4} - y^{4})^{3} : (x^{2} + y^{2})^{6}$ is $\sqrt [3]{(x^{4} - y^{4})^{3}} : \sqrt [3]{(x^{2} + y^{2})^{6}} = (x^{4} - y^{4}) : (x^{2} + y^{2})^{2}$
$= \dfrac {x^{4} - y^{4}}{(x^{2} + y^{2})^{2}} = \dfrac {(x^{2} - y^{2})(x^{2} + y^{2})}{(x^{2} + y^{2})^{2}}$
$= \dfrac {x^{2} - y^{2}}{x^{2} + y^{2}} = x^{2} - y^{2} : x^{2} + y^{2}$

The reciprocal ratio of $\dfrac {1}{7} : \dfrac {1}{8}$ is _____

  1. $7 : 8$

  2. $8 : 7$

  3. $1 : 56$

  4. $56 : 1$


Correct Option: A
Explanation:

The reciprocal ratio of $\dfrac {1}{a} : \dfrac {1}{b}$ is $a : b$
$\therefore$ The reciprocal ratio of $\dfrac {1}{7} : \dfrac {1}{8}$ is $7 : 8$.

If $a : b = 2 : 3$ and $b : c = 4 : 7$ then the reciprocal ratio of $a : c$ is ____

  1. $8 : 21$

  2. $21 : 8$

  3. $7 : 4$

  4. $3 : 2$


Correct Option: B
Explanation:

$a : b = 2 : 3$ and $b : c = 4 : 7$
$\therefore a : c = \dfrac {a}{b} \times \dfrac {b}{c} = \dfrac {2}{3} \times \dfrac {4}{7}$
$= \dfrac {8}{21}$
$\therefore a : c = 8 : 21$
$\therefore$ The reciprocal ratio of $a : c$ is $21 : 8$.

_____ is the subtriplicate ratio of $(a + b)^{3} : (a^{2} - b^{2})^{3}$

  1. $(a + b) : 1$

  2. $1 : (a + b)$

  3. $1 : (a - b)$

  4. $(a - b) : 1$


Correct Option: C
Explanation:

The subtriplicate ratio of $a : b$ is $\sqrt [3]{a} : \sqrt [3]{b}$
$\therefore$ The subtriplicate ratio of $(a + b)^{3} : (a^{2} - b^{2})^{3}$ is $\sqrt [3]{(a + b)^{3}} : \sqrt [3]{(a^{2} - b^{2})^{3}} = (a + b) : (a^{2} - b^{2})$
$= \dfrac {a + b}{a^{2} - b^{2}} = \dfrac {a + b}{(a - b)(a + b)} = \dfrac {1}{a - b} = 1 : (a - b)$.

- Hide questions