Logarithm and its uses - class-XI
Description: logarithm and its uses | |
Number of Questions: 78 | |
Created by: Palash Sundaram | |
Tags: basic mathematical concepts physics |
$\log _ee^5$ is equal to-
If $\log _3 x = 3\, & \,\log _x y = 4\,$, then find $y$.
If anti ${ \log } _{ 10 }(0.3678)=2.3324$ then ${ \log } _{ 10 }233.2$ is equal to
$\log _264+\log _3729$
$\log _5625+\log _6 216$
Which of the following real numbers is(are) non-positive?
If $x=\log _am$, then value of $m$ is equal to
If $\log x = -2.0258$, then $x$ is equal to
The antilog of the number $2.5463$ is
The antilog of $ (.2817)$ will be
What is the value of $[\log _{10} (5\log _{10} 100)]^{2}$?
Find the characteristic of $\log 7.93$
Find the characteristic of $\log 277.9301$
Find the characteristic of $\log 27.93$
Find the mantissa of $\log 2.125$
The value of $x$ which satisfy $log(x+1) = 2logx$ is
The value of $x$ satisfying the equation $g^{log _3 (log _2 x)} = log _2 x - (log _2 x)^2 + 1$ is
If $2y = log(12-5x-3x^2)$ takes all real values then $x$ belongs to
Evaluate the expression by using logarithm tables: $ \dfrac{(17.42)^{2/{3}}\times 18.42}{\sqrt{126.37}}$
Let $a = \log 3\log _32$. An integer k satisfying $1< 2^{(-k+3^{-a})} < 2,$ must be less than ____.
If $a=\log _35 $ and $b= \log _725$ then correct option is:
The value of ${ \left( 0.05 \right) }^{ \log _{ \sqrt { 20 } }{ \left( 0.1+0.01+0.001+.... \right) } }$ is
The equation ${ x }^{ \cfrac { 3 }{ 4 } { \left( \log _{ x }{ x } \right) }^{ 2 }+\log _{ x }{ x } -\cfrac { 5 }{ 4 } }=\sqrt { 2 } $ has
If $\log _{10}e=0.4343$, then $\log _{10}1016$ is
Multiple Correct:
The solution of the equation $\log _{7}\log _{5}(\sqrt {x^{2}}+5+x)=0$
The value of $\displaystyle\sum _{r=1}^{n}log\left ( \dfrac{a^{r}}{b^{r-1}} \right )$ is
Find the value of $\log _{10}{\left(0.\bar{9}\right)}$
Given $log2=a,log3=b$ express the following in terms of $a$ or $b$ or both
If $y=a\log\left|x\right|+bx^{2}+x$ has extreme values at $x=2$ and $x=-4/3$ then
Let $A=\dfrac{1}{6}((\log _{2}{3}))^{3}-(\log _{2}{6}))^{3}-(\log _{2}{12}))^{3}+(\log _{2}{24}))^{3})$. Then the value of $2^{A}$ is :
If $x=500,y=100$ and $z=5050$, then the value of $(\log _{ xyz }{ { x }^{ z } } )(1+\log _{ x }{ yz } )$ is equal to.
The value of $(0.2)^{log _{\sqrt{5}} \left(\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ...\right)}$ is
Find the mantissa of the logarithm of the number $0.002359$.
The domain of the function $f(x)=[log _{10}(\frac{5x-x^2}{4})]^{{1}/{2}}$ is
If $A=log _2 log _2 log _4 256+2 log \sqrt { 2 } 2$ then A=
The value of $\displaystyle \log _{\frac{1}{20}}40$ is
The value of $\displaystyle \log _{\frac{2}{3}}\frac{5}{6}$ is
Value of $\displaystyle \log _{4}18 $ is:
$\log _4 $1 is equal to
If $x=\log _{ a }{ bc } ,y=\log _{ b }{ ca } ,z=\log _{ c }{ ab } $, then the value of $\dfrac { 1 }{ 1+x } +\dfrac { 1 }{ 1+y } +\dfrac { 1 }{ 1+z } $ will be
The characteristic of a number having $m$ $(m>1)$ digits is given by,
Calculate $x$, to the nearest tenth: $\log _{12} 640 = x$
If $\displaystyle { log } _{ 5 }{ log } _{ 5 }{ log } _{ 2 }x=0$, then the value of $x$ is
The value of $\log _{10} 0.0006024$ is equal to
Using logarithm table, determine the value of $\log _{10}0.5432$.
Antilog of the number $( -8.654)$ is equal to
The antilog of $\overline {1}.8840$is equal to
The antilog of the number $2.9586$ is equal to
The antilog of $(1.32)$ is equal to
The antilog of the number $0.2015$ is equal to
If there are $n$ zeros after the decimal point, then the characteristic of that number will be
Evaluate using log tables: $\sqrt [3] {\dfrac {16.23}{426.8}}$
If $f(x) = \log x$, then $f^{-1}x $ is
The antilog of $(4.8779)$ will be
The value of $\log _{10} 8$ is equal to
Find the value of $\dfrac {\log _{10} 72}{\log _{10} 8}$ using log table
Find the value of $\log _{10} 72$ using log table
Find $AntiLog(.2817)$.
Find the value of $\log _{10} {\dfrac{64^{2.1}\times 81^{4.2}}{49^{3.4}}}$ using log table
Let $x = (0.15)^{20}$. Find the characteristic in the logarithm of $x$ to the base $10$.
Find the value of ${\log _{10} 72} + {\log _{10} {\dfrac{1}{8}}}$ using log table
If $x^2+y^2=25$ , then $log _5 \begin {bmatrix} Max (3x+4y) \end {bmatrix}$ is
If the mantissa of $\log 2125 =3.3275$, find the mantissa of $\log21.25$
The logarithm of $0.0625$ to the base $2$ is:
The number of zeros between the decimal point and first significant digit of ${\left(0.036\right)}^{16}$ where $log2=0.301$ and $log3=0.477$
Given $log _{10}2=a$ and $log _{10}3=b$, if $3x+2=25$, the value of x in terms of $a$ and $b$ is $x=(10^{k}+1)$. K=?
Let $N=\dfrac{\log _{3}135}{\log _{15}3}-\dfrac{\log _{3}5}{\log{405}3}$, then $N$ is
If $x=198!$ then value of the expression $\dfrac {1}{\log _{2}x}+\dfrac {3}{\log _{2}x}+...\dfrac {198}{\log _{2}x}$ equals ?
The value of $\dfrac{log _2 24}{log _{96} 2}-\dfrac{log _2192}{log _{12}{2}}$ is
The greatest value of $(4\log _{10}{x}-\log _{2}{(0.0001)})$ for $0 < x < 1$ is
If $P$ is the number of natural numbers whose logarithm to the base $10$ have the characteristic $p$ and $Q$ is the number of natural numbers logarithm of whose reciprocals to the base $10$ have the characteristic $-q$, then find the value of $\log _{10}P-\log _{10}Q$.
Find the number of positive integers which have the characteristic $3$, when the base of the logarithm is $7$.
The value of $\displaystyle anti\log _5\left [\frac {\tan^2\left (\frac {\pi}{5}\right )+\tan^2\left (\frac {2\pi}{5}\right )+20}{\cot^2\left (\frac {\pi}{5}\right )+\cot^2\left (\frac {2\pi}{5}\right )+28}\right ]$ is equal to
Evaluate using logarithm table: $\dfrac {28.45 \times \sqrt [3] {0.3254}}{32.43 \times \sqrt [5] {0.3046}}$
If $\log _{10} 2 = 0.3010$, then the number of digits in $2^{64}$ is
If $\log _{10} 3 = 0.4771$, then the number of zeros after the decimal in $3^{-100}$ is
Approximate of $\log _{11}21$ is