0

Areas of similar figures - class-X

Description: areas of similar figures
Number of Questions: 66
Created by:
Tags: similarity circle and tangents geometry maths pythagoras' theorem and similar shapes triangles similar triangles
Attempted 0/64 Correct 0 Score 0

If $\triangle ABC\sim \triangle DEF$ and $AB:DE=3:4$, then the ratio of area of triangles taken in order is 

  1. $\dfrac{9}{16}$

  2. $\dfrac{16}{9}$

  3. $\dfrac{15}{9}$

  4. $\dfrac{9}{15}$


Correct Option: A
Explanation:
 In similar triangle,
         Rratio of areas of triangle = square of ratio of corresponding sides
       Ratio of areas of triangle=${\dfrac {3^2}{4^2}}$
                                                 =$\dfrac{9}{16}$
In $\Delta A B C$, $P,Q,R$ are points on $\overline { B C } , \overline { C A } , \overline { A B }$ respectively, dividing them in the ratio $1 : 4,3 : 2$ and $3 : 7$. The points $S$ divides $AB$ in the ratio $1 : 3$.
Then $\frac { | \overline { A P } + \overline { B Q } + \overline { C R } | } { | \overline { C S } | } =$
  1. $\frac { 1 } { 5 }$

  2. $\frac { 2 } { 5 }$

  3. $\frac { 5 } { 2 }$

  4. $\frac { 7 } { 10 }$


Correct Option: A

The areas of two similar triangles are $16cm^2$ and $36cm^2$ respectively. If the altitude of the first triangle is $3cm$, then the corresponding altitude of the other triangle is:

  1. $4cm$

  2. $6.5cm$

  3. $4.5cm$

  4. $6cm$


Correct Option: C
Explanation:
Let ${A} _{1}$ and ${A} _{2}$ be the areas of the similar triangles.

$\Rightarrow \dfrac{{A} _{1}}{{A} _{2}}=\dfrac{{s} _{1}^{2}}{{s} _{2}^{2}}$

$\Rightarrow \dfrac{16}{36}=\dfrac{{\left(3\right)}^{2}}{{s} _{2}^{2}}$ given $({s} _{1}=3 \ cm )$

$\Rightarrow {s} _{2}^{2}=\dfrac{36\times 9}{16}$

$\Rightarrow {s} _{2}=\dfrac{6\times 3}{4}=4.5 \ cm$  

State true or false:


The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.

  1. True

  2. False


Correct Option: A
Explanation:

To prove: Ratio of the areas of two triangles of the same bases is equal to the ratio of their heights.
Proof:
Let us take triangle ${ T } _{ 1 }$ with height  ${ h } _{ 1 }$ and base ${ b } _{ 1 }$ and Triangle ${ T } _{ 2 }$ with height  ${ h } _{ 2 }$ and base ${ b } _{ 2 }$.

Area of Triangle ${ T } _{ 1 }$ $=\dfrac { 1 }{ 2 } \times \text{base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 }$

Area of Triangle ${ T } _{ 2 }$ $=\dfrac { 1 }{ 2 } \times \text{base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 }$

Ratio of area of two triangles,
$\dfrac { \text{Area of triangle} \ { T } _{ 1 } }{\text{ Area of triangle} \ { T } _{ 2 } } =\frac { \frac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 } }{ \frac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 } }$      
$ =\dfrac { h _{ 1 } }{ { h } _{ 2 } } $                                      (Base of two triangles are equal. So, $ { b } _{ 1 } = { b } _{ 2 }$) 
Proved.              

The areas of two similar triangles are $12$ ${cm}^{2}$ and $48$ ${cm}^{2}$. If the height of the smaller one is $2.1$ $cm$, then the corresponding height of the bigger one is:

  1. $4.41$ $cm$

  2. $8.4$ $cm$

  3. $4.2$ $cm$

  4. $0.525$ $cm$


Correct Option: C
Explanation:

Areas of two similar triangles are $12 cm^2$ and $48 cm^2$
For similar triangles the ratio of areas is equal to the ratio of square of corresponding heights
Hence, $\dfrac{A _1}{A _2} = \dfrac{(h _1)^2}{(h _2)^2}$

$\dfrac{12}{48} = \dfrac{(2.1)^2}{(h _2)^2}$

$(h _2)^2= 4 \times (2.1)^2$

$h _2 = 2 \times 2.1$

$h _2 = 4.2 cm$

A vertical stick of length $6m$ casts a shadow $4m$ long on the ground and at the same time a tower casts a shadow $28m$ long. Find the height of the tower.

  1. $42m$

  2. $48m$

  3. $62m$

  4. $52m$


Correct Option: A
Explanation:

The length of stick corresponds to the length of tower and shadow of stick corresponds to the shadow of tower.
Thus, $\dfrac{Length\ Stick}{Shadow\ Stick} = \dfrac{Length\ Tower}{Shadow\ Tower}$


$\dfrac{6}{4} = \dfrac{Length\ Tower}{28}$
$Length\ Tower = \dfrac{6 \times 28}{4}$
$Length\ Tower = 42$ m

The corresponding sides of two similar triangles are in the ratio $2$ to $3$. If the area of the smaller triangle is $12$ the area of the larger is

  1. $24$

  2. $27$

  3. $18$

  4. $8$


Correct Option: B
Explanation:

Area of similar triangles are in the ratio of square of the corresponding sides.
Hence, $\dfrac{\text{Area of smaller triangle}}{\text{Area of larger triangle}} = \frac{2^2}{3^2}$
$\Rightarrow \dfrac{12}{\text{Area of larger triangle}} = \dfrac{4}{9}$
$\text{Area of larger triangle}  = 27$

If  in $\triangle ABC$  and $\triangle EDA,$ $\displaystyle BC\bot AB,AE\bot AB$ and $\displaystyle DE\bot AC$ then $\displaystyle DE.BC=AD.AB$ 

  1. True

  2. False


Correct Option: A
Explanation:

In $\displaystyle \Delta ABC$ and $\displaystyle \Delta EDA$,
We have
$\displaystyle \angle ABC=\angle ADE$ [Each equal to $\displaystyle { 90 }^{ o }$]
$\displaystyle \angle ACB=\angle EAD$ [Alternate angles]
$\displaystyle \therefore $ By AA Similarity
$\displaystyle \Delta ABC\sim \Delta EDA$
$\displaystyle \Rightarrow \frac { BC }{ AB } =\frac { AD }{ DE } $
$\displaystyle \Rightarrow DE.BC=AD.AB$.
Hence proved.

If the ratio of the corresponding sides of two similar triangles is 2 : 3, then the ratio of their corresponding altitude is :

  1. 3 : 2

  2. 16 : 81

  3. 4 : 9

  4. 2 : 3


Correct Option: D
Explanation:

In two similar triangles, if the corresponding sides are in a particular ratio, then altitudes will also be in the same ratio.
Hence the ratio of the altitudes will be 2 : 3.

If in $\displaystyle \Delta ABC$ and $\displaystyle \Delta DEF,\frac { AB }{ DE } =\frac { BC }{ FD } $, then they will be similar if :

  1. $\displaystyle \angle B=\angle E$

  2. $\displaystyle \angle A=\angle D$

  3. $\displaystyle \angle B=\angle D$

  4. $\displaystyle \angle A=\angle F$


Correct Option: C
Explanation:

If two sides of a triangle are proportional to the corresponding two sides in another triangle, and their included angles are equal, then the two triangles are similar by SAS rule.

If $\quad \dfrac { AB }{ DE } = \dfrac { BC }{ FD } $, then for two triangles ABC and DEF to be similar, the included angle must be equal. In this case, the included angles are $\quad \angle B\quad and\quad \angle D$.

Ratio of areas of two similar triangles is equal to :

  1. ratio of squares of the corresponding altitudes

  2. ratio of squares of corresponding medians.

  3. Either (A) or (B)

  4. (A) and (B) both


Correct Option: D
Explanation:

Ratio of areas of two similar triangles is equal to ratio of squares of the corresponding altitudes and ratio of squares of corresponding medians. This means that if the ratio of either altitude or median is given and asked to find ratio of areas , then it will be the ratio of squares of the corresponding altitudes or ratio of squares of corresponding medians.

If $\Delta ABC\sim \Delta DEF$ such that area of $\Delta ABC$ is $9 cm^2$ and area of $\Delta DEF$ is $16 cm^2$ and $BC=1.8 cm$, then EF is

  1. 2.4 cm

  2. 1.35 cm

  3. 2.1 cm

  4. 3.2 cm


Correct Option: A
Explanation:
$ar(\triangle ABC)=9cm^2,\,ar(\triangle DEF)=16cm^2$ and $BC=1.8cm$

$\triangle ABC\sim\triangle DEF$                [ Given ]

$\Rightarrow$  $\dfrac{ar(\triangle ABC)}{ar(\triangle DEF)}=\dfrac{(BC)^2}{(EF)^2}$                    [ Area of similar triangle theorem ]

$\Rightarrow$  $\dfrac{9}{16}=\dfrac{(1.8)^2}{(EF)^2}$
Taking square root on both sides,

$\Rightarrow$  $\dfrac{3}{4}=\dfrac{1.8}{EF}$

$\Rightarrow$  $EF=\dfrac{1.8\times 4}{3}$

$\Rightarrow$  $EF=\dfrac{7.2}{3}$

$\Rightarrow$  $EF=2.4\,cm$


Two similar triangles have

  1. equal sides

  2. equal areas

  3. equal angles

  4. None of these


Correct Option: C
Explanation:

Two similar triangles have equal angles.

The sides of two similar triangles are in the ratio $4:9$ Areas of these triangles are in the ratio

  1. $3 : 5$

  2. $4 : 9$

  3. $81 : 16$

  4. $16 : 81$


Correct Option: D
Explanation:

If two triangles are similar to each other, then the ratio of the area of this triangle will be equal to the square of the ratio of the corresponding sides of this triangle.

$\therefore$ The ratio between area of these triangle$=\dfrac{(4)^2}{(9)^2}=\dfrac{16}{81}$

The areas of two similar triangles are $\displaystyle 9\ { cm }^{ 2 }$ and $\displaystyle 16\ { cm }^{ 2 }$, respectively. The ratio of their corresponding heights is

  1. $3 : 4$

  2. $4 : 3$

  3. $2 : 3$

  4. $4 : 5$


Correct Option: A
Explanation:
In similar traingles: -

${(\dfrac{{h1}}{{h2}})^2} = \dfrac{{S1}}{{S2}}$

Where h1 and h2 are the heights 

and S1, S2 are the areas of similar traingles

${{\rm{(}}\dfrac{{h1}}{{h2}})^2} = \dfrac{{9c{m^2}}}{{16c{m^2}}}$

$\dfrac{{h1}}{{h2}} = \sqrt {\dfrac{9}{{16}}} $

$\dfrac{{h1}}{{h2}} = \dfrac{3}{4}\ or\  {3:4}$

Triangle A has a base of x and a height of 2x. Triangle B is similar to triangle A, and has a base of 2x. What is the ratio of the area of triangle A to triangle B?

  1. 1:2

  2. 2:1

  3. 2:3

  4. 1:4


Correct Option: A
Explanation:
1 to 4: Since you know that triangle B is similar to triangle A, you can set up a proportion to represent the relationship between the sides of both triangles:
$\dfrac{base}{height}=\dfrac{x}{2x}=\dfrac{2x}{?}$
By proportional reasoning, the height of triangle B must be 4x. Calculate the area of each triangle with the area formula:
Triangle A: $A=\dfrac{b\times h}{2}=\dfrac{(x)(2x)}{2}=x^2$
Triangle B: $A=\dfrac{b\times h}{2}=\dfrac{(2x)(4x)}{2}=4x^2$
The ratio of the area of triangle A to triangle B is 1 to 4.

In $\displaystyle \Delta ABC\sim \Delta DEF$ and their areas are $\displaystyle { 36cm }^{ 2 }$ and $\displaystyle { 64cm }^{ 2 }$ respectively.If side AB=3 cm. Find DE.

  1. 3 cm

  2. 2 cm

  3. 5 cm

  4. 4 cm


Correct Option: D
Explanation:

In $\displaystyle \Delta ABC\sim \Delta DEF$
$\displaystyle \frac { ar.\left( \Delta ABC \right)  }{ ar.\left( \Delta DEF \right)  } =\frac { { AB }^{ 2 } }{ { DE }^{ 2 } } =\frac { { AC }^{ 2 } }{ { DF }^{ 2 } } =\frac { { BC }^{ 2 } }{ { EF }^{ 2 } } $
$\displaystyle \frac { 36 }{ 64 } =\frac { { AB }^{ 2 } }{ { DE }^{ 2 } } $
$\displaystyle \frac { 6 }{ 8 } =\frac { 3 }{ DE } $
$\displaystyle DE=\frac { 8\times 3 }{ 6 } =\frac { 24 }{ 6 } =4cm$
Therefore, D is the correct answer.

The areas of two similar triangles are $121 cm^2$ and $81 cm^2$ respectively. Find the ratio of their corresponding heights.

  1. $\dfrac{11}{9}$

  2. $\dfrac{10}{9}$

  3. $\dfrac{9}{11}$

  4. $\dfrac{9}{10}$


Correct Option: A
Explanation:

Given the areas of two similar triangles are $121$ sq cm and $81$ sq cm

We know that, the ratio of areas of two similar triangles is equal to the ratio of the squares of the corresponding heights.

The ratio of area of triangles $= \dfrac{121}{81}=\dfrac{(11)^{2}}{(9)^{2}}$
Then ratio of height of triangle $=\sqrt{\left [ \dfrac{11}{9} \right ]^{2}}=\dfrac{11}{9}$

What is the ratio of the heights of two isosceles triangles which have equal vertical angles, and of which the areas are in the ratio of $9 : 16$?

  1. $4.5:8$

  2. $3:4$

  3. $4:3$

  4. $8:4.5$


Correct Option: B

A vertical pole of $5.6m$ height casts a shadow $3.2m$ long. At the same time find the height of a pole which casts a shadow $5m$ long.

  1. $8.75m$

  2. $6.75m$

  3. $7.75m$

  4. None of these


Correct Option: A

If ratio of heights of two similar triangles is $4:9$, then ratio between their areas is?

  1. $2:3$

  2. $3:2$

  3. $81:16$

  4. $16:81$


Correct Option: D
Explanation:

Altitudes of similar triangles are in ratio $4:9$
Hence, area of these triangles
$=$ square of the ratio of their heights or altitudes
$=(4:9)^2=16:81$
Option $(4)$.

$\Delta ABC\sim\Delta PQR.$ If area$\left (ABC \right)= 2.25 m^{2}$, area$ \left (PQR \right)= 6.25 m^{2}$, $ PQ = 0.5 m $, then length of AB is:

  1. 30 cm

  2. 0.5 m

  3. 50 cm

  4. 3 m


Correct Option: A
Explanation:

$\triangle ABC\sim \triangle DEF$

In two similar triangles, the ratio of their areas is the square of the ratio of their sides

$\Rightarrow \dfrac { ar(ABC) }{ ar(PQR) } ={ \left( \dfrac { AB }{ PQ }  \right)  }^{ 2 }\ \Rightarrow \dfrac { 2.25 }{ 6.25 } ={ \left( \dfrac { AB }{ .5 }  \right)  }^{ 2 }\ \Rightarrow \dfrac { AB }{ .5 } =\dfrac { 15 }{ 25 } \ \Rightarrow AB=.3m\ \Rightarrow AB=.3\times 100=30cm$


In $ \triangle ABC\sim \triangle DEF$,  BC $ = $ 4 cm, EF $ =$ 5 cm and area($\triangle $ABC)$ = $ 80 $cm^2$, the area($\triangle$ DEF) is:

  1. $100 cm^{2}$

  2. $125 cm^{2}$

  3. $150 cm^{2}$

  4. $200 cm^{2}$


Correct Option: B
Explanation:

Given $\triangle ABC\sim \triangle DEF$

In two similar triangles, the ratio of their areas is the square of the ratio of their sides
$\Rightarrow \dfrac { ar(ABC) }{ ar(DEF) } ={ \left( \dfrac { BC }{ EF }  \right)  }^{ 2 }\ \Rightarrow \dfrac { 80 }{ ar(DEF) } ={ \left( \dfrac { 4 }{ 5 }  \right)  }^{ 2 }\ \Rightarrow \dfrac { 80 }{ ar(DEF) } =\dfrac { 16 }{ 25 } \ \Rightarrow ar(DEF)=125{ cm }^{ 2 }$

In $XYZ$ and $\triangle PQR,XYZ\leftrightarrow PQR$ is similarity, $XY=8,ZX=16,PR=8$. So $PQ+QR$=______.

  1. $20$

  2. $10$

  3. $15$

  4. $9$


Correct Option: A

Given $\Delta ABC-\Delta PQR$. If $\dfrac{AB}{PQ}=\dfrac{1}{3}$, then find $\dfrac{ar\Delta ABC}{ar\Delta PQR'}$.

  1. $\dfrac{1}{9}$

  2. $\dfrac{1}{8}$

  3. $\dfrac{8}{9}$

  4. $\dfrac{9}{1}$


Correct Option: A
Explanation:
$\dfrac{AB}{PQ}=\dfrac{1}{3}$
$\dfrac{ar\Delta ABC}{ar\Delta PQR}=\left(\dfrac{AB}{PQ}\right)^2=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}$.

A point taken on each median of a triangle divides the median in the ratio 1:3 reckoning from the vertex . then the ratio of the area of the triangle with vertices at these points  to that of the original triangle is :  

  1. 5 : 13

  2. 25 : 64

  3. 13 : 32

  4. none


Correct Option: C

$\Delta DEF -\Delta ABC$; If DE $:$ AB $=2:3$ and ar($\Delta$DEF) is equal to $44$ square units, then find ar($\Delta$ABC) in square units.

  1. $99$

  2. $33$

  3. $11$

  4. $66$


Correct Option: A

Given, $\Delta$ABC$-\Delta$PQR. If $\dfrac{ar(\Delta ABC)}{ar(\Delta PQR)}=\dfrac{9}{4}$ and $AB=18$cm, then find the length of PQ.

  1. $19$

  2. $12$

  3. $32$

  4. $44$


Correct Option: B

ABC is an isosceles triangle right angled at B. Similar triangles ACD and ABE are constructed in sides AC and AB. Find the ratio between the areas of $\triangle ABE$ and $\triangle ACD$.

  1. $2:1$

  2. $1:1$

  3. $1:2$

  4. none


Correct Option: C
Explanation:

In $\triangle ABC$

$\implies { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$
$\implies\quad { AB }^{ 2 }+{ AB }^{ 2 }={ AC }^{ 2 }$
$\implies\quad { AC }^{ 2 }={ 2AB }^{ 2 }\quad -(1)$
Ratio of areas of similar triangle is equal to ratio of squares of their corresponding sides.
$\implies\quad \cfrac { Area\quad (\triangle ABE) }{ Area\quad (\triangle ACD) } =\cfrac { { AB }^{ 2 } }{ { AC }^{ 2 } } $
 using(1)
$\implies\quad \cfrac { Area\quad (\triangle ABE) }{ Area\quad (\triangle ACD) } =\cfrac { { AB }^{ 2 } }{ { 2AB }^{ 2 } } =\cfrac { 1 }{ 2 } $

Area of similar triangles are in the ratio $25:36$ then ratio of their similar sides is _________?

  1. $5:7$

  2. $5:6$

  3. $6:5$

  4. $6:7$


Correct Option: B
Explanation:

The areas and sides of similar triangles are related as 

$\dfrac{Ar(\Delta ABC)}{Ar(\Delta PQR)}=\left(\dfrac {AB}{PQ}\right)^2\\dfrac {25}{36}=\left(\dfrac {AB}{PQ}\right)^2\\dfrac{AB}{PQ}=\sqrt {\dfrac {25}{36}}=\dfrac 56$

If $\Delta ABC \sim \Delta QRP, \displaystyle \frac{ar (ABC)}{ar (PQR)} = \frac{9}{4}, AB = 18 cm$ and $BC=15 cm$; then PR is equal to

  1. $10\ cm$

  2. $12\ cm$

  3. $\displaystyle \frac{20}{3}\ cm$

  4. $8\ cm$


Correct Option: A
Explanation:
Given :

Area of ∆ ABCArea of ∆QRP = 94


AB = 18 cm , BC = 15 cm So PR = ?

We know when two triangles are similar then " The areas of two similar triangles are proportional to the squares of their corresponding sides.

Area of ∆ ABCArea of ∆ QRP = $AB^2QR^2$ = $Bc^2PR^2$ = $AC^2QP^2$
So, we take 
Area of ∆ ABC Area of ∆ QRP = $BC^2PR^2$

Now substitute all given values and get

94 = 152PR2

Taking square root on both hand side, we get

32 = 15PR

PR = 10 cm

If $\Delta ABC \sim \Delta PQR$ and $\displaystyle {{PQ} \over {AB}} = {5 \over 2}$ then area $(\Delta ABC):$ area $(\Delta PQR) = ?$

  1. $\displaystyle {{25} \over 4}$

  2. $\displaystyle {4 \over {25}}$

  3. $\displaystyle {5 \over 2}$

  4. $\displaystyle {{25} \over 2}$


Correct Option: B
Explanation:
$\Delta ABC\sim \Delta PQR$

Also $\dfrac{PQ}{AB}=\dfrac{5}{2}$

If triangles are similar then the ratio of their is equal to ratio of square of the sides

$\dfrac{ar(ABC)}{ar(PQR)}=\dfrac{AB^2}{PQ^2}=\dfrac{4}{25}$.

The perimeter of two similar triangles is 30 cm and 20 cm. If one altitude of the former triangle is 12 cm, then length of the corresponding altitude of the latter triangle is 

  1. 8 cm

  2. 10 cm

  3. 12 cm

  4. 15 cm


Correct Option: A
Explanation:
$\Delta$ABC and $\Delta$DEF be two similar triangle. Perimeter of first and second triangles are $30$cm and $20$cm respectively.
Then $\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}=k$ (say)
$\therefore AB=kDE, BC=kEF, AC=kDF$
$AB+BC+AC=k(DE+EF+DF)$
$\Rightarrow 30=k\times 20$
$\Rightarrow k=\dfrac{3}{2}$
$\Rightarrow \dfrac{AB}{DE}=\dfrac{3}{2}$
$\Rightarrow \dfrac{12}{DE}=\dfrac{3}{2}$
$\Rightarrow DE=8$.

The perimeter of two similar triangles is 40 cm and 50 cm. Then the ratio of the areas of the first and second triangles is 

  1. 4 : 5

  2. 5 : 4

  3. 25 : 16

  4. 16 : 25


Correct Option: D
Explanation:
We know the ratio of perimeters of $2$ similar triangles are equal to ratio of corresponding sides

i.e., $\dfrac{perimeter \,of \,1^{st}}{perimeter\, of \,2^{nd}}=\dfrac{side\, of\, 1^{st}}{side\, of\, 2^{nd}}$

$\Rightarrow \dfrac{40}{50}=\dfrac{side\, of\, 1^{st}}{side\, of \,2^{nd}}=\dfrac{4}{5}$

As both the triangles are similar 

$\Rightarrow \dfrac{Area\, of\, 1^{st}}{Area\, of\, 2^{nd}}=\left(\dfrac{(side \,of\, 1^{st})^2}{(side\, of\, 2^{nd})^2}\right)=\dfrac{16}{25}$.

If the vector $a=2i+3j+6k$ and $b$ are collinear and $|b|=21$, then $b=$

  1. $\pm(2i+3j+6k)$

  2. $\pm3(2i+3j+6k)$

  3. $(2i+j+k)$

  4. $\pm21(2i+3j+6k)$


Correct Option: A

 The area of the ratio of two similar triangles is equal to the ratio of the square of their corresponding sides.

  1. True

  2. False


Correct Option: A

The areas of two similar triangles are $49 \ {cm}^{2}$ and $64 \ {cm}^{2}$ respectively. The ratio of their corresponding sides is:

  1. $49:64$

  2. $7:8$

  3. $64:49$

  4. none of these


Correct Option: B
Explanation:

Areas of two similar triangles are $49 $ cm $^2$ and $64$ cm $^2.$
For similar triangles the ratio of areas is equal to the ratio of square of corresponding sides.
Hence, $\dfrac{A _1}{A _2} = \dfrac{(s _1)^2}{(s _2)^2}$
$\Longrightarrow \dfrac{49}{64} = \dfrac{(s _1)^2}{(s _2)^2}$
$\Longrightarrow\dfrac{s _1}{s _2} = \dfrac{7}{8}$

$\Delta ABC \sim  \Delta PQR$ and $\displaystyle\frac{A( \Delta ABC)}{A( \Delta PQR)}=\dfrac{16}{9}$. If $PQ=18$ cm and $BC=12$ cm, then $AB$ and $QR$ are respectively:

  1. $9$ cm, $24$ cm

  2. $24$ cm, $9$ cm

  3. $32$ cm, $6.75$ cm

  4. $13.5$ cm, $16$ cm


Correct Option: B
Explanation:

$\displaystyle\frac{16}{9}=\left[\frac{AB}{PQ}\right]^2=\left[\frac{BC}{QR}\right]^2$

$\displaystyle\Rightarrow \frac{16}{9}=\left[\frac{AB}{18}\right]^2$ and $\displaystyle\frac{16}{9}=\left[\frac{12}{QR}\right]^2$

$\displaystyle \Rightarrow \frac{4}{3}=\frac{AB}{18}$ and $\displaystyle \frac{4}{3}=\frac{12}{QR}$

$\Rightarrow AB=24$ cm, $QR=9$ cm.

Two isosceles triangles have equal vertical angles and their areas are in the ratio $16:25$. Find the ratio of their corresponding heights.

  1. $4:5$

  2. $25:16$

  3. $5:4$

  4. $16:25$


Correct Option: A
Explanation:

$\triangle ABC$ and $\triangle DEF$ be the given triangles in which $AB=AC, DE=DF$, $\angle A=\angle D$
and $\cfrac{Area\quad (\triangle ABC)}{Area\quad (\triangle DEF)}=\cfrac{16}{25}$
Draw $AL\bot  BC$ and $DM\bot  EF$
Now, $\cfrac{AB}{BC}=1$ and $\cfrac{DE}{DF}=1$  ($\because \quad AB=AC;\quad DE=DF$)
$\Rightarrow \cfrac{AB}{AC}=\cfrac{DE}{DF}$,
$\therefore$ $\ln \triangle ABC$ and $\triangle DEF$, we have
$\cfrac{AB}{DE}=\cfrac{AC}{DF}$ and $\angle A=\angle D$
$\Rightarrow$ $\triangle ABC\sim \triangle DEF$ [By SAS similarity axiom)
But, the ratio of the areas of two similar $\triangle s$ is the same as the ratio of the squares of their corresponding heights.
$\cfrac{Area\quad (\triangle ABC)}{Area\quad (\triangle DEF)}=\cfrac {{AL}^{2}}{{DM}^{2}}$
$\Rightarrow$ $\cfrac{16}{25}={ \left( \cfrac {AL}{DM}  \right)  }^{ 2 }$
$\Rightarrow$ $\cfrac{4}{5}$
$\therefore$ $AL:DM=4:5$, i.e., the ratio of their corresponding heights$=4:5$

If $\triangle ABC\sim \triangle  PQR,$  $ \cfrac{ar(ABC)}{ar(PQR)}=\cfrac{9}{4}$,  $AB=18$ $cm$ and $BC=15$ $cm$, then $QR$ is equal to:

  1. $10$ $cm$

  2. $12$ $cm$

  3. $\cfrac{20}{3}$ $cm$

  4. $8$ $cm$


Correct Option: A
Explanation:

Given, $\triangle ABC \sim \triangle PQR$,

Then, $\dfrac{ar(ABC)}{ar(PQR)} = \dfrac{AB^2}{PQ^2} = \dfrac{BC^2}{QR^2} = \dfrac{AC^2}{PR^2}$
$\dfrac{9}{4} = \dfrac{BC^2}{QR^2}$

$\dfrac{9}{4} = \dfrac{15^2}{QR^2}$
$QR^2 = \dfrac{4 \times 225}{9}$
$QR^2 = 100$
$QR = 10 \ cm$

Let $\triangle ABC\sim \triangle DEF$ and their areas be, respectively $64\ {cm}^{2}$ and $121\ {cm}^{2}$. If $EF=15.4\ cm$, find $BC$.

  1. $11.2\ cm$

  2. $11.6\ cm$

  3. $11.4\ cm$

  4. $10.8\ cm$


Correct Option: A
Explanation:

$\triangle ABC\sim \triangle DEF\quad $ (Given)
$\Rightarrow \cfrac { ar(ABC) }{ ar(DEF) } =\cfrac { { BC }^{ 2 } }{ { EF }^{ 2 } } $ (ratio of Areas of Similar triangles are equal to ratio of squares of corresponding sides)
$\Rightarrow \quad \cfrac { 64 }{ 121 } =\cfrac { { BC }^{ 2 } }{ { EF }^{ 2 } } \quad { \left{ \cfrac { BC }{ EF }  \right}  }^{ 2 }={ \left{ \cfrac { 8 }{ 11 }  \right}  }^{ 2 }$
$\Rightarrow \quad \cfrac { BC }{ EF } =\cfrac { 8 }{ 11 } \quad \Rightarrow \quad BC=\cfrac { 8 }{ 11 } \times EF$
$\Rightarrow \quad BC=\cfrac { 8 }{ 11 } \times 15.4cm=11.2cm$

If $\triangle ABC$ is similar to $\triangle DEF$ such that $BC=3$ cm, $EF=4$ cm and area of $\triangle ABC=54: \text{cm}^{2}.$ Find the area of $\triangle DEF.$ (in cm$^2$)

  1. $54$

  2. $36$

  3. $72$

  4. $96$


Correct Option: D
Explanation:

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,
Therefore, $\displaystyle \frac{ar\left ( \triangle ABC \right )}{ar\left ( \triangle DEF \right )}=\frac{BC^{2}}{EF^{2}}$ 

$\Rightarrow $ $\displaystyle \frac{54}{ar\left ( \triangle DEF \right )}=\frac{3^{2}}{4^{2}}$ 
Thus $\displaystyle ar\left ( \triangle DEF \right )=\frac{54\times 16}{9}=96: \text{cm}^{2}$

The areas of two similar triangles are $121$ cm$^{2}$ and $64$ cm$^{2}$, respectively. If the median of the first triangle is $12.1$ cm, then the corresponding median of the other is:

  1. $6.4$ cm

  2. $10$ cm

  3. $8.8$ cm

  4. $3.2$ cm


Correct Option: C
Explanation:

The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding medians. Therefore,
$\displaystyle \frac{121}{64}=\frac{\left ( 12.1 \right )^{2}}{x^{2}},$ where $x$ is the median of the other $\triangle .$
$\Rightarrow $ $\displaystyle x^{2}=\frac{\left ( 12.1 \right )^{2}\times 64}{121}\Rightarrow x=\sqrt{\frac{121}{100}\times 64}$
   $\displaystyle =\frac{11}{10}\times 8=8.8$ cm.

In $\Delta ABC$, a line is drawn parallel to $BC$ to meet sides $AB$ and $AC$ in $D$ and $E$ respectively. If the area of the $\Delta ADE$ is $\dfrac 19$ times area of the $\Delta ABC$, then the value of $\dfrac {AD}{AB}$ is equal to:

  1. $\dfrac 13$

  2. $\dfrac 14$

  3. $\dfrac 15$

  4. $\dfrac 16$


Correct Option: A
Explanation:

By theorem on ratio of areas of similar triangles, we get

$\dfrac {A(\triangle ADE)}{A(\triangle ABC)} = \left(\dfrac {AD}{DB}\right)^2$

$\therefore \dfrac 19 = \dfrac {AD^2}{DB^2}$

$\therefore \dfrac {AD}{DB}= \dfrac 13$.

If the sides of two similar triangles are in the ratio $1:7$, find the ratio of their areas.

  1. $7:1$

  2. $1:7$

  3. $1:49$

  4. $1:14$


Correct Option: C
Explanation:

We know that the relation between area of two similar triangle:
If two triangles are similar, the ratio of their areas is equal to the square of the ratio of their corresponding sides. 

Given, sides of two similar triangles are in the ratio $1:7$.
So, the ratio of their areas $= 1:49$.

The corresponding sides of two similar triangles are in the ratio $a : b$. What is the ratio of their areas?

  1. $a : b$

  2. $2a : 2b$

  3. $a^{2} : b^{2}$

  4. $\dfrac {1}{a} : \dfrac {1}{b}$


Correct Option: C
Explanation:

Given two triangles are similar, then the ratio of the areas $=a^2:b^2$

Eg: The ratio of the sides of a similar triangle is $4:9$
Scale factor for the sides of these triangles $k=\cfrac 49$
$\therefore$ Ratio of area will be:
$k^2=\cfrac {area of \triangle A}{area of \triangle B}=(\cfrac 49)^2=\cfrac {16}{81}$

The ratio of areas of two similar triangles is $81 : 49$. If the median of the smaller triangle is $4.9\ cm$, what is the median of the other?

  1. $4.9\ cm$

  2. $6.3\ cm$

  3. $7\ cm$

  4. $9\ cm$


Correct Option: B
Explanation:

Area of $\triangle ABC= \cfrac 12 \times base \times height$

In similar triangles, $\cfrac {base 1}{base 2}=\cfrac {height 1}{height 2}=\cfrac {side 1}{side}$
$\therefore \cfrac {Area 1}{Area 2}= (\cfrac {Median 1}{Median 2})^2$
Ratio of Medians $=\sqrt{\cfrac {81}{49}}=\cfrac 97 >1$ 
$\therefore$ Altitude of smaller triangle $=4.9 \times \cfrac 97=6.3$

$\triangle ABD \sim \triangle DEF$ and the perimeters of $\triangle ABC$ and $\triangle DEF$ are $30 cm$ and $18 cm$ respectively. If $BC = 9 cm$, calculate measure of $EF$.

  1. $6.3\ cm$

  2. $5.4\ cm$

  3. $7.2\ cm$

  4. $4.5\ cm$


Correct Option: B
Explanation:

Similar triangles are triangle with similar shape but can have different sizes. 

Since there is something common about them, then to establish the relationship we have something called linear scale factor which is used to get the length of the other when the length of the other similar triangles is known. 
$LSF=\cfrac {30}{18}=\cfrac 53$
$\cfrac {BC}{EF}=\cfrac 53 \Rightarrow \cfrac 9{EF}=\cfrac 53$
$\therefore EF=9 \times \cfrac 35 = 5.4cm$

Two isosceles triangles have their corresponding angles equal and their areas are in the ratio $25 : 36$. Find the ratio of their corresponding heights

  1. $25 : 35$

  2. $36 : 25$

  3. $5 : 6$

  4. $6 : 5$


Correct Option: C
Explanation:
We know, Ratios of areas of similar triangles is equal to ratio of squares of their corresponding sides.
Hence,

$\dfrac{Area \ of \ \triangle _1}{Area \ of \ \triangle _2}=\dfrac{(height \ of \ \triangle _1)^2}{(height \ of \ \triangle _2)^2}$

Taking square root on both sides,

$\dfrac{(height \ of \ \triangle _1)}{(height \ of \ \triangle _2)}=\sqrt{\dfrac{Area \ of \ \triangle _1}{Area \ of \ \triangle _2}}$

$\dfrac{(height \ of \ \triangle _1)}{(height \ of \ \triangle _2)}=\sqrt{\dfrac{25}{36}}=\dfrac{5}{6}$

Option C

In similar triangles $\triangle ABC$ and $\triangle FDE, DE = 4 cm, BC = 8 cm$ and area of $\triangle FDE = 25 cm^2$. What is the area of $\Delta ABC$?

  1. 144 cm$^2$

  2. 121 cm$^2$

  3. 100 cm$^2$

  4. 81 cm$^2$


Correct Option: C
Explanation:

  $DE=4\,cm,\,BC=8\,cm$ and $ar(\triangle FDE)=25\,cm^2$                  [ Given ]


$\Rightarrow$  $\triangle ABC\sim\triangle FDE$             [ Given ]

$\Rightarrow$  $\dfrac{ar(\triangle ABC)}{ar(\triangle FDE)}=\dfrac{(BC)^2}{(DE)^2}$                       [ By area of similar triangle theorem ]

$\Rightarrow$  $\dfrac{ar(\triangle ABC)}{25}=\dfrac{(8)^2}{(4)^2}$

$\Rightarrow$  $ar(\triangle ABC)=\dfrac{64}{16}\times 25$

$\Rightarrow$  $ar(\triangle ABC)=4\times 25$
$\therefore$  $ar(\triangle ABC)=100\,cm^2$

The areas of two similar triangles are $81\ cm^{2}$ and $49\ cm^{2}$. If the altitude of the bigger triangle is $4.5\ cm$, find the corresponding altitude of the smaller triangle.

  1. $3 cm$

  2. $2.5 cm$

  3. $4 cm$

  4. $3.5 cm$


Correct Option: D
Explanation:

Given: Area of $two$ similar triangle $81{cm}^{2}$ and $49{cm}^{2}$

Altitude of bigger triangle $=4.5cm$
For similar triangle,
${\text{Ratio on sides}}^{2}=\text {Ratio of their Area}$
$\therefore$ $\cfrac { { 4.5 }^{ 2 } }{ { x }^{ 2 } } =\cfrac { 81 }{ 49 } $
$\cfrac { 45\times 45 }{ { x }^{ 2 }\times 100 } =\cfrac { 81 }{ 49 } $
$100{x}^{2}=25\times 49$
${x}^{2}=\cfrac{25\times 49}{100}$
${x}^{2}=\cfrac{49}{4}$
$x=\cfrac{7}{2}$
$x=3.5cm$

If $\triangle ABC$ and $\triangle PQR$ are similar and $\dfrac {BC}{QR} = \dfrac {1}{3}$ find $\dfrac {area (PQR)}{area (BCA)}$

  1. $9$

  2. $3$

  3. $\dfrac {1}{3}$

  4. $\dfrac {1}{9}$


Correct Option: A
Explanation:

$\triangle ABC$ & $\triangle PQR$ are similar.

$\therefore \cfrac{AB}{PQ}=\cfrac{BC}{QR}=\cfrac{1}{3}$
$\therefore \cfrac{\text{Area}(PQR)}{\text{Area}(BCA)}={(\cfrac{QR}{BC}})^{2}$
$\cfrac { { Area }(PQR) }{ { Area }(BCA) } ={ (\cfrac { 3 }{ 1 } ) }^{ 2 }=9$

What is the ratio of the areas of two similar triangles whose corresponding sides are in the ratio 15:19?

  1. $\sqrt{15} : \sqrt{19}$

  2. $15 : 19$

  3. $225 : 361$

  4. $125 : 144$


Correct Option: C
Explanation:

We know ratio  of areas of two similar triangles is the ratio of the square of their corresponding sides.

Ratio of sides $\dfrac{15}{19}$
Ratio of areas $={ \left( \dfrac { 15 }{ 19 }  \right)  }^{ 2 }=\dfrac { 225 }{ 361 } $
So option $C$ is correct.

The areas of two similar triangles are 100 $cm^2$ and 64 $cm^2$. If the median of greater side of first triangle is 13 cm, find the corresponding median of the other triangle.

  1. 20 cm

  2. 15 cm

  3. 10 cm

  4. 16 cm


Correct Option: C
Explanation:
Given area of two similar triangles are $100$ sq cm and $64$ sq cm
The areas of two Similar-Triangles are in the ratio of the squares of the corresponding medians
The ratio of area of triangle $=\dfrac{100}{64}=\dfrac{25}{16}$
Median of greater triangle is $13$ cm and let other median is $x$ cm
$\therefore \dfrac{(13)^{2}}{(x)^{2}}=\dfrac{25}{16}$

$\Rightarrow \dfrac{169}{x^{2}}=\dfrac{25}{16}$

$\Rightarrow 25x^{2}=169\times 16$

$\Rightarrow x^{2}=\dfrac{2704}{25}=108.16$

$\Rightarrow x=10cm$

If the sides of two similar triangles are in the ratio $2 : 3$, then their areas are in the ratio:

  1. $9 : 4$

  2. $4 : 9$

  3. $2 : 3$

  4. $3 : 2$


Correct Option: B
Explanation:

Given, sides of two similar triangles are in the ratio $2:3$

Thus, the ratio of their areas are $($ side $)^2$
$=\left (\dfrac {2}{3}\right)^2=\dfrac {4}{9}$ 
Therefore, the areas are in the raatio $4:9$.

In $\Delta ABC$, $D$ is a point on $BC$ such that $3BD = BC$. If each side of the triangle is $12 cm$, then $AD$ equals:

  1. $4\sqrt { 5 } cm$

  2. $4\sqrt { 6 } cm$

  3. $4\sqrt { 7 } cm$

  4. $4\sqrt { 11 } cm$


Correct Option: C
Explanation:

Given $\triangle ABC$ with $D$ a point on $BC$ such that $3BD=BC$

$\therefore$ $BD=\dfrac{BC}{3}=4cm$
$AD\  \bot\ BC$
Let's take a point $E$ on $BC$ which makes a right angle triangle $ADE$ and $AEB$ at $E$ such that $BE=\dfrac{1}{2}BC=6cm$
$\therefore\ DE=BE-BD=2cm$.
$\therefore\ AE^2=AB^2-BE^2=144-36=108$
$\because\ AED=90^{o}$
$\therefore\ AD^2=AE^2+DE^2=108+4=112$
$\therefore\ AD=4\sqrt{7}cm$.

In $\Delta ABC \sim  \Delta PQR$, $M$ is the midpoint of $BC$ and $N$ is the midpoint of $QR$. If the area of $\Delta ABC =$ $100$ sq. cm and the area of $\Delta PQR =$ $144$ sq. cm. If $AM = 4$ cm, then $PN$ is:

  1. $4.8$ cm

  2. $12$ cm

  3. $4$ cm

  4. $5.6$ cm


Correct Option: A
Explanation:

$\dfrac { ar(\triangle ABC) }{ ar(\triangle PQR) } =\dfrac { 100 }{ 144 } $

If triangles are similar then ratio of their areas is equal to ratio of square of their corresponding sides
$\dfrac { AB^{ 2 } }{ PQ^{ 2 } } =\dfrac { 100 }{ 144 } \ \dfrac { AB }{ PQ } =\dfrac { 10 }{ 12 } $
$AM$ and $PN$ are medians
Therefore, $ \dfrac { AM }{ PN } =\dfrac { AB }{ PQ } $
$\Rightarrow  \dfrac { 4 }{ PN } =\dfrac { 10 }{ 12 } \ \Rightarrow PM=4.8$

D and E are the points on the sides AB and AC respectively of triangle ABC such that $ DE||BC$. If area of $ \triangle DBC =15 cm^2$, then area of $\triangle EBC $ is:

  1. $30cm^{2}$

  2. $7.5cm^{2}$

  3. $15cm^{2}$

  4. $20cm^{2}$


Correct Option: C
Explanation:

Given, $DE||BC$

Therefore, the altitudes of $\triangle EBC$ and $\triangle DBC$ are equal.
Also, they have a common base $BC$.
Thus, $ \text{Ar}(\triangle EBC)=\text{Ar}(\triangle DBC)$
$\Rightarrow \text{Ar}(\triangle EBC)=15 \ \ \text{cm}^2$

Through a point $P$ inside the triangle $ABC$ a line is drawn parallel to the base $AB$, dividing the triangle into two equal area. If the altitude to $AB$ has a length of $1$, then the distance from $P$ to $AB$ is

  1. $\dfrac {1}{2}$

  2. $\dfrac {1}{4}$

  3. $2 - \sqrt {2}$

  4. $\dfrac {2 - \sqrt {2}}{2}$

  5. $\dfrac {2 + \sqrt {2}}{8}$


Correct Option: D
Explanation:

Let $x$ be the distance from $P$ to $AB$. By similar triangles.
$\dfrac {1}{2} = \dfrac {(1 - x)^{2}}{1^{2}}; \therefore 1 - x = \pm \dfrac {1}{\sqrt {2}}; \therefore x = \dfrac {2 - \sqrt {2}}{2}$
(negative sq. root rejected).

Triangles ABC and DEF are similar. If their areas are 64 $cm^2$ and 49 $cm^2$ and if AB is 7 cm, then find the value of DE.

  1. 8 cm

  2. $\dfrac{49}{8}$ cm

  3. $\dfrac{8}{49}$ cm

  4. $\dfrac{64}{7}$cm


Correct Option: B
Explanation:

$\Delta ABC \Delta DEF$
$\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}$.
We know that,
$\dfrac{Area of \Delta  ABC}{ Area of \Delta  DEF} = $ $\Rightarrow \dfrac{64}{49} = \left ( \dfrac{7}{DE} \right )^2$
$\Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \frac{7}{DE} \right )^2 \Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \dfrac{7}{DE} \right )^2 = \dfrac{49}{8}$cm 

If $\triangle ABC\sim \triangle QRP,\dfrac{Ar(ABC)}{Ar(QRP)}=\dfrac{9}{4}$,$AB=18\ cm$ and $BC=15\ cm$; then $PR$ is equal to:

  1. $10\ cm$

  2. $12\ cm$

  3. $20\ cm$

  4. $8\ cm$


Correct Option: A
Explanation:

Given $ \triangle  ABC \sim  \triangle  QRP $
Therefore, $ \frac { Area\triangle ABC\quad  }{ Area\triangle QRP\quad }=\frac { { BC }^{ 2 } }{ { PR }^{ 2 } }  $
or $ \frac { 9 }{ 4 }  = \frac { { 15 }^{ 2 } }{ { PR }^{ 2 } }  $
or $ { PR }^{ 2 }\quad =\quad \frac { { 15 }^{ 2 }\quad \times \quad 4 }{ 9 }  $ cm.
Therefore, $ { PR }=\frac { { 15 }\times \quad 2 }{ 3 }  = $ 10 cm.

Which among the following is/are correct?
(I) If the altitudes of two similar triangles are in the ratio $2:1$, then the ratio of their areas is $4 : 1$.
(II) $PQ \parallel BC$ and $AP : PB=1:2$. Then, $\dfrac{A(\triangle APQ)}{A(\triangle ABC)}=\dfrac{1}{4}$

  1. $(I)$

  2. $(II)$

  3. Both $(I)$ and $(II)$

  4. None of the above


Correct Option: A
Explanation:

Option A: This statement is correct. The ratio of the altitudes of the similar triangles  is  $2:1$

Ratio of the areas of the similar triangles $=$ Square of the ratio of  the  altitudes.

$\therefore$ Ratio  of  the  areas $ =  { \left( \dfrac { 2 }{ 1 }  \right)  }^{ 2 }=  4:1$


Option B: If  $PQ\parallel BC$,  then $\triangle APQ \sim \triangle ABC$ by AA test of similarity.

Hence, $\dfrac {A( \triangle APQ)}{A(\triangle ABC)}=\dfrac { AP^2 }{ AB^2 }$

If $AP = x$ and $BP = 2x$, then $AB = 3x$.

$\therefore \dfrac {A( \triangle APQ)}{A(\triangle ABC)}=\dfrac 19$

So, the given statement is false

Two triangles ABC and PQR  are similar, if $BC : CA : AB = $1: 2 : 3, then $\dfrac{QR}{PR}$ is

  1. $\dfrac{1}{3}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{{\sqrt{2}}}$

  4. $\dfrac{2}{3}$


Correct Option: B
Explanation:

Two triangle ABC and PQR are similar then,
$AB: BC:CA :: PQ: QR: PR$
Given $BC: CA = 1:2$ 
Hence, $QR : PR = BC : CA = 1:2$

Let $\displaystyle \Delta XYZ$ be right angle triangle with right angle at Z. Let $\displaystyle A _{X}$ denotes the area of the circle with diameter YZ. Let $\displaystyle A _{Y}$ denote the area of the circle with diameter XZ and let $\displaystyle A _{Z}$ denotes the area of the circle diameter XY. Which of the following relations is true?

  1. $\displaystyle A _{Z}=A _{X}+A _{Y}$

  2. $\displaystyle A _{Z}=A^{2} _{X}+A^{2} _{Y}$

  3. $\displaystyle A^{2} _{Z}=A^{2} _{X}+A^{2} _{Y}$

  4. $\displaystyle A^{2} _{Z}=A^{2} _{X}-A^{2} _{Y}$


Correct Option: A
Explanation:

In $\triangle XYZ$, using Pythagoras theorem,
$XY^2 = XZ^2 + YZ^2$
$\pi XY^2 = \pi XZ^2 + \pi YZ^2$ (Multiply by $\pi$)
$A _z = A _x + A _y$

- Hide questions