0

Multiplicative inverse of a matrix - class-XII

Description: multiplicative inverse of a matrix
Number of Questions: 64
Created by:
Tags: maths matrix determinants business maths matrices applications of matrices and determinants
Attempted 0/62 Correct 0 Score 0

Find the inverse f the following matrices by using transformation method.

  1. $\begin{bmatrix}
    1 &2 \
    2 &-1
    \end{bmatrix}$

  2. $\begin{bmatrix}
    2 &-3 \
    -1 &2
    \end{bmatrix}$

  3. $\begin{bmatrix}
    0& 1 &2 \
    1& 2 &3 \
    3& 1 &1
    \end{bmatrix}$

  4. $\begin{bmatrix}
    2& 0 &-1 \
    5& 1 &0 \
    0& 1 &3
    \end{bmatrix}$


Correct Option: B

If $A=\begin{bmatrix} \cos { x }  & \sin { x }  \ -\sin { x }  & \cos { x }  \end{bmatrix}$ and $A(AdjA)=k\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ then the value of $k$ is

  1. $\sin{x}\cos{x}$

  2. $1$

  3. $-1$

  4. $2$


Correct Option: B
Explanation:

$A(AdjA)=\begin{bmatrix}c^{2}+s^{2}&cs-cs\-cs+cs&c^{2}+s^{2}\end{bmatrix}=\begin{bmatrix}1&0\0&1\end{bmatrix}\implies k=1$

If A be square matrix of order n and k is a scalar, then adj (KA) is:

  1. $K^{n}(adjA)$

  2. K (adj A)

  3. $K^{n-1}(adjA)$

  4. $K^{n+1}(adjA)$


Correct Option: C

If $A=\left[ \begin{matrix} 2 & -3 \ -4 & 7 \end{matrix} \right] $, then ${2A}^{-1}=$

  1. $81-2A$

  2. $91-A$

  3. $31-2A$

  4. $A-91$


Correct Option: B
Explanation:

$A=\left[ { \begin{array} { *{ 20 }{ c } }2 & { -3 } \ { -4 } & 7 \end{array} } \right]  \ \left| { A-\lambda I } \right| =0 \ \left| { \begin{array} { *{ 20 }{ c } }{ 2-\lambda  } & { -3 } \ { -4 } & { 7-\lambda  } \end{array} } \right| =0 \ \left( { 2-\lambda  } \right) \left( { 7-\lambda  } \right) -12=0 \ \left( { \lambda -7 } \right) \left( { \lambda -2 } \right) -12=0 \ { \lambda ^{ 2 } }-9\lambda +2=0 \ { A^{ 2 } }-9A+2I=0 \ A-9I+2{ A^{ -1 } }=0 \ 2{ A^{ -1 } }=9I-0 \ 2{ A^{ -1 } }=9I-A$


$ \ Hence,\, option\, B\, is\, the\, correct\, answer.$

If AB = AC then 

  1. B = C

  2. $B\neq C$

  3. B need not be equal to C

  4. B = -C


Correct Option: C
Explanation:

Value of B and C depends on the value of A. if A is non-singular, i.e non zero, then B=C. 
But if A=0, then both terms AB and AC becomes zero, so B and C need not be necessarily equal.

$A=\begin{bmatrix} \cos\theta & -\sin\theta \ \sin\theta & \cos\theta\end{bmatrix}$ and $AB=BA=I$, then B is equal to

  1. $\begin{bmatrix} -\cos\theta & \sin\theta \ \sin\theta & \cos\theta\end{bmatrix}$

  2. $\begin{bmatrix} \cos\theta & \sin\theta \ -\sin\theta & \cos\theta\end{bmatrix}$

  3. $\begin{bmatrix} -\sin\theta & \cos\theta \ \cos\theta & \sin\theta\end{bmatrix}$

  4. $\begin{bmatrix} \sin\theta & -\cos\theta \ -\cos\theta & \sin\theta\end{bmatrix}$


Correct Option: B
Explanation:

Given, $A=\begin{bmatrix} \cos\theta & -\sin\theta \ \sin\theta & \cos\theta \end{bmatrix}$ and $AB=BA=I$
$\Rightarrow B=A^{-1}I=A^{-1}$
$=\displaystyle\frac{1}{\cos^2\theta +\sin^2\theta}\begin{bmatrix} \cos\theta & \sin\theta \ -\sin\theta & \cos\theta\end{bmatrix}$
$\Rightarrow B=\begin{bmatrix}\cos\theta & \sin\theta \ -\sin\theta & \cos\theta\end{bmatrix}$

$A=\begin{bmatrix} 2&2&1\0&1&4\0&2&6\end{bmatrix}$, $B=\begin{bmatrix} 2&2&1\0&1&4\0&0&1\end{bmatrix}$

To obtain B from the matrix A, order of operations would be   

  1. $R _3 \rightarrow R _3-3R _1$, $R _3\rightarrow R _2-R _1$

  2. $R _3 \rightarrow R _1-2R _2$, $R _3 \rightarrow (R _3 \times {-2})$

  3. $R _2 \rightarrow R _2-2R _2$, $R _3 \rightarrow (R _3 \div {2})$

  4. $R _3 \rightarrow R _3-2R _2$, $R _3 \rightarrow (R _3 \div {-2})$


Correct Option: D
Explanation:
$A=\begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 4 \\ 0 & 2 & 6 \end{bmatrix}B=\begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$
From A to B
${ R } _{ 1 }$ & ${ R } _{ 2 }$ are same
changing ${ R } _{ 3 }$ w.r.t. ${ R } _{ 2 }$
Clearly the term $'2'$ in ${ R } _{ 3 }{ C } _{ 2 }$ in A is change to $'0'$ in comparing them we find
${ R } _{ 3 }\rightarrow { R } _{ 3 }-2{ R } _{ 2 }$
We get the matrix
$\begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & -2 \end{bmatrix}$
Now if we divide ${ R } _{ 3 }$ w.r.t. $'-2'$
We get the derived term $1$ in ${ R } _{ 3 }{ C } _{ 3 }$ of B
$\begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}=B$
$\therefore $Operations are
${ R } _{ 3 }\rightarrow { R } _{ 3 }-2{ R } _{ 2 }$
 and ${ R } _{ 3 }\rightarrow { R } _{ 3 }-(-2)$
Option D

A= $\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$. 

B is matrix obtained by subtracting $4 \ times \ 1^{st}\ row\ from \ 2^{nd} \ row$ of A. Find matrix B

  1. $\begin{bmatrix} 1&2&3\0&3&6\0&6&12\end{bmatrix}$

  2. $\begin{bmatrix} 1&2&3\7&0&0\4&5&6\end{bmatrix}$

  3. $\begin{bmatrix} 1&2&3\0&1&2\3&4&5\end{bmatrix}$

  4. $\begin{bmatrix} 1&2&3\0&-3&-6\7&8&9\end{bmatrix}$


Correct Option: D
Explanation:
Given $A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
$\Rightarrow { R } _{ 2 }\rightarrow { R } _{ 2 }-4{ R } _{ 1 }$ (for matrix B)
$\Rightarrow B-\begin{bmatrix} 1 & 2 & 3 \\ 4-4(1) & 5-4(2) & 6-4(3) \\ 7 & 8 & 9 \end{bmatrix}=\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$
Option D is correct

$A=\begin{bmatrix} 2&2&1\4&5&6\6&8&9\end{bmatrix}$, $B=\begin{bmatrix} 2&2&1\0&1&4\0&2&6\end{bmatrix}$

To convert matrix A into matrix B, the order of row operations are 

  1. $R _1\rightarrow R _2-2R _1$, $R _3 \rightarrow R _3-R _1$

  2. $R _2\rightarrow R _2-2R _1$, $R _3 \rightarrow R _3-3R _1$

  3. $R _1\rightarrow R _1-2R _2$, $R _3 \rightarrow R _1-R _3$

  4. $R _2\rightarrow R _3-2R _3$, $R _3 \rightarrow R _1-R _1$


Correct Option: B
Explanation:
$A=\begin{bmatrix} 2 & 2 & 1 \\ 4 & 5 & 6 \\ 6 & 8 & 9 \end{bmatrix}\quad B=\begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 4 \\ 0 & 2 & 6 \end{bmatrix}$
Clearly in order to convert matrix A to B. Both ${ R } _{ 2 }$ and ${ R } _{ 3 }$ are changed w.r.t. ${ R } _{ 1 }$
${ R } _{ 2 }^{ 1 }\leftrightarrow X{ R } _{ 2 }-Y{ R } _{ 1 }$
For ${ R } _{ 2 }=4$ and ${ R } _{ 1 }=2$ then ${ R } _{ 2 }^{ 1 }=0$
$\Rightarrow 0=X4-2$Y$
$\Rightarrow 2X=Y$
For ${ R }_{ 2 }=5$ and ${ R }_{ 1 }=1$ then ${ R }_{ 2 }^{ 1 }=1$
$1=X(5)-Y(2)$
$\Rightarrow X=1\quad Y=2$
Relation is ${ R }_{ 2 }\leftrightarrow { R }_{ 2 }-2{ R }_{ 21}$
Parallely ${ R }_{ 3 }\rightarrow { R }_{ 3 }-3{ R }_{ 1 }$

Multiply the fourth row by $3$.
$\begin{bmatrix}3&4&2&11\9&1&0&0\0&1&0&2\0&0&6&1\end{bmatrix}$

  1. $0, 0, 18, 3$

  2. $0, 3, 0, 6$

  3. $0, 0, 24, 4$

  4. $9, 12, 6, 33$

  5. $0, 0, 12, 2$


Correct Option: A
Explanation:

Fourth row = $0,0,6,1$
multiplying by $3$
$(0\times 3 , 0\times 3 , 6\times 3 , 1\times 3)$
$(0,0,18,3)$

$\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$

The new matrix obtained after  adding $2^{nd} \  row \ to\  3\ times\  3^{rd} \ row $ is

  1. $\begin{bmatrix} 1&2&3\4&5&6\25&29&33\end{bmatrix}$

  2. $\begin{bmatrix} 1&2&3\25&-29&-33\4&5&6\end{bmatrix}$

  3. $\begin{bmatrix} 1&2&3\7&8&9\4&5&6\end{bmatrix}$

  4. $\begin{bmatrix} 1&2&3\-25&-29&-33\4&5&6\end{bmatrix}$


Correct Option: A
Explanation:
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
$\Rightarrow { R } _{ 3 }\rightarrow 3{ R } _{ 3 }+{ R } _{ 2 }$ for new matrix
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3(7)+4 & 3(8)+5 & 3(9)+6 \end{bmatrix}$
New matrix $=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 25 & 29 & 33 \end{bmatrix}$
Option A is correct

A= $\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$.

B is matrix obtained by subtracting $4\ times 1^{st}\ row from \ 2^{nd} \ row$ of A.
C is matrix obtained by subtracting $7 \ times \ 1^{st}\ row\ from\ 3^{rd} row$, then $C$ is 

  1. $\begin{bmatrix} 1&2&3\0&3&6\0&6&12\end{bmatrix}$

  2. $\begin{bmatrix} 1&2&3\7&0&0\4&5&6\end{bmatrix}$

  3. $\begin{bmatrix} 1&2&3\0&1&2\3&4&5\end{bmatrix}$

  4. $\begin{bmatrix} 1&2&3\0&-3&-6\0&-6&-12\end{bmatrix}$


Correct Option: D
Explanation:
Given $A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
B is obtained by substracting $4{ R } _{ 1 }$ from ${ R } _{ 2 }$
$\Rightarrow { R } _{ 2 }\leftrightarrow { R } _{ 2 }-4{ R } _{ 1 }$$\rightarrow B\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$
C is obtained by subtracting $7{ R } _{ 1 }$ from ${ R } _{ 3 }$
$\Rightarrow { R } _{ 3 }\leftrightarrow { R } _{ 3 }-7{ R } _{ 1 }$
$C\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}$
$\therefore $option D is correct

In echelon form, which of the following is incorrect?

  1. Every row of $A$ which has all its entries $0$ occurs below every row which has a non-zero entry

  2. The first non-zero entry in each non-zero row is $1$

  3. The number of zeros before the first non-zero element is a row is less than than the number of such zeros in the next row

  4. Two rows can have same number of zeros before the first non-zero entry


Correct Option: D
Explanation:

Echelon form of matrix has the following characteristics:

1. The first non-zero entry of every row is 1.

2.
 The first non-zero entry in every row is one position right to the previous row.

3.
 The row with all zero elements will be below the rows having a non-zero element.

Therefore, according to the question statement in option D is incorrect.

Hence, the answer is option D.

The system $\begin{pmatrix} 1 & -1 & 2 \ 3 & 5 & -3 \ 2 & 6 & a \end{pmatrix}\begin{pmatrix} x \ y \ z \end{pmatrix}=\begin{pmatrix} 3 \ b \ 2 \end{pmatrix}$ has no solution, if

  1. $a=-5,b\ne 5$

  2. $a=-5, b=5$

  3. $a\ne -5, b=5$

  4. $a\ne -5,b\ne 5$


Correct Option: A
Explanation:

Given 
$\begin{pmatrix} 1 & -1 & 2 \ 3 & 5 & -3 \ 2 & 6 & a \end{pmatrix}\begin{pmatrix} x \ y \ z \end{pmatrix}=\begin{pmatrix} 3 \ b \ 2 \end{pmatrix}$
The augment matrix of given system is
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 3 & 5 & -3 & | & b \ 2 & 6 & a & | & 2 \end{bmatrix}$
${ R } _{ 2 }\rightarrow { R } _{ 2 }-3{ R } _{ 1 }$ gives
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 0 & 8 & -9 & | & b-9 \ 2 & 6 & a & | & 2 \end{bmatrix}$
${ R } _{ 3 }\rightarrow { R } _{ 3 }-2{ R } _{ 1 }$ gives
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 0 & 8 & -9 & | & b-9 \ 0 & 8 & a-4 & | & -4 \end{bmatrix}$
${ R } _{ 3 }\rightarrow { R } _{ 3 }-{ R } _{ 2 }$ gives
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 0 & 8 & -9 & | & b-9 \ 0 & 0 & a+5 & | & 5-b \end{bmatrix}$
We know that
For no solution
Rank A < Rank $\left[ A|B \right] $
$\therefore$ $a+5=0$ and $5-b\ne 0$
$a=-5, b\ne 5$

Let $A$ be a matrix of order $3\times 3$ such that $\left| \vec { A }  \right| =1$. Let $B=2{ A }^{ -1 }$ and $C=\dfrac { adj.A }{ 2 }$. Then the value of  $\left| { AB }^{ 2 }{ C }^{ 3 } \right|$, is ( where $\left| A \right|$ represent det. $A$)

  1. $1$

  2. $\dfrac { 1}{ 2 }$

  3. $8$

  4. $64$


Correct Option: B
Explanation:
$adj(A)=|\vec{A}|^{n-1}$

$n=3,\therefore adj(A)=|\vec{A}|^{3-1}=|\vec{A}|^2$

$|\vec{A}|=1,\therefore adj(A)=1$

$adj(A)=|\vec{A}|^{n-1}$

$n=3,\therefore adj(A)=|\vec{A}|^{3-1}=|\vec{A}|^2$

$|\vec{A}|=1,\therefore adj(A)=1$

$|\vec{A}|=1$

$B=2|\vec{A}|=1\Rightarrow B=2\times 1=2$

$C=\dfrac{adjA}{2}=\dfrac{1}{2}$

$|AB^2C^3|=\left | 1\times 2^2\times \left ( \dfrac{1}{2} \right )^3 \right |$

$=\dfrac{1}{2}$

 $\begin{bmatrix}
              \cos\theta & -\sin\theta \[0.3em]
              \sin\theta & \cos\theta
              \end{bmatrix} = \begin{bmatrix}
              1 & -\tan\theta/2 \[0.3em]
             \tan\theta/2 & 1
              \end{bmatrix} \begin{bmatrix}
              1  & \tan\theta/2 \[0.3em]
              -\tan\theta/2 & 1
              \end{bmatrix}$

  1. True

  2. False


Correct Option: A

If $A = \begin{bmatrix} a & b\ c  & d \end{bmatrix} $ satisfies the equation $x^2 - (a+d)x+k=0$ then

  1. $k = bc$

  2. $ k =ad$

  3. $k = a^2+b^2+c^2+d^2$

  4. $k=ad-bc$


Correct Option: D
Explanation:

$A=\begin{bmatrix}a&b\c&d\end{bmatrix}$


$\implies \begin{vmatrix}\lambda-a&b\c&\lambda-d\end{vmatrix}=0$

$(\lambda-a)(\lambda-d)-bc=0$

$\implies {\lambda}^{2}-(a+d)\lambda+(a{d}-b{c})=0$

Comparing with $x^2 - (a+d)x+k=0$

$\implies k=a{d}-b{c}$

The number of $2\times 2$ matrices $A=\left[ \begin{matrix} a & b \ c & d \end{matrix} \right] $ for which ${ \left[ \begin{matrix} a & b \ c & d \end{matrix} \right]  }^{ -1 }$ $=\left[ \begin{matrix} \frac { 1 }{ a }  & \frac { 1 }{ b }  \ \frac { 1 }{ c }  & \frac { 1 }{ d }  \end{matrix} \right] $, $(a,b,c,d\ \epsilon \ R)$ is

  1. $0$

  2. $1$

  3. $2$

  4. $Infinite$


Correct Option: A
Explanation:

If $A=\begin{bmatrix} a & b \ c & d \end{bmatrix}\quad { \begin{bmatrix} a & b \ c & d \end{bmatrix} }^{ -1 }=\begin{bmatrix} 1/a & 1/b \ 1/c & 1/d \end{bmatrix}$                          Not possible for any values of $a, b, c$

$A=\begin{bmatrix} a & b \ c & d \end{bmatrix}\quad =Adj{ \begin{bmatrix} d & -c \ -b & a \end{bmatrix} }\ \Rightarrow { A }^{ -1 }=\begin{bmatrix} d & -c \ -b & a \end{bmatrix}$

Let A=$\left( {\begin{array}{{20}{c}}{ - 5}&{ - 8}&{ - 7}\3&5&4\2&3&3\end{array}} \right),B = \left( {\begin{array}{{20}{c}}x\y\z\end{array}} \right)$. If AB is scalar $\left( { \ne 0} \right)$ multiple of B, then x+y=

  1. $z$

  2. $-z$

  3. $0$

  4. $2z$


Correct Option: B
Explanation:
$A=\begin{pmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{pmatrix}\quad B=\begin{pmatrix} x \\ y \\ z \end{pmatrix}$
Given $AB=k\ B$
$AB\Rightarrow \begin{pmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix}\quad k=\begin{pmatrix} x \\ y \\ z \end{pmatrix}$
$\Rightarrow \begin{pmatrix} -5x & -8y & -7z \\ 3x & +5y & +4z \\ x2 & +3y & +3z \end{pmatrix}=\quad k\begin{pmatrix} x \\ y \\ z \end{pmatrix}$
On adding all the elements on left and right side 
$\Rightarrow \ (-5x-8y-7z)+(3x+5y+47)+(2x+3y+3z)$
$=k(x+y+z)$
$\Rightarrow \ D=k(x+y+z)$
$k\neq 0$
$\Rightarrow \ x+y+z=0$
$\Rightarrow \ x+y=-z$

If $A = \left[ {\begin{array}{*{20}{c}}1&2\3&4\end{array}} \right]$, then $8A^{-4}$ is equal to

  1. $145A^{-1}+27I$

  2. $145A^{-1}-27I$

  3. $27I - 145A^{-1}$

  4. $29A^{-1} +9I$


Correct Option: C

If $A$ and $B$ are square matrices such that $B=-A^{-1}BA$, then 

  1. $AB+BA=0$

  2. $(A+B)^{o}=A^{2}+B^{2}$

  3. $(A+B)^{2}=A^{2}+2AB+B^{2}$

  4. $(A+B)^{2}=A+B$


Correct Option: A

If $A$ is a $2\times 2$ matrix such that $A^{2}-4A+3I=0$, then the inverse of $A+3I$ is equal to

  1. $\dfrac{1}{24}S-\dfrac{7}{24}I$

  2. $\dfrac{1}{21} A-\dfrac{7}{21}I$

  3. $\dfrac{7}{24}I+\dfrac{1}{24}A$

  4. $A-3I$`


Correct Option: A

If $A^{-1} = \alpha I + \beta I$ where $\alpha, \beta \in R$, then $\alpha + \beta$ is equal to (where $A^{-1}$ denotes inverse of matrix $A$)-

  1. $1$

  2. $\dfrac{4}{3}$

  3. $\dfrac{5}{3}$

  4. $\dfrac{1}{3}$


Correct Option: A

If $A=\begin{bmatrix} \alpha & 0 \ 1 & 1 \end{bmatrix}$ and $B=\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$, find the values of $\alpha$ for which $A^2=B$.

  1. $\pm 1$

  2. $4$

  3. $0$

  4. No value


Correct Option: D
Explanation:

We have,

$A^2=B$
$\begin{bmatrix} \alpha & 0 \ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \ 1 & 1 \end{bmatrix} =\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$

$\begin{bmatrix} \alpha^2 +0 & 0+0 \ \alpha +1 & 0+1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$

$\begin{bmatrix} \alpha^2 & 0 \ \alpha +1 & 1 \end{bmatrix} =\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$

$\alpha^2=1$ and $\alpha +1=5$
$\alpha =\pm 1$ and $\alpha =4$, which is not possible.
Hence, there is no value of $\alpha$ for which $A^2=B$ is true.

If $A=\left[ \begin{matrix} 1 & -1 & 1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{matrix} \right] $ and $10B=\left[ \begin{matrix} 4 & 2 & 2 \ -5 & 0 & \alpha  \ 1 & -2 & 3 \end{matrix} \right] $ where $B=A^{-1}$ then $\alpha$ is equal to-

  1. $2$

  2. $-1$

  3. $-2$

  4. $5$


Correct Option: A

The inverse of the matrix  $\left[ \begin{array} { c c c } { 1 } & { 0 } & { 0 } \ { 3 } & { 3 } & { 0 } \ { 5 } & { 2 } & { - 1 } \end{array} \right]$  is

  1. $- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { - 3 } & { 0 } & { 0 } \ { 3 } & { 1 } & { 0 } \ { 9 } & { 2 } & { - 3 } \end{array} \right]$

  2. $- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { - 3 } & { 0 } & { 0 } \ { 3 } & { - 1 } & { 0 } \ { - 9 } & { - 2 } & { 3 } \end{array} \right]$

  3. $- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { 3 } & { 0 } & { 0 } \ { 3 } & { - 1 } & { 0 } \ { - 9 } & { - 2 } & { 3 } \end{array} \right]$

  4. $- \dfrac { 1 } { 3 } \left[ \begin{array} { c c c } { - 3 } & { 0 } & { 0 } \ { - 3 } & { - 1 } & { 0 } \ { - 9 } & { - 2 } & { 3 } \end{array} \right]$


Correct Option: A

If $A=\left[ \begin{matrix} 1 & 0 & -1 \ 3 & 4 & 5 \ 0 & 6 & 7 \end{matrix} \right]$ and $A^{-1}=[\alpha _{ij}] _{3\times 3}$ then $\alpha _{23}=$

  1. $-1/5$

  2. $1/5$

  3. $-2/5$

  4. $2/5$


Correct Option: A

Let $P=\begin{bmatrix} \cos { \dfrac { \pi  }{ 9 }  }  & \sin { \dfrac { \pi  }{ 9 }  }  \ -\sin { \dfrac { \pi  }{ 9 }  }  & \cos { \dfrac { \pi  }{ 9 }  }  \end{bmatrix}$ and $\alpha,\ \beta,\ \gamma$ be non-zero real numbers such that $\alpha P^{6}+\beta P^{3}+\gamma 1$ is the zero matrix. Then, $(\alpha^{2}+\beta^{2}+\gamma^{2})^{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$ is

  1. $\pi$

  2. $\dfrac {\pi}{2}$

  3. $0$

  4. $1$


Correct Option: C

Inverse of $\begin{bmatrix} -1 & 5 \ -3 & 2 \end{bmatrix}$ is

  1. $\begin{bmatrix} 2/13 & -5/13 \ 3/13 & -1/13 \end{bmatrix}$

  2. $\begin{bmatrix} -2/13 & 5/13 \ -3/13 & 1/13 \end{bmatrix}$

  3. $\begin{bmatrix} 2 & -5 \ 3 & -1 \end{bmatrix}$

  4. $Cannot\ be\ determined$


Correct Option: A

Consider three matrices $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}, B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$. Then the value of the sum $tr(A)+tr\left(\dfrac{ABC}{2}\right)+tr\left(\dfrac{A(BC)^{2}}{4}\right)+tr\left(\dfrac{A(BC)^{3}}{8}\right)+....+\infty$ is 

  1. $6$

  2. $9$

  3. $12$

  4. $3$


Correct Option: B

If A is a 2 X 2 matrix such that $A^2009 + A^2008$= I, then : $(A^2008)^-1$= 

  1. $A^2008 + I$

  2. $A^2009 + 1$

  3. A + I

  4. A


Correct Option: A

If $I=I=\left[ \begin{matrix} 1 \ 0 \end{matrix}\begin{matrix} 0 \ 1 \end{matrix} \right] ,j=\left[ \begin{matrix} 0 \ -1 \end{matrix}\begin{matrix} 1 \ 0 \end{matrix} \right] and B=\left[ \begin{matrix} cos\theta  \ -sin\theta  \end{matrix}\begin{matrix} sin\theta  \ cos\theta  \end{matrix} \right] ,$ then B =

  1. $Icos\theta +Jsin\theta $

  2. $Icos\theta -Jsin\theta $

  3. $Isin\theta +Jcos\theta $

  4. $-Icos\theta +Jsin\theta $


Correct Option: A
Explanation:
Given, $I=\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}, J=\begin{bmatrix} 0 & 1\\ -1 & 0\end{bmatrix}$

and $B=\begin{bmatrix} \cos \theta &\sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$

$=\cos\theta\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix} +\sin\theta \begin{bmatrix} 0 & 1\\ -1 & 0\end{bmatrix}$

$=I\cos\theta +J\sin\theta$.

If $A(\theta) = \begin{bmatrix}\sin  \theta & i  \cos  \theta\ i  \cos  \theta & \sin  \theta\end{bmatrix}$, then which of the following is not true?

  1. $A(\theta)^{-1} = A(\pi - \theta)$

  2. $A(\theta) + A(\pi + \theta)$ is a null matrix

  3. $A(\theta)$ is invertible for all $\theta \in R$

  4. $A(\theta)^{-1} = A(- \theta)$


Correct Option: A,B,C
Explanation:

Finding inverse of the matrix $A(\theta)= \begin{bmatrix} \sin\theta & i\cos\theta \ i\cos\theta & \sin\theta\end{bmatrix}$


Determinant of $A(\theta)$ is $|A(\theta)|=\sin^2\theta-i^2\cos^2\theta$
                                                    $= \sin^2\theta+\cos^2\theta$
                                                    $=  1$

Therefore $A(\theta)$ is a non-singular matrix. So , it is invertible of all $\theta \in R$

$A(\theta)^{-1} = \begin{bmatrix} \sin\theta & -i\cos\theta \-i\cos\theta & \sin\theta \end{bmatrix}$

Now. $A(\pi -\theta)=\begin{bmatrix} \sin(\pi-\theta) & i\cos(\pi-\theta) \i\cos(\pi-\theta) & \sin(\pi-\theta) \end{bmatrix}$
                          $=\begin{bmatrix} \sin\theta  & -i\cos\theta \ -i\cos\theta & \sin\theta \end{bmatrix}$
                          $= A(\theta)^{-1}$

Now, $A(\pi+\theta)= \begin{bmatrix} \sin(\pi+\theta) & i\cos(\pi+\theta) \i\cos(\pi+\theta) & \sin(\pi+\theta) \end{bmatrix} $
                          $= \begin{bmatrix} -\sin\theta & -i\cos\theta \-i\cos\theta & -\sin\theta \end{bmatrix}$
                          $= -A(\theta)$

Therefore, $A(\theta) + A(\pi+\theta)=0$.

Hence, the correct options are $(A), (B)$ and $(C)$.

Write the following transformation in matrix form
$\quad x _1 = \displaystyle\frac{\sqrt 3}{2}y _1 + \displaystyle\frac{1}{2}y _2; \quad x _2 = -\displaystyle\frac{1}{2}y _1 + \displaystyle\frac{\sqrt 3}{2}y _2$.
Hence find the transformation in matrix form which expresses $y _1, y _2$ in terms of $x _1, x _2$.

  1. $y _1 = \displaystyle\frac{\sqrt 3}{2}x _1 + \displaystyle\frac{1}{2}x _2; \quad y _2 = \displaystyle\frac{1}{2}x _1 + \displaystyle\frac{\sqrt 3}{2}x _2$

  2. $y _1 = \displaystyle\frac{\sqrt 3}{2}x _1 - \displaystyle\frac{1}{2}x _2; \quad y _2 = \displaystyle\frac{1}{2}x _1 + \displaystyle\frac{\sqrt 3}{2}x _2$

  3. $y _1 = \displaystyle\frac{\sqrt 3}{2}x _1 - \displaystyle\frac{1}{2}x _2; \quad y _2 = \displaystyle\frac{1}{2}x _1 - \displaystyle\frac{\sqrt 3}{2}x _2$

  4. None of these


Correct Option: B
Explanation:

$ \displaystyle  { x } _{ 1 }=\frac { \sqrt { 3 }  }{ 2 } { y } _{ 1 }+\frac { 1 }{ 2 } { y } _{ 2 }  $ and $\displaystyle { x } _{ 2 }=\frac { -1 }{ 2 } { y } _{ 1 }+\frac { \sqrt { 3 }  }{ 2 } { y } _{ 2 } $ 
We observe $ \displaystyle \frac { \sqrt { 3 }  }{ 2 } { x } _{ 1 }-\frac { 1 }{ 2 } { x } _{ 2 }=\frac { 3 }{ 4 } { y } _{ 1 }+\frac { \sqrt { 3 }  }{ 2 } .\frac { 1 }{ 2 } { y } _{ 2 }+\frac { 1 }{ 4 } { y } _{ 1 }-\frac { \sqrt { 3 }  }{ 2 } \frac { 1 }{ 2 } { y } _{ 2 } $
$ \displaystyle \Rightarrow \frac { \sqrt { 3 }  }{ 2 } { x } _{ 1 }-\frac { 1 }{ 2 } { x } _{ 2 }={ y } _{ 1 } $
Similarly $ \displaystyle \frac { 1 }{ 2 } { x } _{ 1 }+\frac { \sqrt { 3 }  }{ 2 } { x } _{ 2 }=\frac { 1 }{ 4 } { y } _{ 2 }+\frac { 3 }{ 4 } { y } _{ 2 }={ y } _{ 2 } $
$ \displaystyle \therefore { y } _{ 1 }=\frac { \sqrt { 3 }  }{ 2 } { x } _{ 1 }-\frac { 1 }{ 2 } { x } _{ 2 };{ y } _{ 2 }=\frac { 1 }{ 2 } { x } _{ 1 }+\frac { \sqrt { 3 }  }{ 2 } { x } _{ 2 }  $ 

Let p be a non-singular matrix, $1+p+p^{2}+....+p^{n}=0$ (0 denotes the null matrix) then $p^{-1}=$

  1. $p^{n}$

  2. -$p^{n}$

  3. -(1+p+...+$p^{n}$)

  4. none


Correct Option: A

Let A be a $3 \times 3$  matrix such that is: $A\left[ \begin{matrix} 1 & 2 & 3 \ 0 & 2 & 3 \ 0 & 1 & 1 \end{matrix} \right]=\left[ \begin{matrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{matrix} \right]  $Then $A^{-1}$ is

  1. $\left[ \begin{matrix} 0 & 1 & 3 \ 0 & 2 & 3 \ 1 & 1 & 1 \end{matrix} \right] $

  2. $\left[ \begin{matrix} 3 & 2 & 1 \ 3 & 2 & 0 \ 1 & 1 & 0 \end{matrix} \right] $

  3. $\left[ \begin{matrix} 1 & 2 & 3 \ 0 & 1 & 1 \ 0 & 2 & 3 \end{matrix} \right] $

  4. $\left[ \begin{matrix} 3 & 1 & 2 \ 3 & 0 & 2 \ 1 & 0 & 1 \end{matrix} \right] $


Correct Option: A

Use the method of elementary row transformation to compute the inverse of 
$\quad \begin{bmatrix} 1 & 2 & 5 \ 2 & 3 & 1 \ -1 & 1 & 1\end{bmatrix}$

  1. $\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$

  2. $\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{1}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{11}{21} \ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{2}{21}\end{bmatrix}$

  3. $\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{16}{21} \ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{4}{21}\end{bmatrix}$

  4. $\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{2}{7} & -\displaystyle\frac{13}{21} \ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\ \displaystyle\frac{4}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$


Correct Option: A
Explanation:

Let $\quad A = \begin{bmatrix} 1 & 2 & 5 \ 2 & 3 & 1 \ -1 & 1 & 1\end{bmatrix}$

$\Rightarrow \quad Write \space A A^{-1}= I$

$\quad \begin{bmatrix} 1 & 2 & 5 \ 2 & 3 & 1 \ -1 & 1 & 1\end{bmatrix} A^{-1}= \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1\end{bmatrix}$

$\quad \begin{matrix}R _{21}(-2)\ \mbox{~}\ R _{31}(1)\end{matrix}\begin{bmatrix}1 & 0 & 5 \ 2 & 3 & 1 \ -1 & 1 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1\end{bmatrix}$

$\quad \begin{matrix}R _2(-1) \ \mbox{~} \ R _3(1/3)\end{matrix}\begin{bmatrix}1 & 2 & 5 \ 0 & 1 & 9 \ 0 & 1 & 2\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \ 2 & -1 & 0 \ \displaystyle\frac{1}{3} & 0 & \displaystyle\frac{1}{3}\end{bmatrix}$

$\quad \begin{matrix}R _{12}(-2) \ \mbox{~} \ R _{32}(-1)\end{matrix}\begin{bmatrix}1 & 0 & -13 \ 0 & 1 & 9 \ 0 & 0 & -7\end{bmatrix} A^{-1}= \begin{bmatrix}-3 & 2 & 0 \ 2 & -1 & 0 \ -\displaystyle\frac{5}{3} & 1 & \displaystyle\frac{1}{3}\end{bmatrix}$

$\quad \begin{matrix}R _3(-1/7)\ \mbox{~}\end{matrix}\begin{bmatrix}1 & 0 & -13 \ 0 & 1 & 9 \ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}-3 & 2 & 0 \ 2 & -1 & 0 \ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$

$\quad \begin{matrix}R _{13}(13) \ \mbox{~} \ R _{23}(-9)\end{matrix}\begin{bmatrix}1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$

Hence, $\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$

If $
A=\left[ \begin{array}{ll}{x} & {1} \ {1} & {0}\end{array}\right]
 $ and $
A^{2}=I
 $, $
A^{-1}
 $ is equal to ...............

  1. $

    \left[ \begin{array}{ll}{0} & {1} \ {1} & {0}\end{array}\right]

    $

  2. $

    \left[ \begin{array}{ll}{1} & {0} \ {0} & {1}\end{array}\right]

    $

  3. $

    \left[ \begin{array}{ll}{1} & {1} \ {1} & {1}\end{array}\right]

    $

  4. $

    \left[ \begin{array}{ll}{0} & {0} \ {0} & {0}\end{array}\right]

    $


Correct Option: A
Explanation:
$A=\left[\begin{matrix} x & 1 \\ 1 & 0  \end{matrix}\right]$
Given: ${A}^{2}=I$ where $I$ is $2\times 2$ identity matrix
Let us find ${A}^{2}$
$=\left[\begin{matrix} x & 1 \\ 1 & 0  \end{matrix}\right]\left[\begin{matrix} x & 1 \\ 1 & 0  \end{matrix}\right]$
$=\left[\begin{matrix} {x}^{2}+x & x+0 \\ x+0 & 1+0  \end{matrix}\right]$
Given ${A}^{2}=I$
$\Rightarrow \left[\begin{matrix} {x}^{2}+x & x+0 \\ x+0 & 1+0  \end{matrix}\right]=\left[\begin{matrix} 1 & 0 \\ 0 & 1  \end{matrix}\right]$
Equating,we get
${x}^{2}+x=1,x=0$
Put $x=0$ in $A$
$A=\left[\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right]$
We have ${A}^{2}=I$
Pre-multiply ${A}^{-1}$ both sides,we get
${A}^{-1}{A}^{2}={A}^{-1}I$
$\Rightarrow A={A}^{-1}$
Hence,${A}^{-1}=\left[\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right]$

A is an involuntary matrix given by $A=\begin{bmatrix} 0 & 1 & -1\ 4 & -3 & 4\ 3 & -3 & 4\end{bmatrix}$ then the inverse of $\dfrac{A}{2}$ will be?

  1. $2A$

  2. $\dfrac{A^{-1}}{2}$

  3. $\dfrac{A}{2}$

  4. $A^{-2}$


Correct Option: A

If $A\begin{bmatrix} 1 & 1\ 2 & 0\end{bmatrix}=\begin{bmatrix} 3 & 2\ 1 & 1\end{bmatrix}$, then $A^{-1}$ is given by?

  1. $\begin{bmatrix} 0 & -1\ 2 & -4\end{bmatrix}$

  2. $\begin{bmatrix} 0 & -1\ -2 & -4\end{bmatrix}$

  3. $\begin{bmatrix} 0 & 1\ 2 & -4\end{bmatrix}$

  4. None of these


Correct Option: A

If $A=\left[ \begin{matrix} 3 & -3 & 4 \ 2 & -3 & 4 \ 0 & -1 & 1 \end{matrix} \right] $, then value of $A^{-1}$ is equal to 

  1. $A$

  2. $A^{2}$

  3. $A^{3}$

  4. $A^{4}$


Correct Option: A

If A and B are any $2\times2$ matrices, then det. (A+B) =0 implies

  1. None of these

  2. det A=0 and det B=0

  3. det A=0 or det B=0

  4. det A=0 + det B=0


Correct Option: A

Let $\begin{bmatrix} 1 & 1\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 3\ 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & n-1\ 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & 78\ 0 & 1\end{bmatrix}$
If $A=\begin{bmatrix} 1 & n\ 0 & 1\end{bmatrix}$ then $A^{-1}=?$

  1. $\begin{bmatrix} 1 & 12\ 0 & 1\end{bmatrix}$

  2. $\begin{bmatrix} 1 & -13\ 0 & 1\end{bmatrix}$

  3. $\begin{bmatrix} 1 & -12\ 0 & 1\end{bmatrix}$

  4. $\begin{bmatrix} 1 & 0\ -13 & 1\end{bmatrix}$


Correct Option: B
Explanation:

$\begin{bmatrix} 1 & 1\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\ 0 & 1\end{bmatrix}\begin{bmatrix} 1 & 3\ 0 & 1\end{bmatrix}..\begin{bmatrix} 1 & n-1\ 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & 78\ 0 & 1\end{bmatrix}$
$\Rightarrow \dfrac{n(n-1)}{2}=78\Rightarrow n=13$
$A=\begin{bmatrix} 1 & 13\ 0 & 1\end{bmatrix}$
so $A^{-1}=\begin{bmatrix} 1 & -13\ 0 & 1\end{bmatrix}$.

If $\displaystyle A=\begin{bmatrix} 0 & 0 & 1\ 0 & 1&0 \ 1& 0 & 0\end{bmatrix}$, then $A^{-1}$ is.

  1. $-A$

  2. $A$

  3. $1$

  4. None of these


Correct Option: B
Explanation:

We have, $A=\begin{bmatrix} 0 & 0&1\ 0 &1 &0\ 1&0 &0\end{bmatrix}$
$\Rightarrow |A|=0(0-0)-0(0-0)+1(0-1)$
$\Rightarrow |A|=-1$
and cofactors of A are
$A _{11}=0, A _{12}=0, A _{13}=-1,$
$A _{21}=0, A _{22}=-1, A _{23}=0,$
$A _{31}=-1, A _{32}=0, A _{33}=0$
$\therefore A^{-1}=\displaystyle\frac{adj(A)}{|A|}$
$=-\displaystyle\frac{1}{1}\begin{bmatrix} 0 & 0 & -1\0 & -1 &0\ -1 &0 &0\end{bmatrix}$

Let $A=\begin{bmatrix} 1 & -1 & -1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{bmatrix}$ and $10B=\begin{bmatrix} 4 & 2 & 2 \ -5 & 0 & \alpha  \ 1 & -2 & 3 \end{bmatrix}$, if $B$ is the inverse of matrix $A$, then $\alpha $ is

  1. $-2$

  2. $1$

  3. $2$

  4. $5$


Correct Option: D
Explanation:

Since, $B$ is the inverse of $A$.
ie, $B=10{ A }^{ -1 }$
$\therefore \left( 10 \right) { A }^{ -1 }=\begin{bmatrix} 4 & 2 & 2 \ -5 & 0 & \alpha  \ 1 & -2 & 3 \end{bmatrix}$
$\therefore \left( 10 \right) { A }^{ -1 }\cdot A=\begin{bmatrix} 4 & 2 & 2 \ -5 & 0 & \alpha  \ 1 & -2 & 3 \end{bmatrix}A$
$\Rightarrow 10I=\begin{bmatrix} 4 & 2 & 2 \ -5 & 0 & \alpha  \ 1 & -2 & 3 \end{bmatrix}\begin{bmatrix} 1 & -1 & 1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} 10 & 0 & 0 \ 0 & 10 & 0 \ 0 & 0 & 10 \end{bmatrix}=\begin{bmatrix} 10 & 0 & 0 \ -5+\alpha  & 5+\alpha  & -5+\alpha  \ 0 & 0 & 10 \end{bmatrix}$
$\Rightarrow 5+\alpha =10$
$\Rightarrow \alpha =5$

If $\begin{bmatrix} 1 & 2 \ 3 & -5 \end{bmatrix}$, then ${A}^{-1}$ is equal to

  1. $\begin{bmatrix} \cfrac { 5 }{ 11 } & \cfrac { 2 }{ 11 } \ \cfrac { 3 }{ 11 } & -\cfrac { 1 }{ 11 } \end{bmatrix}$

  2. $\begin{bmatrix} -\cfrac { 5 }{ 11 } & -\cfrac { 2 }{ 11 } \ -\cfrac { 3 }{ 11 } & -\cfrac { 1 }{ 11 } \end{bmatrix}$

  3. $\begin{bmatrix} \cfrac { 5 }{ 11 } & \cfrac { 2 }{ 11 } \ \cfrac { 3 }{ 11 } & \cfrac { 1 }{ 11 } \end{bmatrix}$

  4. $\begin{bmatrix} 5 & 2 \ 3 & -1 \end{bmatrix}$


Correct Option: A
Explanation:

Since $A=\begin{bmatrix} 1 & 2 \ 3 & -5 \end{bmatrix}$


$\therefore \left| A \right| =\begin{bmatrix} 1 & 2 \ 3 & -5 \end{bmatrix}=-5-6=-11$

and $adj(A)=\begin{bmatrix} -5 & -2 \ -3 & 1 \end{bmatrix}$

$\therefore { A }^{ -1 }=\cfrac { 1 }{ \left| A \right|  } adj(A)$

$=-\cfrac { 1 }{ 11 } \begin{bmatrix} -5 & -2 \ -3 & 1 \end{bmatrix}=\cfrac { 1 }{ 11 } \begin{bmatrix} 5 & 2 \ 3 & -1 \end{bmatrix}$

$\quad =\begin{bmatrix} \cfrac { 5 }{ 11 }  & \cfrac { 2 }{ 11 }  \ \cfrac { 3 }{ 11 }  & -\cfrac { 1 }{ 11 }  \end{bmatrix}$

If you switch the first row with the fourth row, what will the new first row be?
$\begin{bmatrix}3&4&2&11\9&1&0&0\0&1&0&2\0&0&6&1\end{bmatrix}$

  1. $3, 4, 2, 11$

  2. $9, 1, 0, 0$

  3. $0, 1, 0, 2$

  4. $0, 0, 6, 1$

  5. $0, 2, 0, 3$


Correct Option: D
Explanation:
Given Matrix$=\begin{bmatrix} 3 & 4 & 2 & 11 \\ 9 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 6 & 1 \end{bmatrix}$
First and fourth row are interchanged
New matrix obtained $=\begin{bmatrix} 0 & 0 & 6 & 1 \\ 9 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 4 & 2 & 1 \end{bmatrix}$
New first row$=\begin{bmatrix} 0 & 0 & 6 & 1 \end{bmatrix}$ Option D

Which of the following is the new row that results when you add rows $1$ and $3$?
$\begin{bmatrix}3&4&2&11\9&1&0&0\0&1&0&2\0&0&6&1\end{bmatrix}$

  1. $6, 8, 4, 22$

  2. $3, 5, 2, 13$

  3. $3, 4, 2, 11$

  4. $3, 4, 8, 12$

  5. $4, 5, 3, 12$


Correct Option: B
Explanation:
Given Matrix$=\begin{bmatrix} 3 & 4 & 2 & 11 \\ 9 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 6 & 1 \end{bmatrix}$
Row $1=\begin{bmatrix} 3 & 4 & 2 & 11 \end{bmatrix}$
Row $3=\begin{bmatrix} 0 & 1 & 0 & 2 \end{bmatrix}$
Sum$=\begin{bmatrix} 3+0 & 4+1 & 2+0 & 11+2 \end{bmatrix}$
$\begin{bmatrix} 3 & 5 & 2 & 13 \end{bmatrix}$
$\therefore $Option $2$ is correct

Use a transformation matrix to find the image of $D(-7,6)$ after a rotation of $180^0$ counterclockwise around the origin.

  1. $(7,6)$

  2. $(-7,-6)$

  3. $(7,-6)$

  4. $(-7,6)$


Correct Option: C
Explanation:

The transformation matrix for rotation  is $\begin{bmatrix} cos\theta  & -sin\theta  \ sin\theta  & cos\theta  \end{bmatrix}$

For $\theta=180^{0}$ , the transformation matrix will be $\quad \begin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$
So the image of point $(-7,6)$ is $\quad \begin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}\begin{bmatrix} -7 \ 6 \end{bmatrix}=\begin{bmatrix} 7 \ -6 \end{bmatrix}$
Therefore the correct option is $C$

$A=\begin{bmatrix} 1&-2&3\7&-8&9\4&-5&6\end{bmatrix}$ the new matrix formed by adding $\ 2^{nd}\ row \ to \ 1^{st} $ row  will be

  1. $\begin{bmatrix}8&-10&12\7&-8&9\4&-5&6\end{bmatrix}$

  2. $\begin{bmatrix} 6&6&6\7&8&9\4&5&6\end{bmatrix}$

  3. $\begin{bmatrix} 1&2&3\7&8&9\11&-13&14\end{bmatrix}$

  4. $\begin{bmatrix} 1&-2&3\7&8&-29\4&-2&6\end{bmatrix}$


Correct Option: A
Explanation:
Given $A=\begin{bmatrix} 1 & -2 & 3 \\ 7 & -8 & 9 \\ 4 & -5 & 6 \end{bmatrix}$
Now$\Rightarrow { R } _{ 1 }\rightarrow { R } _{ 1 }+{ R } _{ 2 }$
Resultant matrix$=\begin{bmatrix} 1+7 & -2-8 & 3+9 \\ 7 & -8 & 9 \\ 4 & -5 & 6 \end{bmatrix}$
$=\begin{bmatrix} 8 & -12 & 12 \\ 7 & -8 & 9 \\ 4 & -5 & 6 \end{bmatrix}$
Option A is correct

 A=$\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$
The new matrix formed  after interchanging $2^{nd}$ and $3^{rd}$rows  will be 

  1. $-\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$

  2. $\begin{bmatrix} 4&5&6\1&2&3\7&8&9\end{bmatrix}$

  3. $-\begin{bmatrix} 1&2&3\7&8&9\4&5&6\end{bmatrix}$

  4. $\begin{bmatrix} 1&2&3\7&8&9\4&5&6\end{bmatrix}$


Correct Option: D
Explanation:
Given
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
Now second and third rows are interchanged $\Rightarrow $all elements are interchanged
Resultant matrix$=\begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{bmatrix}$
Option D is correct

For a matrix $A \begin{pmatrix} 1& 0 & 0\ 2 & 1 & 0\ 3 & 2 & 1\end{pmatrix}$, if $U _{1}, U _{2}$ and $U _{3}$ are $3\times 1$ column matrices satisfying $AU _{1} = \begin{pmatrix}1\ 0 \ 0
\end{pmatrix}, AU _{2} \begin{pmatrix}2\3 \ 0
\end{pmatrix}, AU _{3} = \begin{pmatrix}2\ 3\ 1
\end{pmatrix}$ and $U$ is $3\times 3$ matrix whose columns are $U _{1}, U _{2}$ and $U _{3}$
Then sum of the elements of $U^{-1}$ is

  1. $6$

  2. $0 (zero)$

  3. $1$

  4. $2/3$


Correct Option: B
Explanation:

Let $U _{i} = \begin{pmatrix}a _{i}\b _{i} \c _{i} \end{pmatrix} i = 1, 2, 3$
$AU _{1} = \begin{pmatrix}a _{1}\2a _{1} + b _{1} \ 3a _{1} + 2b _{1} + c _{1}
\end{pmatrix} = \begin{pmatrix}1\0 \ 0
\end{pmatrix}$, So $a _{1} = 1, b _{1} = -2, c _{1} = 1$
$AU _{2} = \begin{pmatrix}a _{2}\2a _{2} + b^{2} \ 3a _{2} + 2b _{2} + c _{2}
\end{pmatrix} = \begin{pmatrix}2\ 3\ 0
\end{pmatrix}$,
So, $a _{2} = 2, b _{2} = -1, c _{2} = -4$. Similarly, $a _{3} = 2, b _{3} = -1, c _{3} = -3$
So, $U = \begin{pmatrix} 1& 2 & 2\ -2 & -1 & -1\ 1 & -4 & -3\end{pmatrix}$. So, sum of elements of $U^{-1}$ is zero.

The inverse of a diagonal matrix is a :

  1. Symmetric matrix

  2. Skew-symmetric matrix

  3. Diagonal matrix

  4. None of the above


Correct Option: A,C
Explanation:

A diagonal matrix has elements only in it's diagonal.
So the inverse will also have all non zero elements in the diagonal.
So, it will be symmetric and will also be a diagonal matrix.
Hence, option A and C are correct

Inverse of $A  = \begin{bmatrix} 1& 3\ 2 & -2\end{bmatrix} $ is equal to?

  1. $- \dfrac{1}{8} \begin{bmatrix}3 & 1\ -2 & 2\end{bmatrix}$

  2. $- \dfrac{1}{8} \begin{bmatrix}-2 & -3\ -2 & 1\end{bmatrix}$

  3. $ \dfrac{1}{8} \begin{bmatrix}-1 & -3\ -2 & 2\end{bmatrix}$

  4. None of these


Correct Option: B
Explanation:
If $A  = \begin{bmatrix} 1& 3\\ 2 & -2\end{bmatrix} $
$ a _{11}= -2 $
$ a _{12}= -2 $
$ a _{21}= -3 $
$ a _{22}=  1 $

$ A^{-1}=\dfrac{ \left ( Cofactors of A \right )^{T}}{\left |A  \right |}$
$ \left ( Cofactors of A \right )^{T}=\begin{bmatrix} -2& -3\\ -2 & 1\end{bmatrix} $
${\left |A  \right |}= -2-6 $
${\left |A  \right |}=-8 $

$ A^{-1}=-\dfrac{1}{8}\times\begin{bmatrix} -2& -3\\ -2 & 1\end{bmatrix} $ 

Option will be B

If a matrix A is such that $3{A^3} + 2{A^2} + 5A + I = 0$ , then $A^{-1}$ is equal to

  1. $ - (3{A^2} + 2A + 5)$

  2. $3{A^2} + 2A + 5$

  3. $3{A^2} - 2A - 5$

  4. None of these


Correct Option: A
Explanation:

$3A^3+2A^2+5A+I=0$
$3A^3+2A^2+5A+AA^{-1}=0$
$A^{-1}=-3A^2-2A-5$

If $A$ is a non zero square matrix of order $n$ with $det\left( I+A \right) \neq 0$, and ${A}^{3}=0$, where $I,O$ are unit and null matrices of order $n\times n$ respectively, then ${ \left( I+A \right)  }^{ -1 }=$

  1. $I-A+{ A }^{ 2 }$

  2. $I+A+{ A }^{ 2 }$

  3. $I+{ A }^{ 2 }$

  4. $I+A$


Correct Option: A
Explanation:
$det(I+A)\neq 0$
$A^3=0$   where $0$ is null matrix, $I$ is the identity matrix
$A^3+I=I$ [adding $I$ on both sides]
$(A+I)(A^2-IA+I^2)=I$ [by the formula of $a^3+b^3$]
$(A+I)(A^2-A+I)=I$
$(I+A)(I+A)^{-1}=I$ [by the rule of inverse matrix]
hence $(I+A)^{-1}=(A^2-A+I)$
Ans: $I-A+A^2$

If $A=\begin{bmatrix} 3 & -2 \ 5 & 8 \end{bmatrix}$, then $A^{-1}=$

  1. $\frac{1}{30}\begin{bmatrix} 8 & 2 \ -5 & 3 \end{bmatrix}$

  2. $\frac{1}{34}\begin{bmatrix} 8 & 2 \ -5 & 3 \end{bmatrix}$

  3. $-\frac{1}{34}\begin{bmatrix} -8 & -2 \ -5 & 3 \end{bmatrix}$

  4. None of these


Correct Option: B
Explanation:

$A=\left[{\begin{array}{cc}3&2\5&8\end{array}}\right]$

$A^{-1}=\cfrac{1}{ad-bc}\left[{\begin{array}{cc}d&-b\-c&a\end{array}}\right]$  (determinant)
$=\cfrac{1}{3\times 8-(-2\times 5)}\left[{\begin{array}{cc}8&2\-5&3\end{array}}\right]$  
$=\cfrac{1}{34}\left[{\begin{array}{cc}8&2\-5&3\end{array}}\right]$  

If the matrix $\begin{bmatrix} 0 & 2\beta & \Upsilon \ \alpha & \beta & -\Upsilon \ \alpha & -\beta & \Upsilon \end{bmatrix}$is orthogonal, then

  1. $\alpha = \pm\dfrac{1}{\sqrt{2}}$

  2. $\beta = \pm\dfrac{1}{\sqrt{6}}$

  3. $\gamma = \pm\dfrac{1}{\sqrt{3}}$

  4. all of these


Correct Option: D
Explanation:
$\begin{bmatrix} 0 & 2\beta  & \gamma  \\ \alpha  & \beta  & -\gamma  \\ \alpha  & -\beta  & \gamma  \end{bmatrix}$
for orthogonal matrix we have 
$A.A^{T}=I$
$\begin{bmatrix} 0 & 2\beta  & \gamma  \\ \alpha  & \beta  & -\gamma  \\ \alpha  & -\beta  & \gamma  \end{bmatrix}\begin{bmatrix} 0 & \alpha  & \alpha  \\ 2\beta  & \beta  & -\beta  \\ \gamma  & -\gamma  & \gamma  \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 0+4{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } & 0+2{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } & 0-2{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } \\ 0+2{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }-{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } \\ 0-2{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }-{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$4\beta^{2}+\gamma^{2}=1, 2\beta^{2}-\gamma^{2}=0$, 
$4\left(\dfrac{\gamma^{2}}{2}\right)+\gamma^{2}=1$        $\beta^{2}=\dfrac{r^{2}}{2}$
$r^{2}[3]=1$
$r=\pm \dfrac{1}{\sqrt{3}}$
$2\beta^{2}-\gamma^{2}=0, \alpha^{2}+\beta^{2}+\gamma^{2}+\gamma^{2}=1, \alpha^{2}-\beta^{2}-\gamma^{2}=0$
$\beta^{2}=\dfrac{\gamma^{2}}{2},  \alpha^{2}+\dfrac{\gamma^{2}}{2}+\dfrac{\gamma^{2}}{1}=1$
$\alpha^{2}+\dfrac{3\gamma^{2}}{2}=1$
$\beta^{2}=\dfrac{1}{6}\alpha^{2}+\dfrac{3}{2}\times \dfrac{1}{3}=1$
$\beta=\pm \dfrac{1}{\sqrt{6}}$            $\alpha=\pm \dfrac{1}{\sqrt{2}}$

The inverse of the $\begin{bmatrix}- 1 & 5\ - 3 & 2\end{bmatrix}$ is

  1. $\frac{1}{13} \begin{bmatrix}
    2 & - 5\
    3 & - 1
    \end{bmatrix}$

  2. $\frac{1}{13} \begin{bmatrix}
    - 1 & 5\
    - 3 & 2
    \end{bmatrix}$

  3. $\frac{1}{13} \begin{bmatrix}
    - 1 & - 3\
    5 & 2
    \end{bmatrix}$

  4. $\frac{1}{13} \begin{bmatrix}
    1 & 5\
    3 & - 2
    \end{bmatrix}$


Correct Option: A
Explanation:
$A=\left[\begin{matrix} -1 & 5 \\ -3  & 2 \end{matrix} \right]$

$\left|A\right|=-2+15=13\neq 0$

Hence ${A}^{-1}$ exists.

${C} _{ij}={\left(-1\right)}^{i+j}{M} _{ij}$

${C} _{11}=2,\,{C} _{12}=3,\,{C} _{21}=-5$  and ${C} _{22}=-1$

${C} _{ij}=\left[\begin{matrix} 2 & 3 \\ -5  & -1 \end{matrix} \right]$

Adj${A}={{C} _{ij}}^{T}=\left[\begin{matrix} 2 & -5 \\ 3  & -1 \end{matrix} \right]$

${A}^{-1}=\dfrac{Adj{\left(A\right)}}{\left|A\right|}=\dfrac{1}{13}\left[\begin{matrix} 2 & -5 \\ 3  & -1 \end{matrix} \right]$

The inverse of the matrix $\begin{bmatrix} 5 & -2 \ 3 & 1 \end{bmatrix}$ is 

  1. $\dfrac { 1 }{ 11 } \begin{bmatrix} 1 & 2 \ -3 & 5 \end{bmatrix}$

  2. $\begin{bmatrix} 1 & 2 \ -3 & 5 \end{bmatrix}$

  3. $\dfrac { 1 }{ 13 } \begin{bmatrix} -2 & 5 \ 1 & 3 \end{bmatrix}$

  4. $\begin{bmatrix} 1 & 3 \ -2 & 5 \end{bmatrix}$


Correct Option: A
Explanation:

$\begin{array}{l} A=\left[ \begin{array}{l} 5\, \, \, \, \, -2 \ 3\, \, \, \, \, \, \, \, \, 1 \end{array} \right]  \ \left| A \right| =5+6=11\ne 0 \ so,\, A\, \, is\, \, \, non-\sin  gular\, ,\, { A^{ -1 } }\, \, is\, \, exist \ so,m\, { A _{ 11 } }=1,\, \, \, \, \, { A _{ 12 } }=-3,\, \, \, \, { A _{ 21 } }=2,\, \, \, \, \, \, { A _{ 22 } }=5 \ A=\left( { \begin{array} { *{ 20 }{ c } }1 & { -3 } \ 2 & 5 \end{array} } \right) \Rightarrow AdjA=\left( { \begin{array} { *{ 20 }{ c } }1 & 2 \ { -3 } & 5 \end{array} } \right)  \ { A^{ -1 } }=\frac { 1 }{ { \left| A \right|  } } adjA\, \, \, \, \Rightarrow \, \, \, \, \frac { 1 }{ { 11 } } \left( { \begin{array} { *{ 20 }{ c } }1 & 2 \ { -3 } & 5 \end{array} } \right)  \end{array}$


Hence, this is the answer.

What is the inverse of the matrix
$A=\begin{bmatrix} \cos { \theta  }  & \sin { \theta  }  & 0 \ -\sin { \theta  }  & \cos { \theta  }  & 0 \ 0 & 0 & 1 \end{bmatrix}$ ?

  1. $\begin{bmatrix} \cos { \theta } & -\sin { \theta } & 0 \ \sin { \theta } & \cos { \theta } & 0 \ 0 & 0 & 1 \end{bmatrix}$

  2. $\begin{bmatrix} \cos { \theta } & 0 & -\sin { \theta } \ 0 & 1 & 0 \ \sin { \theta } & 0 & \cos { \theta } \end{bmatrix}$

  3. $\begin{bmatrix} 1 & 0 & 0 \ 0 & \cos { \theta } & -\sin { \theta } \ 0 & \sin { \theta } & \cos { \theta } \end{bmatrix}$

  4. $\begin{bmatrix} \cos { \theta } & \sin { \theta } & 0 \ -\sin { \theta } & \cos { \theta } & 0 \ 0 & 0 & 1 \end{bmatrix}$


Correct Option: A
Explanation:
$A = \begin{bmatrix} \cos \theta &  \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Calculate first minors.
$M _{11} = \cos \theta , M _{13} = 0, M _{22} = \cos \theta$
$M _{12} = -\sin \theta, M _{21} = \sin \theta, M _{23} = 0$
$M _{31} = 0, M _{32} = 0, M _{33} = \cos^{2}\theta + \sin^{2}\theta = 1$
Cofactor Matrix $= \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix} = C$
$det|A| = \cos^{2}\theta + \sin^{2}\theta = 1$

$adj (A) = C^{T} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1\end{bmatrix}$

$A^{-1} = \dfrac {adj(A)}{(A)} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0& 0 & 1\end{bmatrix}$.
- Hide questions