0

Distance between two points in space - class-XI

Attempted 0/82 Correct 0 Score 0

The distance of origin from the image of (1, 2, 3) in plane x - y + z = 5 is 

  1. $\sqrt{17}$

  2. $\sqrt{29}$

  3. $\sqrt{34}$

  4. $\sqrt{41}$


Correct Option: C
Explanation:

$P(1,2,3),$ Plane :$x-y+z=5$

$F$ is foot of perpendicular form $P$ to plane and $I$ is image,then $PF=FI$
$\therefore$ If $(x,y,z)=(r+1,-r+2,r+3)$ are foot of perpendicular.
$ \Rightarrow (r+1)-(-r+2)+r+3=5\quad \quad \Rightarrow r=1\ \therefore F=(2,1,4)\ \therefore I=(3,0,5)$
$ \therefore$ distance of $I$ from origin  $=\sqrt { { 3 }^{ 2 }+{ 0 }^{ 2 }+{ 5 }^{ 2 } } =\sqrt { 34 } $

The equation of the set of points which are equidistant from the points $(1, 2, 3)$ and $(3, 2, -1)$.

  1. $x-2z=0$

  2. $2x-z=0$

  3. $2x+y=0$

  4. $x-2y=0$


Correct Option: A
Explanation:

Let the given points be A($1,2,3$) and B($3,2,-1$) and let the point equidistant from A and B be P($x,y,z$) 

then  $PA=PB$
$\sqrt {{{(x - 1)}^2} + {{(y - 2)}^2} + {{(z - 3)}^2}}  = \sqrt {{{(x - 3)}^2} + {{(y - 2)}^2} + {{(z + 1)}^2}} $
Squaring both sides
${(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = {(x - 3)^2} + {(y - 2)^2} + {(z + 1)^2}$
${x^2} + 1 - 2x + {z^2} + 9 - 6z = {x^2} + 9 - 6x + {z^2} + 1 + 2z$
$-2x-6z+10=-6x+2z+10$
$4x-8z=0$
$x-2z=0$

If the distance between a point $P$ and the point $(1, 1, 1)$ on the line $\dfrac {x - 1}{3} = \dfrac {y - 1}{4} = \dfrac {z - 1}{12}$ is $13$, then the coordinates of $P$ are

  1. $(3, 4, 12)$

  2. $\left (\dfrac {3}{13}, \dfrac {4}{13}, \dfrac {12}{13}\right )$

  3. $(4, 5, 13)$

  4. $(40, 53, 157)$


Correct Option: C
Explanation:

Let the given points be $A(1,1,1)$

Consider,
$\dfrac{{x - 1}}{3} = \dfrac{{y - 1}}{4} = \dfrac{{z - 1}}{{12}} = \lambda $

$\begin{array}{l} x=3\lambda +1 \  \ y=4\lambda + 1\  \ z=12\lambda +1 \end{array}$

General point on the line is 
$3\lambda  + 1,\,4\lambda  + 1,\,12\lambda  + 1$

Given that,
$AP=13$ 

$\sqrt {{{\left( {3\lambda  + 1 - 1} \right)}^2} + {{\left( {\,4\lambda  + 1 - 1} \right)}^2} + {{\left( {12\lambda  + 1 - 1} \right)}^2}}  = 13$

$13\lambda =13$

$\lambda =1$

$\begin{array}{l} 3\lambda +1=4 \  \ 4\lambda +1=5 \  \ 12\lambda +1=13 \end{array}$

Therefore, required point $P$ is $(4,5,13)$.
Hence the correct option is $C$.

The x-coordinate of a point on the line joining the points $P(2,2,1)$ and $Q(5,1,-2)$ is $4$. Find its z-coordinate.

  1. $-1$

  2. $-2$

  3. $1$

  4. $2$


Correct Option: A
Explanation:

$P(2,2,1),Q(5,1,-2)$


$\therefore$ Equation of line through $P$ & $Q$,


$\cfrac { x-2 }{ 2-5 } =\cfrac { y-2 }{ 2-1 } =\cfrac { z-1 }{ 1+2 } \\ \Rightarrow \cfrac { x-2 }{ -3 } =\cfrac { y-2 }{ 1 } =\cfrac { z-1 }{ 3 } =r$

$\therefore P$ be point of line 

$\Rightarrow P\equiv (-3r+2,r+2,3r+1)$

$ \therefore -3r+2=4$ ($\because $ since x-coordinate is $4$)

$\Rightarrow r=\cfrac { -2 }{ 3 } $

$\therefore$ z-coordinate $=3r+1=-1$

The distance between (5,1,3) and the line x=3, y=7+t, z=1+t is

  1. 4

  2. 2

  3. 6

  4. 8


Correct Option: C
Explanation:

$\begin{array}{l} x=3\, \, \, ,y=7+t\, \, ,z=1+t \ A\left( { 3,7+t,1+t } \right)  \ 0.\left( { 3-5 } \right) +1\left( { 7+t-1 } \right) +1\left( { 1+t-3 } \right) =0 \ 6+t+t-2=0 \ 2t=-4 \ t=-2 \ A:\left( { 3,5,-1 } \right)  \ dis\tan  ce=\sqrt { 4+16+16 }  \ =6 \ Option\, \, C\, \, is\, \, correct\, \, answer. \end{array}$

The distance between the parallel planes given by the equations, $\vec{r}.(2\hat{i}-2\hat{j}+\hat{k})+3=0$ and $\vec{r}.(4\hat{i}-4\hat{j}+2\hat{k})+5=0$ is-

  1. $1/2$

  2. $1/3$

  3. $1/4$

  4. $1/6$


Correct Option: D
Explanation:

Planes are  $2i-2j+k+3=0,4i-4j+2k+5=0,2i-2j+k+5/2=0$

distance between them is $=\cfrac{|c _1-c _2|}{\sqrt{a^2+b^2+c^2}}\=\cfrac{|3-\cfrac{5}{2}|}{\sqrt{2^2+2^2+1^2}}=\cfrac{1}{6}$

Distance between $A(4,5,6)$ from origin $O$ is

  1. $25\sqrt3$

  2. $\sqrt {77}$

  3. $3\sqrt5$

  4. Data Insufficient


Correct Option: B
Explanation:

Origin is $O(0,0,0)$ and given point is $A(4,5,6)$

So, distance $=$ $\sqrt {(4-0)^2+(5-0)^2+(6-0)^2}$
$=\sqrt {4^2 + 5^2 + 6^2} = \sqrt {77}$

If the extremities of a diagonal of a square are $(1, -2, 3)$ and $(2, -3, 5)$, then area of the square is

  1. $6$

  2. $3$

  3. $\displaystyle \dfrac{3}{2}$

  4. $\sqrt{3}$


Correct Option: B
Explanation:

Let the extremities of the diagonal of a square be $(1,-2,3)$ and $B(2,-3,5)$.
Then $AB$ is given by $ {({1}^{2} + {1}^{2} + {2}^{2})}^{0.5} $ = $ \sqrt{6} $
Hence, length of the side $ = \sqrt {3} $
So, area of square will be $ \sqrt{3} \times \sqrt{3}  = 3$

The point equidistant from the points $(0,0,0), (1,0,0), (0,2,0)$ and $(0,0,3)$ is

  1. $(1,2,3)$

  2. $\left (\displaystyle \dfrac{1}{2},1,\dfrac{3}{2}\right)$

  3. $\left (-\displaystyle \dfrac{1}{2}, -1,-\displaystyle \dfrac{3}{2}\right)$

  4. $(1,-2,3)$


Correct Option: B
Explanation:

Equation of sphere passes through origin is given by


$x^2+y^2+z^2+ax+by+cz=0 ...(1)$

Given, it also passes through $(1,0,0),(0,2,0),0,0,3)$

$1+a=0\Rightarrow a = -1$

$4+2b=0\Rightarrow b = -2$

and $ 9+3c=0\Rightarrow c = -3$

$\therefore$the equation of the sphere becomes $x^2+y^2+z^2-x-2y-3z=0$

Comparing with $x^2+y^2+z^2+2gx+2fy+2kz+C=0$

Therefore, the point equidistant from all the given four point will be the centre of the sphere $(1)$ passing through all these points which is $\left(\dfrac{1}{2},1, \dfrac{3}{2}\right)i.e. the \  centre$.

Distance between the points $(12,4,7)$ and $(10,5,3)$ is

  1. $\sqrt{21}$

  2. $\sqrt{5}$

  3. $\sqrt{17}$

  4. none of these


Correct Option: A
Explanation:

Consider the problem,

Let the given points 
$A(12,4,7)$ and $B(10,5,3)$
So, distance between $A$ and $B$ by distance formula.
$AB=\sqrt{(10-12)^2+(5-4)^2+(3-7)^2}=\sqrt{(-2)^2+1^2+(-4)^2}$ 
$=\sqrt{4+1+16}=\sqrt{21}$
So, distance between the points $(12,4,7)$ and $(10,5,3)$ is $\sqrt{21}$ sq. units.

Find the distance between $(12,3,4)$ and $(4,5,2)$

  1. $\sqrt {72}$

  2. $\sqrt {62}$

  3. $\sqrt {64}$

  4. None of these


Correct Option: A
Explanation:

Consider the problem,

Let the given points 
$A(12,3,4)$ and $B(4,5,2)$
So, distance between $A$ and $B$ by distance formula.
$AB=\sqrt{(4-12)^2+(5-3)^2+(2-4)^2}=\sqrt{(-8)^2+2^2+(-2)^2}$ 
$=\sqrt{64+4+4}=\sqrt{72}$
So, distance between the points $(12,3,4)$ and $(4,5,2)$ is $\sqrt{72}$ sq. units.

If $O=(0,0,0),OP=5$ and the d.rs of OP are $1,2,2$ then $P _x+P _y+P _z=$

  1. $25$

  2. $\dfrac{25}{9}$

  3. $\dfrac{25}{3}$

  4. $\left(\dfrac{5}{3},\dfrac{10}{3},\dfrac{10}{3}\right)$


Correct Option: D

Find the co-ordinates of a point lying on the line $\dfrac{x -2}{3} = \dfrac{y + 3}{4} = \dfrac{z - 1}{7}$ which is at a distance $10$ units from $(2, -3, 1)$.

  1. $(32,37,71)$

  2. $(-28,-43,-69)$

  3. $(-32,-37,-71)$

  4. None of these


Correct Option: D
Explanation:
Given that the required point lies on the line $\dfrac{x-2}{3}=\dfrac{y+3}{4}=\dfrac{z-1}{7}$.

The required point is at a distance of $10$ units from $(2,-3,1)$

By option verification,

(A) Substituting the point $(32,37,71)$ 

$\implies \dfrac{32-2}{3}=\dfrac{37+3}{4}=\dfrac{71-1}{7}$

$\implies 10=10=10$

Therefore, distance is $\sqrt{(32-2)^2+(37+3)^2+(71-1)^2} =86.02$ units

Hence, $(32,37,71)$ is not the required point.

(B) Substituting the point $(-28,-43,-69)$ 

$\implies \dfrac{-28-2}{3}=\dfrac{-43+3}{4}=\dfrac{-69-1}{7}$

$\implies -10=-10=-10$

Therefore, distance is $\sqrt{(-28-2)^2+(-43+3)^2+(-69-1)^2} =86.02$ units

Hence, $(-28,-43,-69)$ is not the required point.


(C) Substituting the point $(-32,-37,-71)$ 

$\implies \dfrac{-32-2}{3}=\dfrac{-37+3}{4}=\dfrac{-71-1}{7}$

$\implies 11.3=11.3=10.28$

Therefore, distance is $\sqrt{(-32-2)^2+(-37+3)^2+(-71-1)^2} =86.57$ units

Hence, $(-32,-37,-71)$ is not the required point.

The distance between the points $(\cos \, \theta , \, \sin \, \theta) $ and $ (\sin \, \theta - \cos \, \theta)$ is 

  1. $\sqrt{3}$

  2. $\sqrt{2}$

  3. $2$

  4. $1$


Correct Option: B
Explanation:
Distance between the point $(\cos\theta, \sin\theta)$ and $(\sin\theta, -\cos\theta)$ is :
$ = \sqrt{(\sin\theta - \cos\theta)^2 + (-\cos\theta - \sin\theta)^2}$
$ = \sqrt{1 - 2 \sin\theta \cos\theta + 1 + 2 \sin\theta \cos\theta}$
$(\cos^2\theta + \sin^2\theta = 1)$
$= \sqrt{2}$
Option B is the correct answer

If the distance between a point P and the point (1, 1, 1) on the line $\frac{{x\, - \,1}}{3}\, = \,\frac{{y - \,1}}{4}\, = \,\frac{{z\, - 1}}{{12}}$ is 13, then the coordinates of P are

  1. (3, 4, 12)

  2. $\left( {\frac{3}{{13}},\,\frac{4}{{13}},\,\frac{{12}}{{13}}} \right)$

  3. (4, 5, 12)

  4. (40, 53, 157)


Correct Option: D
Explanation:

$\begin{array}{l} According\, to\, question: \ we\, have\, the\, line\, equ=\frac { { x-1 } }{ 3 } =\frac { { y-1 } }{ 4 } =\frac { { z-1 } }{ { 12 } } \, and\, point\, (P)\, is\, 13. \ Now, \ line\, of\, equ: \ \Rightarrow \frac { { x-1 } }{ 3 } =\frac { { y-1 } }{ 4 } =\frac { { z-1 } }{ { 12 } } =13 \ Now\, find\, x,y\, & \, z\, \, coordinates: \ \, \Rightarrow \frac { { x-1 } }{ 3 } =13 \ \, \, \, \, \, \, \, \therefore \, \, \, \, x=39+1=40 \ \Rightarrow \frac { { y-1 } }{ 4 } =13 \ \, \, \, \, \, \, \, \therefore \, \, y=\, 52+1=53 \ \Rightarrow \frac { { z-1 } }{ { 12 } } =13 \ \, \, \, \, \, \, \, \, \therefore \, \, z=156+1=157 \ Now,\, we\, get\, \, new\, coordinates\, of\, P:\, \, \, \left( { 40,53,157 } \right) \, \,  \ so\, that\, \, the\, correct\, option\, is\, D. \end{array}$

If the lines $\frac{x - 0}{1} =\frac{y+1}{2}=\frac{z-1}{-1}$ and $\frac{x+1}{k}=\frac{y-3}{-2}=\frac{z-2}{1}$ are at right angles, then the value of k is

  1. $5$

  2. $0$

  3. $3$

  4. $-1$


Correct Option: A
Explanation:

If $({ l } _{ 1 }{ m } _{ 1 }{ n } _{ 1 })$ and  $({ l } _{ 2 }{ m } _{ 2 }{ n } _{ 2 })$ are directions of two $\bot$ lines then,

${ l } _{ 1 }{ l } _{ 2 }+{ m } _{ 1 }{ m } _{ 2 }+n _{ 1 }{ n } _{ 2 }=0\ k-4-1=0\ k=5$

If the point $(x, y)$ is equidistant from the points $(a + b, b - a)$ and $(a - b , a + b)$, then  $bx = ay$.

  1. True

  2. False


Correct Option: A
Explanation:

If a point (x,y) is equidistant from A(a,b) and B(c,d) then,

$x = \frac{{a + c}}{2},y = \frac{{b + d}}{2}$
So,
$\begin{array}{l}x = \frac{{\left( {a + b} \right) + \left( {a - b} \right)}}{2},y = \frac{{\left( {b - a} \right) + \left( {a + b} \right)}}{2}\x = \frac{{2a}}{2},y = \frac{{2b}}{2}\x = a,y = b\end{array}$

putting values in bx=ay
Solving LHS,
b(a)=ab
Solving RHS,
a(b)=ab
As LHS=RHS the equation bx=ay is true.

The area of triangle whose vertices are $(1, 2, 3), (2, 5, -1)$ and $(-1, 1, 2)$ is

  1. $150\ sq. units$

  2. $145\ sq. units$

  3. $\sqrt {155}/2\ sq. units$

  4. $155/2\ sq. units$


Correct Option: C
Explanation:

Let the vertices of triangle are 


$A(1,2,3),B(2,5,-1)$ and $C(-1,1,2)$ 

Then, 

$\begin{array}{l} \overrightarrow { AB } =\overrightarrow { OB } -\overrightarrow { OA } =\hat { i } +3\hat { j } -4\hat { k }  \  \ \overrightarrow { AC } =\overrightarrow { OC } -\overrightarrow { OA } =-2\hat { i } -\hat { j } -\hat { k }  \end{array}$

Then, 

$\begin{array}{l} \overrightarrow { AB } \times \overrightarrow { AC } =\left| { \begin{array} { *{ 20 }{ c } }{ \hat { i }  } & { \hat { j }  } & { \hat { k }  } \ 1 & 3 & { -4 } \ { -2 } & { -1 } & { -1 } \end{array} } \right|  \  \ =-7\hat { i } +9\hat { j } +5\hat { k }  \  \ \left| { \overrightarrow { AB } \times \overrightarrow { AC }  } \right| =\sqrt { { { \left( { -7 } \right)  }^{ 2 } }+{ { \left( 9 \right)  }^{ 2 } }+{ { \left( 5 \right)  }^{ 2 } } }  \  \ =\sqrt { 49+8+25 }  \  \ =\sqrt { 155 }  \end{array}$

Area of triangle $ABC=\frac{1}{2}|\vec {AB} \times \vec {AC}|$

$=\frac{1}{2} \times \sqrt {155}$

$=\frac{\sqrt {155}}{2}$ sq. units 

The points $(10,7,0)$, $(6,6-1)$ and $(6,9,-4)$ form a 

  1. Right -angled triangle

  2. Isosceles triangle

  3. Both $(1)$ & $(2)$

  4. Equilateral triangle


Correct Option: C
Explanation:
$P(10, 7, 0),\ Q(6, 6, -1),\ R(6, 9, -4)$
$PQ=\sqrt {4^2+(-1)^2 +(-1)^2}$
$=\sqrt {16+1+1}=3\sqrt 3$
$QR=\sqrt {0^2+3^2+-3^2}$
$PR=\sqrt {4^2+2^2+(-4)^2}$
$=\sqrt {16+4+16}=6$
$PQ^2+QR^2=(3\sqrt 2)^2+(3\sqrt 2)^2=6^2=PR^2$
$\therefore \ \triangle PQR$ is a right angle $D$ of $Q,\ PQ=QR$
$\triangle PQR$ is a isoscels traingle
$(C)$ Both $(1)$ & $(2)$


The shortest distance of the point $(1,2,3)$ from ${x}^{2}+{y}^{2}=0$ is 

  1. $5$

  2. $\sqrt{5}$

  3. $2$

  4. $\sqrt{14}$


Correct Option: B
Explanation:

${x}^{2}+{y}^{2}=0$

$\therefore$ $(x,y)\equiv (0,0)$
Let  point be $\equiv (0,0,z)$
$d\equiv \sqrt { { (1-0) }^{ 2 }+{ (2-0) }^{ 2 }+{ (z-3) }^{ 2 } } =\sqrt { 1+4+{ (z-3) }^{ 2 } } \Rightarrow { (z-3) }^{ 2 }\ge 0$
${ d } _{ min }=\sqrt { 5 } $

The distance between two points $(1,1)$ and $\left( {\dfrac{{2{t^2}}}{{1 + {t^2}}},\dfrac{{{{\left( {1 - t} \right)}^2}}}{{1 + {t^2}}}} \right)$ is 

  1. 4t

  2. 3t

  3. 1

  4. none of these


Correct Option: C
Explanation:
Two point are $A(1,1)$ and $B\left(\dfrac{2t^{2}}{1+t^{2}}, \dfrac{(1+t)^{2}}{1+t^{1}}\right)$

$AB=\sqrt{\left(1-\dfrac{2t^{2}}{1+t^{2}}\right)^{2}+\left(1-\dfrac{(1-t^{2})}{1+t^{2}}\right)^{2}}$

$=\sqrt{\left(\dfrac{1+t^{2}-2t^{2}}{1+t^{2}}\right)^{2}+\left(\dfrac{1+t^{2}-1-t^{2}+2t}{1+t^{2}}\right)^{2}}$

$=\sqrt{\left(\dfrac{1-t^{2}}{1+t^{2}}\right)^{2}+\left(\dfrac{RT}{1+t^{2}}\right)^{2}}$

$=\sqrt{\dfrac{1+t^{4}-2t^{2}+4t^{2}}{(1+t^{2})^{2}}}$

$=\sqrt{\dfrac{(1+t^{2})^{2}}{(1+t^{2})^{2}}}$

$=1$

The plane passing through the point $\left(-2,-2,2\right)$ and containing the line joining the points $\left(1,1,1\right)$ and $\left(1,-1,2\right)$ makes intercepts on the coordinates axes, the sum whose lengths is ?

  1. $3$

  2. $4$

  3. $6$

  4. $12$


Correct Option: A

The points $A(1,2,3); B-(-1,-2,-1); C(2,3,2)$ and $D(4,7,6)$ form 

  1. Square

  2. Rectangle

  3. Parallelogram

  4. Rhombus


Correct Option: A

30 consider at three dimensional figure represented by $xy{z^2} = 2$, then its minimum distance from origin is 

  1. 2

  2. 4

  3. 3

  4. 1


Correct Option: B

Perpendicular distance from the origin to the line joining the points $(a\cos{\theta},a\sin{\theta})(a\cos{\theta},a\sin{\theta})$ is

  1. $2a\cos{(\theta-\phi)}$

  2. $a\cos { \left( \cfrac { \theta -\phi }{ 2 } \right) } $

  3. $4a\cos { \left( \cfrac { \theta -\phi }{ 2 } \right) } $

  4. $a\cos { \left( \cfrac { \theta +\phi }{ 2 } \right) } $


Correct Option: A

From which of the following the distance of the point $(1, 2, 3)$ is $\sqrt{10}$?

  1. Origin

  2. $x-$axis

  3. $y-$axis

  4. $z-$axis


Correct Option: C
Explanation:

The point is $P(1,2,3)$ so distance of point from $y$ axis is
${=}$ $\sqrt{{(1)}^{2} + {(3)}^{2} } $  

$=\sqrt{10}$

Hence, option C is correct.

If the sum of the squares of the distance of a point from the three coordinate axes be $36$, then its distance from the origin is

  1. $6$ units

  2. $3$ $\sqrt{2}$ units

  3. $2$ $\sqrt{3}$ units

  4. none of these


Correct Option: B
Explanation:

Let $(x, y, z)$ be the point.


Given sum of the squares of distance from point to the axes is $36$. 

$ \Rightarrow (x^2+y^2) +(y^2+z^2) + (z^2+x^2) = 36 $

$ \Rightarrow 2(x^2+y^2+z^2) = 36 \Rightarrow x^2 + y^2 + z^2 = 18  $

So the distance of the point from the origin is $ = \sqrt{x^2 + y^2 + z^2} = 3\sqrt{2}$

Hence, option B; is correct.

The perimeter of the triangle formed by the points $(1,0,0),(0,1,0),(0,0,1)$ is 

  1. $\sqrt 2 $

  2. $2\sqrt 2 $

  3. $3\sqrt 2 $

  4. $4\sqrt 2 $


Correct Option: C
Explanation:
Given points $A(1, 0, 0), B(0, 1, 0), C(0, 0, 1)$ is
$AB=\sqrt{1+1}=\sqrt{2}$
$BC=\sqrt{1+1}=\sqrt{2}$
$CA=\sqrt{1+1}=\sqrt{2}$
Perimeter of the triangle is $AB+BC+CA=\sqrt{2}+\sqrt{2}+\sqrt{2}=3\sqrt{2}$.

If the distance of a point $(a,a,a)$ from the origin is $ \sqrt { 108 } $, then the value of $a$ is

  1. $9$

  2. $6$

  3. $-9$

  4. $-6$


Correct Option: B,D
Explanation:
Distance between $(x _1,y _1)$ and $(x _2,y _2)$ is $\sqrt { { ({ x } _{ 1 }-{ x } _{ 2 }) }^{ 2 }+{ ({ y } _{ 1 }-{ y } _{ 2 }) }^{ 2 } } $
Distance between $(0,0,0)$ and $(a,a,a )$ is $\sqrt { {(a-0) }^{ 2 }+{ (a-0) }^{ 2 } +{ (a-0) }^{ 2 } } $

$\sqrt { 3\times { (a) }^{ 2 } } =\sqrt { 108 } =6\sqrt { 3 } \\ \Rightarrow a=\pm 6\\$

If the extremities of a diagonal of a square are $(1, -2, 3)$ and $(4, 2, 3)$ then the area of the square is

  1. $25$

  2. $50$

  3. $\displaystyle \frac{25}{2}$

  4. $\sqrt{50}$


Correct Option: C
Explanation:

If $a$ is the length of a side of square then the length of diagonal is given by $\sqrt{2}a$. Distance between two given  points is $\sqrt{(1-4)^2+(-2-2)^2+(3-3)^2}=5=\sqrt{2}a$. Hence the area is given by $a^2=\dfrac{25}{2}$.

The circum radius of the triangle formed by the points $(0, 0, 0)$, $(0, 0, 12)$ and $(3, 4, 0)$ is

  1. $\sqrt{156}$

  2. $13$

  3. $\displaystyle \frac { 13 }{ 2 } $

  4. $8$


Correct Option: C
Explanation:

Center of the circum circle of a right angle triangle is on the mid of the hypotenuse. 

Hence the radius is the half of the length of the hypotenuse.
$\dfrac{\sqrt{3^2+4^2+12^2}}{2}=\dfrac{13}{2}$ 

The distance between the points $P(x,\,-1)$ and $Q(3,\,2)$ is $5$ units. Find the value of $x$.

  1. $2,8$

  2. $-2,9$

  3. $1,8$

  4. $-1,7$


Correct Option: D
Explanation:

Distance=$\sqrt{(x _2-x _1)^2+(y _2-y _1)^2)}$


P$=(x _1,y _1)=(x,-1)$

Q$=(x _2,y _2)=(3,2)$

$25=(3-x)^2+(2+1)^2$

$25=(9+x^2-6x+9)$

$x^2-6x-7=0$

$x^2-7x+x-7=0$

$x(x-7)+1(x-7)=0$

$x=-1,7$

Find the coordinates of the point on the $x$-axis that is equidistant from $P(4,3,1)$ and $Q(-2,-6,-2)$.

  1. $\displaystyle \left( \frac { 3 }{ 2 } ,0,0 \right) $

  2. $\displaystyle \left( -\frac { 3 }{ 2 } ,0,0 \right) $

  3. $\displaystyle \left( 0,-\frac { 3 }{ 2 } ,0 \right) $

  4. $\displaystyle \left( 0,\frac { 3 }{ 2 } ,0 \right) $


Correct Option: B
Explanation:

Let $R(x,0,0)$ be the point on $x$-axis which is equidistant from $P(4,3,1)$ and $Q(-2,-6,-2)$

$\Rightarrow { \left( x-4 \right)  }^{ 2 }+{ \left( -3 \right)  }^{ 2 }+{ \left( -1 \right)  }^{ 2 }={ \left( x+2 \right)  }^{ 2 }+{ 6 }^{ 2 }+{ 2 }^{ 2 }$ gives $-12x=18$ 
So $x=-1.5$ 
Hence, $\displaystyle  R\equiv \left( -\frac { 3 }{ 2 } ,0,0 \right) $

$P$ and $Q$ are points on the line joining $A(-2,5)$ and $B(3,1)$ such that $AP=PQ=QB$. Then, the distance of the midpoint of $PQ$ from the origin is

  1. $3$

  2. $\frac {\sqrt 37}{4}$

  3. $4$

  4. $3.5$


Correct Option: B

A line passes through two point $A (2, -3, -1)$ and $B (8, -1, 2)$. The coordinates of a point on this line at a distance of $14$ units from $A$ are

  1. $(14, 1, 5)$

  2. $(-10, -7, 7)$

  3. $(86, 25, 41)$

  4. None of these


Correct Option: A
Explanation:

Given points are $A(2,-3,-1)$ and $B(8,-1,2)$
Therefore direction  ratio of $AB$ are $l = \dfrac{6}{7}, m=\dfrac{2}{7},n= \dfrac{3}{7}$ or $l=\dfrac{-6}{7},m= \dfrac{-2}{7},n= \dfrac{-3}{7}$
Hence, coordinates of a point $14$ unit from point $A$ is given as,$(2+14l,-3+14m,-1+14n)$
$\Rightarrow (14,1,5)$ or $(-10,-7,-7)$
Hence, option 'A' is correct.

If  $C _1:{x^2+y^2}-20x+64=0$ and $C _2:{x^2+y^2}+30x+144=0$. Then the length of the shortest line segment $PQ$  which touches $C _1$ at $P$ and  to  $C _2$ at $Q$ is

  1. $10$

  2. $15$

  3. $22$

  4. $27$


Correct Option: A
Explanation:

Given $C _1 : x^2+y^2-20x+64=0 \Rightarrow (x-10)^2+y^2=36$
and $C _2 : x^2+y^2+30x+144=0 \Rightarrow (x+15)^2+y^2=81$
So centre and radius of $C _1$ and $C _2$ are $(10,0)$, $(-15,0)$ and $6,9$ respectively.
Then, distance between $C _1$ and $C _2$ is $\sqrt{(15+10)^{2}+(0-0)^{2}}=25$. 

$PQ$ touches $C _{1}$ at $P$ and $C _{2}$ at $Q$.
Then, shortest length of $PQ$ is $=25-(9+6)=25-15=10$

The distance of the point $(4,7)$ from the $x-$ axis is 

  1. $4$

  2. $7$

  3. $11$

  4. $\sqrt{65}$


Correct Option: A

Minimum distance between the curves
$y^{2}=4x$ & $x^{2}+y^{2} -12x+31=0$ is -

  1. $\sqrt {21}$

  2. $\sqrt {26}-\sqrt {5}$

  3. $\sqrt {20}-\sqrt {5}$

  4. $\sqrt {21}-\sqrt {5}$


Correct Option: A

The distance of the point $(2,3)$ form the line $x-2y+5=0$ measured in a direction parallel to the line $x-3y=0$ is

  1. $2\sqrt{10}$

  2. $\sqrt{10}$

  3. $2\sqrt{5}$

  4. $None\ of\ these$


Correct Option: A

The distance of the point $(2,1,-1)$ from the line $\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-3}{-3}$ measured parallel to the plane $x+2y+z=4$ is

  1. $\sqrt{10}$

  2. $\sqrt{20}$

  3. $\sqrt{5}$

  4. $\sqrt{30}$


Correct Option: A

The distance of the point (1,3) from the line 2x-3y+9=0 measured along a line x-y+1=0 is

  1. $\sqrt 2$

  2. $\sqrt 5$

  3. $2\sqrt 2$

  4. 1


Correct Option: A

If $L _1$ is the line of intersection of the plane $2x-2y+3z-2=0, x-y+z+1=0$ and $L _2$ is the line of intersection of the plane   $x+2y-z-3=0, 3x-y+2z-1=0$, then the distance of origin from from the plane containing the lines $L _1$ + $L _2$ is :

  1. $\dfrac{1}{\sqrt{2}}$

  2. $\dfrac{1}{4\sqrt{2}}$

  3. $\dfrac{1}{2\sqrt{2}}$

  4. none of these


Correct Option: A

The equation of plane which is passing through the point $(1,2,3)$ and which is at maximum distance from the point $(-1,0,2)$ is

  1. $2x+2y+z=9$

  2. $2x+z=5$

  3. $3x+y-z=2$

  4. none of these


Correct Option: A

The distance of the point $P(3,8,2)$ from the line $\dfrac{x-1}{2}=\dfrac{y-3}{4}=\dfrac{z-2}{3}$ measured parallel to the plane $3x+2y-2z+15=0$ is 

  1. $5\sqrt[2}$

  2. $18$

  3. $9\sqrt{3}$

  4. $7$


Correct Option: A

If the shortest distance between the line 
$\dfrac {x-1}{\alpha}=\dfrac {y+1}{-1}=\dfrac {z}{1}(\alpha \neq 1)$ and $x+y+z+1=0=2x-y+z+3$ is $\dfrac {1}{\sqrt {3}}$, then a value $\alpha$ is:

  1. $-\dfrac {16}{19}$

  2. $-\dfrac {19}{16}$

  3. $\dfrac {32}{19}$

  4. $\dfrac {19}{23}$


Correct Option: A

The shortest distance between line $y-x=1$ and curve $x=y^{2}$ is :-

  1. $\dfrac{8}{3\sqrt{2}}$

  2. $\dfrac{4}{\sqrt{3}}$

  3. $\dfrac{\sqrt{3}}{4}$

  4. $\dfrac{3\sqrt{2}}{8}$


Correct Option: A

A point $Q$ at a distance $3$ from the point $P(1,1,1)$ lying on the line joining the points $A(0,-1,3)$ and $P$, has the coordinates

  1. $(2,3,-1)$

  2. $(4,7,-5)$

  3. $(0,-1,3)$

  4. $(-2,-5,7)$


Correct Option: A,C
Explanation:

Let the coordinates of point $Q$ be $(a,b,c)$


The distance of $Q$ from $P(1,1,1)$ is $3$


The equation of line $AP$ is $\displaystyle \frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{-2}$

Therefore the point on the line $AP$ will look like $Q(t+1,2t+1,1-2t)$

$|QP|=\sqrt{(t+1-1)^2+(2t+1-1)^2+(1-2t-1)^2}=\sqrt{9t^2}=3$

So $|QP| = \pm3t=3$

$\Rightarrow t=\pm1$

So the possible coordinates of $Q$ are $(2,3,-1)$ and $(0,-1,3)$

Therefore the correct options are $A$ and $C$

The distance of the point $\left( 1,-2,3 \right) $ from the plane $x-y+z=5$ measured parallel to the line $\displaystyle \frac { x }{ 2 } =\frac { y }{ 3 } =\frac { z-1 }{ -6 } $ is

  1. $1$

  2. $2$

  3. $4$

  4. None of these


Correct Option: A
Explanation:

Equation of the line through $\left( 1,-2,3 \right) $ parallel to the line $\displaystyle \dfrac { x }{ 2 } =\dfrac { y }{ 3 } =\dfrac { z-1 }{ -6 } $ is


$\displaystyle \dfrac { x-1 }{ 2 } =\dfrac { y+2 }{ 3 } =\dfrac { z-1 }{ -6 } =r$ (say)   ...$(1)$


Then any point on $(1)$ is $\left( 2r+1,3r-2,-6r+3 \right) $.


If this point lies on the plane $x-y+z=5$, then 


$\displaystyle \left( 2r+1 \right) -\left( 3r-2 \right) +\left( -6r+3 \right) =5\Rightarrow -7r+6=5\Rightarrow r=\dfrac { 1 }{ 7 } $


Hence, the point is $\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right) $


Distance between $\left( 1,-2,3 \right) $ and $\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right) $


$\displaystyle =\sqrt { \left( \dfrac { 4 }{ 49 } +\dfrac { 9 }{ 49 } +\dfrac { 36 }{ 49 }  \right)  } =\sqrt { \dfrac { 49 }{ 49 }  } =1$

The points $(4, -5, 1)$, $(3, -4, 0)$, $(6, -7, 3)$, $(7, -8, 4)$ are vertices of a

  1. square

  2. parallelogram

  3. rectangle

  4. rhombus


Correct Option: B
Explanation:

Let $A=(4,-5,1)$
$B=(3,-4,0)$
$C=(6,-7,3)$
$D=(7,-8,4)$
Now let the quadrilateral be $ABCD$.
Then
$AB=-i+j-k$ $|AB|=\sqrt{3}$
$BC=3i-3j+3k$ $|BC|=3\sqrt{3}$
$CD=i-j+k$  $|CD|=\sqrt{3}$
$AD=3i-3j+3k$ $|AD|=3\sqrt{3}$.
Hence opposite sides are equal and parallel.
Therefore the above points form a parallelogram.
Now all the sides are not equal.
Hence it cannot qualify as a rhombus or square.
Now dot product of $AB$ and $BC$ is not zero.
Hence adjacent sides are not perpendicular to each other.
Therefore it is not a rectangle also.

$A, B, C$ are three points on the axes of $x, y$ and $z$ respectively at distance $a, b, c$ from the origin $O$; then the co - ordinates of the point which is equidistant from $A, B, C$ and $O$ is

  1. $\displaystyle \left ( a,b,c \right )$

  2. $\displaystyle \left ( \frac{a}{2},\frac{b}{2},\frac{c}{2} \right )$

  3. $\displaystyle \left ( \frac{a}{3},\frac{b}{3},\frac{c}{3} \right )$

  4. None of these


Correct Option: B
Explanation:

Let $P$ be the required point $\displaystyle \left ( x,y,z \right )$ and the point
$A, B, C$ and $O$ are $\displaystyle \left ( a,0,0 \right ),\left ( 0,b,0 \right ),\left ( 0,0,c \right )$ and $\displaystyle \left ( 0,0,0 \right )$ ;

We are given that $\displaystyle PO=PA=PB=PC.$
Taking $\displaystyle PO=PA$ or $\displaystyle PO^{2}=PA^{2},$ we get
$\displaystyle x^{2}+y^{2}+z^{2}=\left ( x-a \right )^{2}+y^{2}+z^{2}$
$\displaystyle 0=a^{2}-2ax$  i.e.  $\displaystyle x=\dfrac {a}{2}$
Similarly taking $\displaystyle PO^{2}=PB^{2}$ and $\displaystyle PO^{2}=PC^{2},$ we get 
$\displaystyle y=\dfrac {b}{2}$ and $\displaystyle z=\dfrac {c}{2}$

Perimeter of triangle whose vertices are $(0,4,0), (3,4,0)$ and $(0,4,4)$, is

  1. $10$

  2. $12$

  3. $25$

  4. $15$


Correct Option: B
Explanation:

 Vertices of triangle are $(0,4,0),(3,4,0)$ and $(0,4,4)$

then perimeter=?
here AB=$\sqrt{(3-0)^2+(4-4)^2+(0-0)^2}$
$=3$
BC$=\sqrt{(3-0)^2+(4-4)^2+(0-4)^2}$
$=\sqrt{9+16}$
$=5$
CA$=\sqrt{(0-0)^2+(4-4)^2+(0-4)^2}=4$
used distance formula b/w two points
$(x _1,y _1,z _1) and (x _2,y _2,z _2)$
$=\sqrt{(x _2-x _2)^2+(y _2-y _1)^2+(z _2-z _1)^2}$
$ perimeter =ABC+BC+CA$
$=3+5+4$
$=12\ units$

Let the distance between vectors are given as follows :
$(i)4i +3j-6k, -2i+j-k$  be $\displaystyle \sqrt{k}$
$(ii) -2i+3j+5k, 7i-k $  be  $\displaystyle m\sqrt{n}$
Find $k-(m*n)$ ?

  1. 20

  2. 21

  3. 22

  4. 23


Correct Option: D
Explanation:

(i) Distance between $4i + 3j - 6k$ and $-2i + j - k$ is given by $\sqrt{(4 + 2)^2 + (3 - 1)^2 + (-6 + 1)^2} = \sqrt{36 + 4 + 25} = \sqrt{65}$

$\Rightarrow k = 65$

(ii) Distance between $-2i + 3j + 5k$ and $7i - k$ would be $\sqrt{(-2 - 7)^2 + (3)^2 + (5 + 1)^2} = \sqrt{81 + 9 + 36} = \sqrt{126} = 3\sqrt{14}$
$\Rightarrow m = 3, n = 14$

$\therefore k - (m*n) = 65 - (3 \times 14) = 65 - 42 = 23$

Find the distance between the pairs of points whose cartesian coordinates are $(2,3,-1), (2,6,2).$

  1. $\displaystyle 3\sqrt{2}.$

  2. $\displaystyle 2\sqrt{3}.$

  3. $\displaystyle 5\sqrt{2}.$

  4. $\displaystyle 2\sqrt{5}.$


Correct Option: A
Explanation:

Distance Between two points $(a,b,c)$ and $(x,y,z)$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $(2,3,-1)$, $(2,6,2)$
Distance $=\sqrt { \left( 2-2 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 }+\left( -1-2 \right) ^{ 2 } } $
                $=\sqrt { 18 } $
                $=3\sqrt { 2 }$

Find the distance between the points whose position vectors are given as follows

$(-1,1,3), (0,5,6)$

  1. $\displaystyle \sqrt{118}$

  2. $8$

  3. $\displaystyle \sqrt{26}$

  4. none of these


Correct Option: C
Explanation:

Distance Between two points $(a,b,c)$ and $(x,y,z)$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $(-1,1,3)$, $(0,5,6)$
Distance $=\sqrt { \left( -1-0 \right) ^{ 2 }+\left( 1-6 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 } } $
                $=\sqrt { 26 } $

Find the distance between the points whose position vectors are given as follows

$-2\hat i+3\hat j+5\hat k, 7\hat i-\hat k$

  1. $\displaystyle 3\sqrt{14}$

  2. $\displaystyle \sqrt{54}$

  3. $\displaystyle 3\sqrt{19}$

  4. $\displaystyle \sqrt{57}$


Correct Option: A
Explanation:

Distance Between two position vectors $a\hat i+b\hat j+c\hat k$ and $x\hat i+y\hat j+z\hat k$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $-2\hat i+3\hat j+5\hat k$, $7\hat i-\hat k$
Distance $=\sqrt { \left( -2-7 \right) ^{ 2 }+\left( 3-0 \right) ^{ 2 }+\left( 5+1 \right) ^{ 2 } } $
                $=\sqrt { 126 } $
                $=3\sqrt { 14 } $

Find the distance between the points whose position vectors are given as follows

$4\hat i+3\hat j-6\hat k, -2\hat i+\hat j-\hat k$

  1. $\displaystyle \sqrt{65}$

  2. $\displaystyle \sqrt{69}$

  3. $13$

  4. none of these


Correct Option: A
Explanation:

Distance Between two position vectors $a\hat i+b\hat j+c\hat k$ and $x\hat i+y\hat j+z\hat k$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $4\hat i+3\hat j-6\hat k$, $-2\hat i+\hat j-\hat k$
Distance $=\sqrt { \left( 4+2 \right) ^{ 2 }+\left( 3-1 \right) ^{ 2 }+\left( -6+1 \right) ^{ 2 } } $
                $=\sqrt { 65 } $

The name of the figure formed by the points $(3, -5, 1), (-1, 0, 8)$ and $(7, -10, -6)$ is

  1. a triangle

  2. a straight line

  3. an isosceles triangle

  4. an equilateral triangle


Correct Option: B
Explanation:

Let $A=(3,-5,1), B = (-1,0,8)$ and $C=(7,-10,-6)$

Now, 
$AB =\sqrt{(3+1)^2+(-5-0)^2+(1-8)^2}=\sqrt {90}=3\sqrt{10}$,
$BC =\sqrt{(-1-7)^2+(0+10)^2+(8+6)^2}=\sqrt{360}=6\sqrt{10}$ 
and $CA =\sqrt{(7-3)^2+(-10+5)^2+(-6-1)^2}=\sqrt{90}=3\sqrt{10}$
Clearly $BC = AB+CA$
$\therefore  $ given points lies on straight line. 

If $(1, 1, a)$ is the centroid of the triangle formed by the points $(1, 2, -3)$ , $(\mathrm{b}, 0, 1)$ and $(-1, 1, -4)$ then $a-b$ $=$

  1. $-5$

  2. $-7$

  3. $5$

  4. $1$


Correct Option: A
Explanation:

The coordinates of the vertices of the triangle are given by $(1,2,-3) , (b,0,1), (-1,1,-4)$

Accordingly the coordinates of the centroid of this triangle will be given by 

($ \dfrac{b}{3}, 1 , -2 $)

Hence, $ \dfrac{b}{3} $ $= 1$ Or, $b= 3$

and $a = -2$

So $a- b = -5$

The circum centre of the triangle formed by the points $(2, 5, 1), (1, 4, -3)$ and $(-2, 7, -3)$ is

  1. $(6,0,1)$

  2. $(0,6,-1)$

  3. $(-1,6,2)$

  4. $(6,1,-2)$


Correct Option: B
Explanation:

Let the points $A(2,5,1) B(1,4,-3)$ and $C(-2,7,-3)$
Now using distance formula in $3D$, we have
$AB {=}$$\sqrt{18}$, $BC {=}$$\sqrt{18}$, and $AC {=}$$\sqrt{36}$
Since, ${AB}^{2}+{BC}^{2}$${=}$${AC}^{2}$
Hence, it is right angle triangle and as we know that the circumcentre of right angled triangle is at the midpoint of hypotenuse i.e $AC$.
Therefore by using section formula (1:1), circumcentre ${=}(0,6,-1)$

Assertion (A): The points $A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$ are the vertices of a rhombus
Reason (R): $AB = BC = CD = DA$ and $AC = BD$

  1. Both A and R are individually true and R is the correct explanation of A

  2. Both A and R individually true but R is not the correct explanation of A

  3. A is true but R is false

  4. Both A and R false


Correct Option: D
Explanation:
Given: The points $A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$ are the vertices of a rhombus. 
So using distance formula Reason is not true. 
Thus both A and R false. 

$P(0,5,6),Q(1,4,7),R(2,3,7)$ and $S(3,5,16)$ are four points in the space. The point nearest to the origin $O(0,0,0)$ is

  1. $P$

  2. $Q$

  3. $R$

  4. $S$


Correct Option: A
Explanation:

The $4$ points are as given.
We calculate their individual distance from the origin.
$OP =$ $ {({5}^{2} + {6}^{2})}^{0.5} $ = $ {(61)}^{0.5} $
$OQ =$ $ {({1}^{2} + {4}^{2} + {7}^{2} )}^{0.5} $ = $ {(66)}^{0.5} $
$OR =$ $ {({2}^{2} + {3}^{2} + {7}^{2} )}^{0.5} $ = $ {(62)}^{0.5} $
$OS =$ $ {({3}^{2} + {5}^{2} + {16}^{2} )}^{0.5} $= $ {(290)}^{0.5} $
Hence, $P$ is the nearest to the origin.

The name of the figure formed by the points $(-1, -3, 4), (5, -1,1), (7, -4, 7)$ and $(1, -6, 10)$ is a

  1. square

  2. rhombus

  3. parallelogram

  4. rectangle


Correct Option: B
Explanation:

Keeping the above points as vertices and using the distance formula, 
$D=\sqrt{(x _{2}-x _{1})^{2}+(y _{2}-y _{1})^{2}+(z _{2}-z _{1})^{2}}$
We get that the sides of the parallelogram formed by the above lines are equal and all the sides are of $7$ units.
Hence the parallelogram will be either a rhombus or a square. For the parallelogram to be square, all the adjacent sides of the parallelogram should make an angle of $\dfrac{\pi}{2}$.
Consider the vector equation of $AB$ as $(5-(-1))i'+(-1-(-3))j'+(1-4)k'$
$6i'+2j'-3k'$
Consider the vector equation of $BC$ as $(7-5)i'+(-4-(-1))j'+(7-1)k'$
$2i'-3j'+6k'$
Taking dot product, we get $6(2)+2(-3)-3(6)$
$=12-6-18$
$=-12$
Thus the parallelogram is a rhombus.

A hall has dimensions $24 m \times 8 m \times 6 m$. The length of the longest pole which can be accommodated in the hall is

  1. 26 m

  2. 28 m

  3. 30 m

  4. 36 m


Correct Option: A
Explanation:

Given that,

Dimensions of the hall x $=24cm\times 8cm\times 6cm$

Now Leght of the longest pole which can be accommodated in the hall x $=\sqrt{{{24}^{2}}+{{8}^{2}}+{{6}^{2}}}=26cm$

The distance of the point (1,−2,4)(1,−2,4) from the plane passing through the point (1,2,2)(1,2,2) and perpendicular to the planes x−y+2z=3x−y+2z=3 and 2x−2y+z+12=0,2x−2y+z+12=0, is :

  1. $2\sqrt{2}$

  2. $4$

  3. $\sqrt2$

  4. $23$


Correct Option: A

Calculate the distance between the points $(-3,6,7)$ and $(2,-1,4)$ in $3D$ space.

  1. $4.36$

  2. $5.92$

  3. $7.91$

  4. $9.11$

  5. $22.25$


Correct Option: D
Explanation:

We know the distance formula:

$d=\sqrt{(x _2-x _1)^2+(y _2-y _1)^2+(z _2-z _1)^2}$

The coordinates are $(-3, 6, 7)$ and$ (2, -1, 4)$

$d=\sqrt{(2-(-3))^2+((-1)-6)^2+(4-7)^2}$

$d=\sqrt{(5)^2+((-7)^2+(-3)^2}$

$d=\sqrt{25+49+9}$

$d=\sqrt{83}$

$d = 9.11$

A point on the line $\displaystyle \frac{{x + 2}}{1} = \frac{{y - 3}}{{ - 4}} = \frac{{z - 1}}{{2\sqrt 2 }}$ at a distance 6 from the point (2, 3, 1) is

  1. $(4-21, 1+12\sqrt{2})$

  2. $\left( {\frac{{ - 4}}{5},\frac{{ - 9}}{5},1} \right)$

  3. $\left( {\frac{{ - 16}}{5},\frac{{39}}{5},\frac{{5 - 12\sqrt 2 }}{5}} \right)$

  4. $\left( {\frac{{ - 16}}{5}, - 21,1 + 12\sqrt 2 } \right)$


Correct Option: B
Explanation:

$(\lambda -2, -4\lambda+3, 2\sqrt 2\lambda+1)\leftrightarrow (-2, 3, 1)$
$(\lambda-2+2)^2+(-4\lambda+3-3)^2+2\sqrt 2\lambda+1-1)^2=36$
$\lambda^2+16\lambda^2+8\lambda^2=36$
$\lambda=\pm \frac {6}{5}$
$\therefore point=(\frac {-4}{5}, \frac {-9}{5}, 1)$

The shortest distance between z-axis and the line 
$x+y+2z-3=0=2x+3y+4z-4$, is _____________

  1. $1$

  2. $2$

  3. $4$

  4. $3$


Correct Option: A
Explanation:

$x+y+2z-3=0=2x+3y+4z-4$ at $z-axis, x=y=0$

$x+y=3-2z$ and $2x+3y=4(1-z)$
solving $x$ and $y$ in function $z$,
$2x+3(3-2z-x)=4(1-z)$
$\implies 2x+9-6z-3x=4-4z$
$\implies x=9-6z-4+4z$
$\implies x=5-2z\quad equation (2)$
$\implies (5-2z)+y=3-2z$
$\implies y=3-2z-5+2z$
$y=-2\quad equation (2)$
So, $\sqrt {x^2+y^2}=\sqrt {(-2)^2+(5-2z)^2}$
at, $z=\cfrac {5}{2}$, this would be minimum.

In a $\triangle {ABC}$, side $AB$ has the equation $2x+3y=29$ and the side $AC$ has the equation $x+2y=16$. If the mid point of $BC$ is $(5,6)$, then the equation of $BC$ is

  1. $2x+y=7$

  2. $x+y=1$

  3. $2x-y=17$

  4. None of these


Correct Option: B
Explanation:
Let co-ordinates of $B$ be $(x _1, y _1)$ & $C$ be $(x _2, y _2)$

$\therefore$ $(5,6)$ is the mid point,

so, $\dfrac{x _1 + x _2}{2} = 5, \dfrac{y _1 + y _2}{2} = 6$

$\Rightarrow x _1 + x _2 = 10, y _1 + y _2 = 12$

$B(x _1, y _1)$ lies on the line $2x + 3y = 29$

$\therefore 2x _1 + 3y _1 = 29$  ----(1)

$C(x _2, y _2)$ lies on the line $x + 2y = 16,$

$\therefore x _2 + 2y _2 = 16$  ----(2)

$\therefore$ putting $x _1, y _1$ in the form of $x _2, y _2$ in (1)

$2(10 - x _2) + 3(12 - y _2) = 29$  {$x _1 = 10 - x _2, y _1 = 12 - y _2$}

$\Rightarrow 20 - 2x _2 + 36 - 3y _2 = 29$

$\Rightarrow 2x _2 + 3y _2 = 27$  ----(3)

on subtracting $(3)$ and $(2)$ $\times$ $2$

$-y _2 = -5$

$y _2 = 5$

Putting $y _2 \,  in (2)$

$x _2 + 2(5) = 16$

$x _2 = 6$

$x _1 = 10 - x _2$

      $= 4$

$y _1 = 12 - 5 = 7$

Equation :

$\dfrac{x - x _1}{x _2 - x _1} = \dfrac{y - y _1}{y _2 - y _1}$

$\Rightarrow \dfrac{x - 4}{2} = \dfrac{y - 7}{-2}$

$\Rightarrow -x + 4 = y - 7$

$\Rightarrow x + y = 11$

A swimmer can swim $2$ km in $15$ minutes in a lake and in a river he can swim a distance of $4$ km in $20$ minutes along the stream. If a paper boat is put in the river, then the distance covered by it in $\displaystyle $2$ \, \frac{1}{2}$2 hours will be 

  1. $18$ km

  2. $12$ km

  3. $8$ km

  4. $10$ km


Correct Option: D
Explanation:

Speed of the man in still water $\cfrac{2}{15/60}$ = $8$ km/hr
Speed of the man in downstream = $\cfrac{4}{20/60}$ = $12$ km/hr
Speed of stream = $4$ km/hr
Distance covered by paper boat in $2$ $\frac{1}{2}$ hours = $\cfrac{5}{2} \, \times$  $4$ = $10$ km 

The point equidistant from the point $O(0, 0, 0), A(a, 0, 0), B(0, b, 0)$ and $C(0, 0, c)$ has the coordinates

  1. $(a, b, c)$

  2. $(a/2, b/2, c/2)$

  3. $(a/3, b/3, c/3)$

  4. $(a/4, b/4, c/4)$


Correct Option: B
Explanation:
$P(x, y, z)$
$PO=\sqrt{x^2+y^2+z^2}$
$PA=\sqrt{(a-x)^2+(-y)^2+(-z)^2}=\sqrt{(a-z)^2+y^2+z^2}$
$PB=\sqrt{x^2+(b-y)^2+z^2}$
$PC=\sqrt{x^2+y^2+(C-z)^2}$
$\Rightarrow PO=PA$
$\sqrt{x^2+y^2+z^2}=\sqrt{(a-x)^2+y^2+z^2}$
$x^2+y^2+z^2=(a-x)^2+y^2+z^2$
$x^2=(a-x)^2$
$x=a-x$
$\Rightarrow x=\dfrac{a}{2}$
$y=b/2$
$z=c/2$.

The distances of the point $P(1,2,3)$ from the coordinates axes are:

  1. $\sqrt {13} ,\sqrt {10} ,\sqrt 5 $

  2. $\sqrt {11} ,\sqrt {10} ,\sqrt 5 $

  3. $\sqrt {13} ,\sqrt {20} ,\sqrt {15} $

  4. $\sqrt {23} ,\sqrt {10} ,\sqrt 5 $


Correct Option: A
Explanation:
The point: $(1, 2, 3)$
$\therefore$ Co-ordinates axes are $(1, 0, 0), (0, 2, 0), (0, 0, 3)$
Distance of $(1, 2, 3)$ from $(1, 0, 0)$
$= \sqrt{(1 - 1)^2 + (0 - 2)^2 + (0 - 3)^2)}$
$= \sqrt{4 + 9} = \sqrt{13}$
Distance of $(1, 2, 3)$ from $(0, 2, 0)$
$= \sqrt{(0 - 1)^2 + (2 - 2)^2 + (0 - 3)^2)}$
$= \sqrt{1 + 9} = \sqrt{10}$
Distance of $(1, 2, 3)$ from $(0, 0, 3)$
$= \sqrt{(0 - 1)^2 + (0 - 2)^2 + (3 - 3)^2)}$
$= \sqrt{5}$
Hence, the distances of the point $P(1,2,3)$ from the coordinates axes$= \sqrt{13}, \sqrt{10}, \sqrt{5}$

The values of a for which $(8, -7, a), (5, 2, 4)$ and $(6, -1, 2)$ are collinear, is given by?

  1. $2$

  2. $-2$

  3. $-1$

  4. $1$


Correct Option: A
Explanation:

$\begin{matrix} then\, a=? \ The\, equation\, lineAB\, is\,  \ \Rightarrow \dfrac { { x-8 } }{ { 5-8 } } =\dfrac { { y+7 } }{ { 2+7 } } =\dfrac { { z-a } }{ { 4-a } } ....\left( 1 \right)  \ po{ int }\, c\, lies\, in\, the\, line\, AB \ po{ int }\left( { 6,-1,2 } \right) satisfy\, eq\left( 1 \right)  \ \Rightarrow \dfrac { { -2 } }{ { -3 } } =\dfrac { { -1+7 } }{ 9 } =\dfrac { { 2-a } }{ { 4-a } }  \ \Rightarrow \dfrac { 2 }{ 3 } =\dfrac { { 2-a } }{ { 4-a } }  \ \Rightarrow 8-2a=6-3a \ \Rightarrow 3a-2a=6-8 \ a=-2 \  \end{matrix}$

The locus of a point P which moves such that $PA^2-PB^2=2k^2$ where A and B are $(3, 4, 5)$ and $(-1, 3, -7)$ respectively is 

  1. $8x+2y+24z-9+2k^2=0$

  2. $8x+2y+24z-2k^2=0$

  3. $8x+2y+24z+9+2k^2=0$

  4. $8x-2y+24z-2k^2=0$


Correct Option: C
Explanation:
$P{A}^{2}-P{B}^{2}=2{k}^{2}$
$\Rightarrow \left[{\left(x-3\right)}^{2}+{\left(y-4\right)}^{2}+{\left(z-5\right)}^{2}\right]-\left[{\left(x+1\right)}^{2}+{\left(y-3\right)}^{2}+{\left(z+7\right)}^{2}\right]=2{k}^{2}$
$\Rightarrow \left(x-3+x+1\right)\left(x-3-x-1\right)+\left(y-4+y-3\right)\left(y-4-y+3\right)+\left(z-5+z+7\right)\left(z-5-z-7\right)=2{k}^{2}$
$\Rightarrow \left(2x-2\right)\left(-4\right)+\left(2y-7\right)\left(-1\right)+\left(2z+1\right)\left(-12\right) =2{k}^{2}$
$\Rightarrow -8x+8-2y+7-24z-24=2{k}^{2}$
$\Rightarrow -8x-2y-24z-9=2{k}^{2}$
$\Rightarrow 8x+2y+24z+9+2{k}^{2}=0$

The equation of motion of a rocket are: $x=2t,y=-4t,z=4t,$ where the time $t$ is given in seconds and the coordinate of a moving point in kilometers. At what distance will the rocket be from the starting point $O(0,0,0)$ in $10$ seconds ?

  1. $60$ km

  2. $30$ km

  3. $45$ km

  4. None of these


Correct Option: A
Explanation:

Eliminating t from the given equation, we get the equation of the path $\dfrac{x}{2}=\dfrac{y}{-4}=\dfrac{z}{4}=t $

Thus the path of the Rocket represents a straight line passing through the origin for $t=10sec.$
we have $x=20,y=-40,z=40$
Let $\vec r=x\vec i+y\vec j+z\vec k$
$\Longrightarrow |\vec r|=\sqrt{{x^2}+{y^2}+{z^2}}=\sqrt{400+1600+1600}=60km$

If $A= \left ( 5,-1,1 \right ),B= \left ( 7,-4,7 \right ),C= \left ( 1,-6,10 \right ),D= \left ( -1,-3,4 \right )$. Then $ABCD$ is a

  1. square

  2. rectangle

  3. rhombus

  4. none of these


Correct Option: C
Explanation:

AB${=}$ $\sqrt{{(7-5)}^{2}+{(-4+1)}^{2}+{(7-1)}^{2}}$
AB${=}$ $\sqrt{{(2)}^{2}+{(-3)}^{2}+{(6)}^{2}}$
AB${=}$ $\sqrt{49}$
AB${=}$ 7
Similarly you find that BC${=}$ $\sqrt{49}$  CD${=}$ 7  and DA${=}$7
Hence all sides of quadrilateral are equal, Now we check the diagonals
AC${=}$ $\sqrt{{(1-5)}^{2}+{(-6+1)}^{2}+{(10-1)}^{2}}$
AC${=}$ $\sqrt{122}$
similarly BD${=}$ $\sqrt{74}$ 
Diagonals are not equal
direction ratio of line passing through AC is (-4,-5,9)
direction ratio of line passing through  BD is (-8,1,-3), As the dot product dr of AC and BD are equal to 0 which means AC is perpendicular to BD,
All sides are equal and diagonal are not equal but bisect each other at right angle
hence it is rhombus

Let $A= \left ( 1,2,3 \right )B= \left ( -1,-2,-1 \right )C= \left ( 2,3,2 \right )$ and $ D= \left ( 4,7,6 \right )$. Then $ABCD$ is a

  1. rectangle

  2. square

  3. parallelogram

  4. none of these


Correct Option: C
Explanation:

AB${=}$ $\sqrt{{(-1-1)}^{2}+{(-2-2)}^{2}+{(-1-3)}^{2}}$
AB${=}$ $\sqrt{{(-2)}^{2}+{(-4)}^{2}+{(-4)}^{2}}$
AB${=}$ $\sqrt{36}$
AB${=}$ 6
Similarly you find that BC${=}$ $\sqrt{43}$  CD${=}$ 6  and DA${=}$ $\sqrt{43}$
Hence opposite sides of quadrilateral are equal, Now we check the diagonals
AC${=}$ $\sqrt{{(2-1)}^{2}+{(3-2)}^{2}+{(2-3)}^{2}}$
AC${=}$ $\sqrt{3}$
similarly BD${=}$ $\sqrt{155}$ 
Diagonals are not equal
direction ratio of line passing through AB is (-2,-4,-4)
direction ratio of line passing through  CD is (2,4,4), As the dr of AB and CD are proportional which means AB is parallel to CD,
Similarly check for BC and DA then you will find that they are also parallel
hence it is parallelogram

If $A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C= \left ( \sqrt{2},\sqrt{2},0 \right )$ and $D= \left ( \displaystyle \frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17} \right )$, then $ABCD$ is a

  1. rhombus

  2. square

  3. parallelogram

  4. none of these


Correct Option: B
Explanation:

Given points are, $A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C=

\left ( \sqrt{2},\sqrt{2},0 \right )$ and $D= \left ( \displaystyle

\frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17}

\right )$

Length $AB = \sqrt{\sqrt{2}^2 + \sqrt{2}^2 + (2-2)^2} = 2$
Length $BC = \sqrt{(\sqrt{2}-\sqrt{2})^2 + (\sqrt{2}-\sqrt{2})^2 + 2^2} = 2$
Length $CD = \sqrt{\left(

\dfrac{8\sqrt{2}-20}{17}-\sqrt{2}\right)^2 + \left(\dfrac{12\sqrt{2}+4}{17}-\sqrt{2}\right)^2 + \left(\dfrac{20-8\sqrt{2}}{17}\right)^2} = 2$
Length $AD = \sqrt{\left(

\dfrac{8\sqrt{2}-20}{17}\right)^2 + \left(\dfrac{12\sqrt{2}+4}{17}\right)^2 + \left(\dfrac{20-8\sqrt{2}}{17} - 2\right)^2} = 2$

Angle between two vectors $\overline{AB} = p _{1}\hat{i}+q _{1}\hat{j}+r _{1}\hat{k} = \sqrt{2}\hat{i} + \sqrt{2}\hat{j} + 0\hat{k}$ and $\overline{BC} = p _{2}\hat{i}+q _{2}\hat{j}+r _{2}\hat{k} = 0\hat{i} + 0\hat{j} + 2 \hat{k}$ is $cos\theta = 0 \Rightarrow \theta = 90^o$

All sides are equal and angle between $AB$ and $BC$ is $90^o$, Hence, its a square.

The points $A(1,2,-1),B(2,5,-2),C(4,4,-3)$ and $D(3,1,-2)$ are

  1. collinear

  2. vertices of a rectangle

  3. vertices of a square

  4. vertices of a rhombus


Correct Option: B
Explanation:

AB${=}$ $\sqrt{{(2-1)}^{2}+{(5-2)}^{2}+{(-2+1)}^{2}}$
AB${=}$ $\sqrt{{(1)}^{2}+{(3)}^{2}+{(-1)}^{2}}$
AB${=}$ $\sqrt{11}$
Similarly you find that BC${=}$ $\sqrt{6}$  CD${=}$ $\sqrt{11}$  and DA${=}$$\sqrt{6}$
Hence opposite sides of quadrilateral are equal, Now we check the diagonals
AC${=}$ $\sqrt{{(4-1)}^{2}+{(4-2)}^{2}+{(-3+1)}^{2}}$
AC${=}$ $\sqrt{17}$
similarly BD${=}$ $\sqrt{17}$ 
Diagonals are not equal
direction ratio of line passing through AB is (1,3,-1)
direction ratio of line passing through  BC is (2,-1,-1), As the dot product dr of AB and BC are equal to 0 which means AB is perpendicular to BC,similarly check for others sides too
opposite sides are equal and diagonal are equal
hence it is rectangle

A rectangular parallelopiped is formed by drawing planes through the points $(-1,2,5)$ and $(1,-1,-1)$ and parallel to the coordinate planes. the length of the diagonal of the parallelopiped is

  1. $2$

  2. $3$

  3. $6$

  4. $7$


Correct Option: D
Explanation:

The plane forming the parallelipiped are

$x=-1,x=1;y=2,y=-1$ and $z=5,z=-1$
Hence, the lengths of the edges of the parallelopiped are
$1-\left( -1 \right) =2,\left| -1-2 \right| =3$ and $\left| -1-5 \right| =6$
$($ length of an edge of the parallelopiped is the distance between the parallel plane sperpendicular to the edge$)$
$\therefore$ Length of diagonal of the parallelopiped
$=\sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ 6 }^{ 2 } } =\sqrt { 49 } =7$

The coordinates of a point which is equidistant from the point $(0,0,0),(a,0,0),(0,b,0)$ and $(0,0,c)$ are given by

  1. $\displaystyle \left( \frac { a }{ 2 } ,\frac { b }{ 2 } ,\frac { c }{ 2 }  \right) $

  2. $\displaystyle \left( \frac { -a }{ 2 } ,\frac { -b }{ 2 } ,\frac { c }{ 2 }  \right) $

  3. $\displaystyle \left( \frac { a }{ 2 } ,\frac { -b }{ 2 } ,\frac { -c }{ 2 }  \right) $

  4. $\displaystyle \left( \frac { -a }{ 2 } ,\frac { b }{ 2 } ,\frac { -c }{ 2 }  \right) $


Correct Option: A
Explanation:

Let $P(x,y,z)$ be the required point.

Then $OP=PA=PB=PC$
Now $OP=PA \Longrightarrow OP^2+PA^2 \Longrightarrow x^2+y^2+z^2$

= $(x-a)^2+(y-0)^2+(z-0)^2 \Longrightarrow x=\dfrac{a}{2}$
Similarily, $OP=PB=y=\dfrac{b}{2}$ and $OP=PC=z=\dfrac{c}{2}$

hence the coordinate of the required point are $\left(\dfrac{a}{2},\dfrac{b}{2},\dfrac{c}{2}\right)$

What is the distance in space between $(1,0,5)$ and $(-3,6,3)$?

  1. $4$

  2. $6$

  3. $2\sqrt { 11 } $

  4. $2\sqrt { 14 } $

  5. $12$


Correct Option: D
Explanation:

The distance between the points $(1,0,5)$ and $(-3,6,3)$ is given below:

$D=\sqrt { \left( 3-5 \right) ^{ 2 }+\left( 6-0 \right) ^{ 2 }+\left( -3-1 \right) ^{ 2 } } $
$=\sqrt { \left( -2 \right) ^{ 2 }+\left( 6 \right) ^{ 2 }+\left( -4 \right) ^{ 2 } } $
$=\sqrt { 4+36+16 } =\sqrt { 56 } $
$=2\sqrt { 14 }$ 

$L _1:\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$
$L _2:\dfrac{x-2}{3}=\dfrac{y-4}{2}=\dfrac{z-5}{5}$ be two given lines, point P lies on $L _1$ and Q lies on $L _2$ then distance between P and Q can be

  1. $\dfrac{1}{3}$

  2. $\dfrac{1}{9}$

  3. $15$

  4. $30$


Correct Option: A,C,D
Explanation:

$\dfrac{|\begin{vmatrix}2-1&4-2  &5-3 \2 & 3 &4 \ 3& 2 & 5\end{vmatrix}|}{|\begin{vmatrix}i&j  &k \2 & 3 & 4\3 & 2 & 5\end{vmatrix}|}=\dfrac{1}{\sqrt{78}}$

- Hide questions