0

N th root of unity - class-XII

Description: n th root of unity
Number of Questions: 64
Created by:
Tags: demoivre's theorem maths complex numbers
Attempted 0/64 Correct 0 Score 0

If $z _{1}$ is a root of the equation $a^{n} _{0}z^{n}+a _{1}z^{n-1}+....+a _{n-1^{z}}+a _{n}=3$, where $|a _{i}|<2$ for $i=0,1,....,n.$ Then,

  1. $|z _{1}|>\dfrac {1}{3}$

  2. $|z _{1}|<\dfrac {1}{4}$

  3. $|z _{1}|>\dfrac {1}{4}$

  4. $|z|<\dfrac {1}{3}$


Correct Option: A
Explanation:

According to question,

${l} { a _{ 0 } }{ z^{ n } }+{ a _{ 1 } }{ z^{ n-1 } }+.............+{ a _{ n-1 } }z+{ a _{ n } }=3 \ \Rightarrow \left| { { a _{ 0 } }{ z^{ n } }+{ a _{ 1 } }{ z^{ n-1 } }+.............+{ a _{ n-1 } }z+{ a _{ n } } } \right| =\left| 3 \right|  \ \Rightarrow \left| { { a _{ 0 } } } \right| \, { \left| z \right| ^{ n } }+\left| { { a _{ 1 } } } \right| \, { \left| z \right| ^{ n-1 } }\, +..........+\left| { { a _{ n-1 } } } \right| \, \left| z \right| \, +\left| { { a _{ n } } } \right| \ge 3 \ \Rightarrow 2\, ({ \left| z \right| ^{ n } }+{ \left| z \right| ^{ n-1 } }+...........\left| z \right| +1)\, \, >\, 3 \ \Rightarrow (1+\left| z \right| +{ \left| z \right| ^{ 2 } }+...........+{ \left| z \right| ^{ n } })\, \, >\, \frac { 3 }{ 2 }  \ \Rightarrow \frac { { \, \, \, \, 1-{ { \left| z \right|  }^{ n+1 } } } }{ { 1-\left| z \right|  } } \, \, >\, \frac { 3 }{ 2 }  \ \Rightarrow 2-2{ \left| z \right| ^{ n+1 } }\, >\, 3-3\left| z \right|  \ \Rightarrow 2{ \left| z \right| ^{ n+1 } }<3\left| z \right| \, -1 \ \Rightarrow 3\, \left| z \right| -1\, >0 \ \, \, \, \, \, \therefore \, \, \, \left| z \right| \, >\, \frac { 1 }{ 3 }  \ so\, the\, correct\, option\, is\, \, A$

The number of common roots of the 15th and  of 25th roots of unity are

  1. 1

  2. 5

  3. 6

  4. 10


Correct Option: B
Explanation:

$15th$ roots of unity are $e^{\dfrac{{i}2{k}\pi}{15}}$ where $k=1,2,\cdots,15$

$25th$ roots of unity are $e^{\dfrac{{i}2{m}\pi}{25}}$ where $m=1,2,3,\cdots,25$
The common roots are $e^{i\dfrac{2{n}}{5}}$ where $n=1,2,3,4,5$
Number of common roots will be $5$

If $\alpha $ is a non- real fifth root of unity, then the value of ${3^{\left[ {1 + a + {a^2} - {a^{ - 1}}} \right]}}$,is

  1. $9$

  2. $1$

  3. $11/3$

  4. none of these


Correct Option: A

Let principle argument of complex number be re-defined between $(\pi,3\pi)$, then sum of principle arguments of roots of equation $z^{n}+z^{2}+1=0$ is

  1. $0$

  2. $3\pi$

  3. $6\pi$

  4. $12\pi$


Correct Option: A

The value of the expression 

$1 \cdot (2 - \omega) (2 - \omega^2) + 2\cdot (3 - \omega) (3 - \omega^2) +$ _____$+ (n - 1)(n - \omega)(n - \omega^2)$

  1. $\dfrac{1}{4}n(n - 1)(n^2 + 3n + 4)$

  2. $n(n - 1)(n^2 + 3n + 4)$

  3. $\dfrac{1}{4}n(n - 1)(n^2 + 3n - 4)$

  4. None of these


Correct Option: A
Explanation:
Here, $a _n= (n-1)(n-\omega )(n-\omega ^2)$

$\sum a _n= \sum (n-1)(n-\omega )(n-\omega ^2)$

$ = \sum (n^2-\omega n-n+\omega )(n-\omega ^2)$

$=\sum (n^3-\omega n^2 n^2+\omega ^3 n +\omega ^2n-\omega ^3)$

$= \sum (n^3-(\omega +\omega ^3)n^2-n^2(\omega +\omega ^2)n+n-1) \,\,\,\,\, [\because \omega ^3 =1]$

$= \sum (n^3-(-1)n^2-n^2+(-1)n+n-1) \,\,\,\,\, [\because 1+\omega +\omega ^2=0]$

$= \sum (n^3+n^2-n^2-n+n-1)$

$=\sum (n^3-1)$

$=\sum n^3-\sum 1$

$= \left [ \dfrac {n(n+1)}{2} \right ]^2-n$

$=\dfrac {n^2(n+1)^2}{4}-n$

$=\dfrac {n^4+n^2+2n^3-4n}{4}$

$=\dfrac {n}{4}(n^3+2n^2+n-4)$

$=\dfrac {n(n-1)(n^2+3n+4)}{4}$

$\therefore 1 \cdot (2 - \omega) (2 - \omega^2) + 2\cdot (3 - \omega) (3 - \omega^2) +$ _____$+ (n - 1)(n - \omega)(n - \omega^2) = \dfrac {1}{4}n (n-1)(n^2+3n+4)$

If $p, q, r, s, t$ are the roots of the equation $x^5-1 = 0$, then $p^{ 10 }+q^{ 10 }+{ r }^{ 10 }+{ s }^{ 10 }+t^{ 10 }=$

  1. $0$

  2. $1$

  3. $3$

  4. $5$


Correct Option: D
Explanation:

$p, q, r, s, t$ are all fifth root of unity
$\Rightarrow p^5=q^5= r^5= s^5= t^5=1$   
$ \Rightarrow p^{10}=q^{10}= r^{10}= s^{10}= t^{10}=1$
Hence, the required sum is $5$

If $1, a _1, a _2, ..a _{n-1}$ are $n^{th}$ roots of unity then $\dfrac{1}{1-a _1}+\dfrac{1}{1-a _2}+....+\dfrac{1}{1-a _{n-1}}$ equals?

  1. $\dfrac{2^n-1}{n}$

  2. $\dfrac{n-1}{2}$

  3. $\dfrac{n}{n-1}$

  4. $\dfrac{n}{n+1}$


Correct Option: A

If $1,{z} _{1},{z} _{2},{z} _{n-1}$ are the ${n}^{th}$ roots of unity then the value of $\dfrac{1}{3-z _{1}}+\dfrac{1}{3-z _{2}}+.......+\dfrac{1}{3-z _{n-1}}$ is equal to 

  1. $\displaystyle\frac { { n.3 }^{ n-1 } }{ { 3 }^{ n }-1 } +\frac { 1 }{ 2 }$

  2. $\displaystyle\frac { { n.3 }^{ n-1 } }{ { 3 }^{ n }-1 } -1$

  3. $\displaystyle\frac { { n.3 }^{ n-1 } }{ { 3 }^{ n }-1 } +1$

  4. $\displaystyle\frac { { n.3 }^{ n-1 } }{ { 3 }^{ n }-1 } -\frac { 1 }{ 2 }$


Correct Option: D
Explanation:
$z _{1}, z _{2} , z _{3}........ z _{n-1}$ are normal $n^{th}$
$x^{n}-1= (x-1) (x-z _{1}) (x-z _{2}) (x-z _{3})....... (x-z _{n-1})$
ln $(x^{n}-1)= ln (x-1) (x-z _{2}) (x-z _{3})......... (x-z _{n-1})$
$\dfrac{nx^{n-1}}{x^{n}-1}= \dfrac{1}{x-1} + \dfrac{1}{x- z _{1}} + \dfrac{1}{x- _{2}}...... \dfrac{1}{x- z _{n-1}}$
Putting $x=3$
$\dfrac{n3^{n-1}}{3^{n-1}}= \dfrac{1}{2} + \dfrac{1}{3- z _{1}}+ \dfrac{1}{3-z _{2}}........ \dfrac{1}{3-z _{n-1}}$
$\dfrac{1}{3-z _{1}}+ \dfrac{1}{3- z _{2}}.............. \dfrac{1}{3-z _{n-1}}= \dfrac{n(3)^{n-1}}{3^{n}-1}\dfrac{1}{2}$

If $1,{a _1},{a _2},....{a _{n - 1}}$ are ${n^{th}}$ roots of unity then $\frac{1}{{1 - {a _1}}} + \frac{1}{{1 - {a _2}}} + .... + \frac{1}{{1 - {a _{n - 1}}}}$ equals                                                            

  1. $\frac{{{2^n} - 1}}{n}$

  2. $\frac{{n - 1}}{2}$

  3. $\frac{n}{{n - 1}}$

  4. $\frac{n}{{n + 1}}$


Correct Option: B

If $1, \alpha _1, \alpha _2, \alpha _3, \alpha _4, \alpha _5, \alpha _6$, are seven, $7^{th}$ root of unity them $|(3-\alpha _1)(3-\alpha _3)(3-\alpha _5)|$ is?

  1. $\sqrt{2186}$

  2. $\sqrt{1093}$

  3. $\sqrt{1023}$

  4. $\sqrt{511}$


Correct Option: B
Explanation:
$x^7 -1 = 0$
$(x-1)(x-\alpha _1).....(x-\alpha _6) = x^7-1$
Putting $x=3$, we get
$2.(x-\alpha _1).(x-\alpha _2)...(x-\alpha _6) = 2186$
$|(x-\alpha _1)|^2 |(x- \alpha _3)|^2 |(x-\alpha)|^2 = 1093$
$|(x-\alpha _1)(x- \alpha _3)(x-\alpha _5)| = \sqrt{1093}$

If $1,{\alpha _1},{\alpha _2}....{\alpha _8}$ are nine, ninth roots of unity (taken in counter-clock wises direction) then $\left| {\left( {2 - {\alpha _1}} \right)\left( {2 - {\alpha _3}} \right)\left( {2 - {\alpha _5}} \right)\left( {2 - {\alpha _7}} \right)} \right|$ is equal to

  1. $\sqrt {255} $

  2. $\sqrt {1023} $

  3. $\sqrt {511} $

  4. $\sqrt {15} $


Correct Option: C

Number of values of $z$ (real or complex) simultaneously satisfying the system of equations
$1+z+{z}^{2}+{z}^{3}+....+{z}^{17}=0$ and $1+z+{z}^{2}+{z}^{3}+.....+{z}^{13}=0$ is

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: D

If $1,{\alpha _1},{\alpha _2},{\alpha _3}$ are the fourth roots of unity, then the value of $\left( {1 + {\alpha _1}} \right)\left( {1 + {\alpha _2}} \right)\left( {1 + {\alpha _3}} \right)$ is equal to

  1. $-3$

  2. $-1$

  3. $0$

  4. $2$


Correct Option: C
Explanation:

Let $1,\alpha _1,\alpha _2,\alpha _3$ are the fourth rotts of unity.


We know that the fourth roots of unity are $1,i,-1,-i$


All these roots are got by solving equation $x=(1)^{\dfrac{1}{4}}$

By using demovire's theorem.

Now,

$(1+\alpha _1)(1+\alpha _2)(1+\alpha _3)$

$\Rightarrow$  $(1+i)(1+(-1))(1+(-i))$

$\Rightarrow$  $(1+i)(0)(1-i)$

$\Rightarrow$  $0$

If $n^{th}$ root of unity be $1,a _{1},a _{2},...a _{n-1}$, then $\displaystyle \sum^{n-1} _{r=1}\dfrac {1}{2+a _{r}}$ is equal to

  1. $\dfrac {n.2^{n-1}}{2^{n}-1}-1$

  2. $\dfrac {n(-2)^{n-1}}{(-2)^{n}-1}-1$

  3. $\dfrac {n(-2)^{n-1}}{1+(-2)^{n+1}}-\dfrac {1}{3}$

  4. $None\ of\ these$


Correct Option: A

Let $a^{k}$ where $k=0.1.2....2013$ are the $2014^{th}$ roots of unity. If $Z _{1}$ and $Z _{2}$ be any two complex number such that $|Z _{1}|=|Z _{2}|=\dfrac{1}{\sqrt{2014}}$, then the value of $\displaystyle \sum _{ k=0 }^{ 2013 }{ { \left| { Z } _{ 1 }+{ a }^{ k }{ Z } _{ 2 } \right|  }^{ 2 } } $ is equal to

  1. $4028$

  2. $0$

  3. $2$

  4. $2014$


Correct Option: A

If $x _{1},x _{2},x _{3}$ are three real solutions of the equations $x^{2\ell nx-1}+e^{1/9}=(1+e^{/9})(x^{\ell-0.5})$ none of them being unity. Find $x _{1}x _{2}x _{3}$:

  1. $e$

  2. $2$

  3. $e^{2}$

  4. $4$


Correct Option: A

If $1, a _1, a _2,......a _{n-1}$ are the n nth roots of unity, then?

  1. $n+1$

  2. $n$

  3. $n-1$

  4. None of these


Correct Option: A

If $z _{1}$ and $z _{2}$ be the $n^{th}$ roots of unity which subtend a right angle at the origin, then $n$  must be of the form

  1. $4k+1$

  2. $4k+2$

  3. $4k+3$

  4. $4k$


Correct Option: A

If $A=\begin{bmatrix} a & b\ 0 & a\end{bmatrix}$ is nth root of $I _2$, then choose the correct statements.

  1. If n is odd, $a=1$, $b=0$

  2. If n is odd, $a=-1, b=0$

  3. If n is even, $a=1, b=0$

  4. If n is even, $a=-1, b=0$


Correct Option: A

The value of $\displaystyle\ \alpha^{4n-1}+\alpha^{4n-3}, n\epsilon\mathbb{N}$ and $\displaystyle\ \alpha$ is a nonreal fourth root of unity is 

  1. $0$

  2. $-1$

  3. $3$

  4. none of these


Correct Option: A
Explanation:

$x^{4}=1$
$x^{2}=\pm1$
$x=\pm i$ and $x=\pm 1$
Hence
$\alpha^{4n-1}+\alpha^{4n-3}$
$=\alpha^{4n}[\alpha^{-1}+\alpha^{-3}]$
$=[\alpha^{-1}+\alpha^{-3}]$
$=\alpha^{-1}[1+\alpha^{-2}]$
$=\alpha^{-3}[\alpha^{2}+1]$
$=\alpha^{-3}[(\pm i)^{2}+1]$
$=0$

If $1,{ \alpha  } _{ 1 },{ \alpha  } _{ 2 },{ \alpha  } _{ 3 }$ and $\alpha _4$ be the roots of $x^5-1=0$, then $\displaystyle \frac { \omega -{ \alpha  } _{ 1 } }{ { \omega  }^{ 2 }-{ \alpha  } _{ 1 } } .\frac { \omega -{ \alpha  } _{ 2 } }{ { \omega  }^{ 2 }-{ \alpha  } _{ 2 } } .\frac { \omega -{ \alpha  } _{ 3 } }{ { \omega  }^{ 2 }-{ \alpha  } _{ 3 } } .\frac { \omega -{ \alpha  } _{ 4 } }{ { \omega  }^{ 2 }-{ \alpha  } _{ 4 } } =$ 

  1. $1$

  2. $\omega$

  3. ${ \omega  }^{ 2 }$

  4. None of these


Correct Option: B
Explanation:

Since $1,{ \alpha  } _{ 1 },{ \alpha  } _{ 2 },{ \alpha  } _{ 3 },{ \alpha  } _{ 4 }$ are roots of the equation ${ x }^{ 5 }-1=0$

Thus ${ x }^{ 5 }-1=\left( x-1 \right) \left( x-{ \alpha  } _{ 1 } \right) \left( x-{ \alpha  } _{ 2 } \right) \left( x-{ \alpha  } _{ 3 } \right) \left( x-{ \alpha  } _{ 4 } \right)$
$ \Rightarrow \displaystyle\frac { { x }^{ 5 }-1 }{ \left( x-1 \right)  } =\left( x-{ \alpha  } _{ 1 } \right) \left( x-{ \alpha  } _{ 2 } \right) \left( x-{ \alpha  } _{ 3 } \right) \left( x-{ \alpha  } _{ 4 } \right) $........1
Putting $x=w$ in 1 we get,
$\Rightarrow \displaystyle\frac { { w }^{ 5 }-1 }{ \left( w-1 \right)  } =\left( w-{ \alpha  } _{ 1 } \right) \left( w-{ \alpha  } _{ 2 } \right) \left( w-{ \alpha  } _{ 3 } \right) \left( w-{ \alpha  } _{ 4 } \right) $
$\Rightarrow \displaystyle\frac { { w }^{ 2 }-1 }{ \left( w-1 \right)  } =\left( w-{ \alpha  } _{ 1 } \right) \left( w-{ \alpha  } _{ 2 } \right) \left( w-{ \alpha  } _{ 3 } \right) \left( w-{ \alpha  } _{ 4 } \right) $............2
Putting $x={ w }^{ 2 }$ in 1 we get
$\Rightarrow \displaystyle\frac { { w }^{ 10 }-1 }{ \left( { w }^{ 2 }-1 \right)  } =\left( { w }^{ 2 }-{ \alpha  } _{ 1 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 2 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 3 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 4 } \right) $
$\Rightarrow \displaystyle\frac { { w }-1 }{ \left( { w }^{ 2 }-1 \right)  } =\left( { w }^{ 2 }-{ \alpha  } _{ 1 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 2 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 3 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 4 } \right) $..........3
Dividing 2 by 3 we get, 
$\Rightarrow \displaystyle\frac { \left( { w }-{ \alpha  } _{ 1 } \right) \left( { w }-{ \alpha  } _{ 2 } \right) \left( { w }-{ \alpha  } _{ 3 } \right) \left( { w }-{ \alpha  } _{ 4 } \right)  }{ \left( { w }^{ 2 }-{ \alpha  } _{ 1 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 2 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 3 } \right) \left( { w }^{ 2 }-{ \alpha  } _{ 4 } \right)  } =\frac { { \left( { w }^{ 2 }-1 \right)  }^{ 2 } }{ { \left( { w }-1 \right)  }^{ 2 } } $
$=\displaystyle\frac { { w }^{ 4 }+1-2{ w }^{ 2 } }{ { w }^{ 2 }+1-2w } =\frac { { w }+1-2{ w }^{ 2 } }{ { w }^{ 2 }+1-2w } =\frac { -{ w }^{ 2 }-2{ w }^{ 2 } }{ -w-2w } =w$

Let, $z _1$ and $z _2$ be $n$th roots of unity which subtend a right angle at the origin. Then n must be of the from 

  1. $4k + 1$

  2. $4k + 2$

  3. $4k + 3$

  4. $4k$


Correct Option: D
Explanation:

$z _{1}$ and $z _{2}$ subtend right angle at the origin. 

Then 

$arg \dfrac{z _{1}}{z _{2}} = \dfrac{\pi}{2}$

$\therefore \dfrac{z _{1}}{z _{2}} = \cos \dfrac{\pi}{2} +i\sin\dfrac{\pi}{2} 0+i =i$

$\left (\dfrac{z _{1}}{z _{2}}\right )^n = i^n = 1$    ( nth root of unity )

$\therefore n = 4k$    (as $i^4 =1$)

If 1, $a _{1},a _{2},.....a _{n-1} $ are  $n^{th} $ roots of unity then $\frac{1}{1-a _{1}} +\frac{1}{1-a _{2}}+...+\frac{1}{1-a _{n-1}}$ equals

  1. $\frac{2^{n}-1}{n}$

  2. $\frac{n-1}{2}$

  3. $\frac{n}{n-1}$

  4. $\frac{n}{n+1}$


Correct Option: A

If $\omega$ is a complex cube root of unity, then the equation $\left|z-\omega\right|^{2}+\right|z-\omega^{2}\right|^{2}=\lambda$ will represent a circle if

  1. $\lambda \epsilon\left(0,\dfrac{3}{2}\right)$

  2. $\lambda \epsilon\left[\dfrac{3}{2},\infty\right)$

  3. $\lambda \epsilon\left(0,3\right)$

  4. $\lambda \epsilon\left[1,\infty\right)$


Correct Option: A

Let $\displaystyle z _{1}$ and $\displaystyle z _{2}$ be the $n^{th}$ roots of unity, which are ends of a line segment that subtends a right angle at the origin. Then, $n$ must be of the form

  1. $4k+1$

  2. $4k+2$

  3. $4k+3$

  4. $4k$


Correct Option: D
Explanation:

The $n^{th}$ roots of unity lie on a circle, where the angle between any 2 consecutive roots is $\dfrac { 2\pi  }{ n } $.
Hence, $ \dfrac{2r\pi}{n} = \dfrac{\pi}{2}$
$\Rightarrow 4r=n$
Hence, option D is correct.

Which one is not a root of the fourth root of unity

  1. $i$

  2. $1$

  3. $\dfrac { i } { \sqrt { 2 } }$

  4. $-i$


Correct Option: A

If $z _{1},z _{2}$be two $nth$ roots of unity such that they represent two point $A,B$ in the Argand plane where $\angle AOB=60^{\circ}$ and $O$ is the orgin then the positive integer $n$ is of the form 

  1. $4k,k:\epsilon:N$

  2. $4k+3,k:\epsilon:N$

  3. $6k,k:\epsilon:N$

  4. $6k+5,k:\epsilon:N$


Correct Option: C
Explanation:

From above concept


Let consider $k=0$ for $z _{1}$

So second root will be in $60^{\circ}$ 

Thus $z _{2}=cos\dfrac{\pi}{3}+isin\dfrac{\pi}{3}$

Hence $\dfrac{\pi}{3}=\dfrac{2k\pi}{n}$

$\Rightarrow n=6k$

If $\left| { a } _{ 1 } \right| <1,\lambda _{ 1 }\ge 0$ for $i=1,2,3....n$, and ${ \lambda  } _{ 1 }+{ \lambda  } _{ 2 }+{ \lambda  } _{ 3 }+...+\lambda _{ n }=1$ then the value ....$+\left| \lambda _{ n }{ a } _{ n } \right| $ is

  1. =1

  2. $ <1$

  3. $>1$

  4. None of these


Correct Option: A

If ${ z } _{ 1 },{ z } _{ 2 }$ are two complex numbers and ${ \omega  }^{ k },k=0,1,...,n-1$ are the nth roots of unity, then $\displaystyle \sum _{ k=0 }^{ n-1 }{ { \left| { z } _{ 1 }+{ z } _{ 2 }{ \omega  }^{ k } \right|  }^{ 2 } } $

  1. $<n\left( { \left| { z } _{ 1 } \right|  }^{ 2 }+{ \left| { z } _{ 2 } \right|  }^{ 2 } \right) $

  2. $=n\left( { \left| { z } _{ 1 } \right|  }^{ 2 }+{ \left| { z } _{ 2 } \right|  }^{ 2 } \right) $

  3. $>n\left( { \left| { z } _{ 1 } \right|  }^{ 2 }+{ \left| { z } _{ 2 } \right|  }^{ 2 } \right) $

  4. can't say


Correct Option: B
Explanation:

We have, $\displaystyle { \left| { z } _{ 1 }+{ z } _{ 2 }{ \omega  }^{ k } \right|  }^{ 2 }=\left( { z } _{ 1 }+{ z } _{ 2 }{ \omega  }^{ k } \right) \left( \overline { { z } _{ 1 }+{ z } _{ 2 }{ \omega  }^{ k } }  \right) $


$\displaystyle =\left( { z } _{ 1 }+{ z } _{ 2 }{ \omega  }^{ k } \right) \left( \overline { { z } _{ 1 } } +\overline { { z } _{ 2 } } { \omega  }^{ -k } \right) \quad \quad \quad \left[ { \omega  }^{ k }={ e }^{ i(2\pi k/n) }\Rightarrow { \omega  }^{ \overline { k }  }={ e }^{ -i(2\pi k/n) }={ \omega  }^{ -k } \right] $


$={ \left| { z } _{ 1 } \right|  }^{ 2 }+{ \left| { z } _{ 2 } \right|  }^{ 2 }+\overline { { z } _{ 1 } } { z } _{ 2 }{ \omega  }^{ k }+{ z } _{ 1 }\overline { { z } _{ 2 } } { \omega  }^{ -k }$

Therefore, we have

$\displaystyle \sum _{ k=0 }^{ n-1 }{ { \left| { z } _{ 1 }+{ z } _{ 2 }{ \omega  }^{ k } \right|  }^{ 2 } } =n\left( { \left| { z } _{ 1 } \right|  }^{ 2 }+{ \left| { z } _{ 2 } \right|  }^{ 2 } \right) +\overline { { z } _{ 1 } } { z } _{ 2 }\sum _{ k=0 }^{ n-1 }{ { \omega  }^{ k } } +{ z } _{ 1 }\overline { { z } _{ 2 } } \sum _{ k=0 }^{ n-1 }{ { \omega  }^{ -k } } $

$\displaystyle =n\left( { \left| { z } _{ 1 } \right|  }^{ 2 }+{ \left| { z } _{ 2 } \right|  }^{ 2 } \right) \left[ \sum _{ k=0 }^{ n-1 }{ { \omega  }^{ k } } =\sum _{ k=0 }^{ n-1 }{ { \omega  }^{ -k } }  \right] $

If $\displaystyle \alpha$ is a non-real root of $\displaystyle x^{5}+1=0$ then $\displaystyle \alpha ^{10n+2}+\alpha ^{5n+2}+\alpha ^{5n}$, where n is an odd positive integer,has the value

  1. $1$

  2. $0$

  3. $-1$

  4. none of these


Correct Option: C
Explanation:

$x^{5}=-1$
Hence
$\alpha^{5}=-1$
Therefore
$\alpha^{10n+2}+\alpha^{5n+2}+\alpha^{5n}$
$=(\alpha^{5n})^{2}\alpha^{2}+(\alpha^{5n}).\alpha^{2}+\alpha^{5n}$
$=(-1)^{2}\alpha^{2}+(-1)\alpha^{2}+\alpha^{5n}$ .... Since n is odd
$=-\alpha^{2}+\alpha^{2}-1$
$=-1$

If  $z _ { 1 }$  and  $z  _ { 2 }$  be the  $n ^ { th }$  roots of unity which subtend right angle at the origin. Then  $n$  must be of the form

  1. $4 k + 1$

  2. $4 k + 2$

  3. $4 k + 3$

  4. $4 k$


Correct Option: A

The value of the expression $\left( \omega -1 \right) \left( \omega -{ \omega  }^{ 2 } \right) \left( \omega -{ \omega  }^{ 3 } \right) ...\left( \omega -{ \omega  }^{ n-1 } \right) ,$ where $\omega$ is the nth root of unity, is 

  1. $n{ \omega  }^{ n-1 }$

  2. $n{ \omega  }^{ n }$

  3. $\left( n-1 \right) { \omega  }^{ n }$

  4. $\left( n-1 \right) { \omega  }^{ n-1 }$


Correct Option: A
Explanation:

We have, $\displaystyle { x }^{ n }-1=\left( x-1 \right) \left( x-\omega  \right) \left( x-{ \omega  }^{ 2 } \right) ...\left( x-{ \omega  }^{ n-1 } \right) $


$\displaystyle \Rightarrow \frac { { x }^{ n }-1 }{ x-\omega  } =\left( x-1 \right)  \left( x-{ \omega  }^{ 2 } \right) ...\left( x-{ \omega  }^{ n-1 } \right) $


Putting $x=\omega $ on both sides, we have

$\displaystyle \left( \omega -1 \right) \left( \omega -{ \omega  }^{ 2 } \right) ...\left( \omega -{ \omega  }^{ n-1 } \right) =\lim _{ x\rightarrow \omega  }{ \frac { { x }^{ n }-1 }{ x-\omega  }  } \left( \frac { 0 }{ 0 } form \right) $

$\displaystyle =\lim _{ x\rightarrow \omega  }{ \frac { n{ x }^{ n-1 } }{ 1 }  } =n{ \omega  }^{ n-1 }$

If $1,\ \alpha _{1},\ \alpha _{2},\ \alpha _{3},\ \alpha _{4},\ \alpha _{5},\ \alpha _{6}$ are sevan $7^{th}$ root of unity then $|(3-\alpha _{1})(3-\alpha _{3})(3-\alpha _{5})|$ is 

  1. $\sqrt {2186}$

  2. $\sqrt {1093}$

  3. $\sqrt {1023}$

  4. $\sqrt {511}$


Correct Option: B

The maximum number of real root of the equation $\displaystyle x^{2n} - 1 = 0$ is

  1. $\displaystyle 2$

  2. $\displaystyle 3$

  3. $\displaystyle n$

  4. $\displaystyle 2n$


Correct Option: A
Explanation:

$x^{2n}=1$
Now if  $n$ is odd we have
$x^{n}=\pm1 $
$x^{n}=1$ and $x^{n}=-1$
$x^{n}=-1$
$x=-1$
Now if $n$ is odd
$x^{n}-1=0$
$(x-1)(1+x+x^{2}+..x^{n-1})=0$
Hence $x=1$ and  the equation $1+x+x^{2}+..x^{n-1}=0$ gives $nth$  roots of unity.
Hence at most $2$ real roots.
Similarly if $n$  is even.
Then
$x^{n}=\pm1 $
$x^{n}=1$ and $x^{n}=-1$
Now 
$x^{n}=-1$ will given imaginary roots.
$x^{n}=1$ can be further simplified in to
$x^{\frac{n}{2}}=\pm1 $ and so on.
Hence we will get remaining pairs of imaginary roots ans two real roots $1$ and  $-1$  at the end.
Hence at-most $2$ real roots.

If $\alpha $ is a non-real root of $x^6=1$ then $\displaystyle \frac{\alpha ^5+\alpha ^3+\alpha +1}{\alpha ^2+1}=$

  1. -$\alpha ^2$

  2. 0

  3. $\alpha ^2$

  4. $\alpha $


Correct Option: A
Explanation:

$\alpha$ is non real root of $x^6 = 1$

one possible complex value of 
$\alpha = \cos (2 \pi / 6) + i \sin (2\pi / 6)$
$\alpha = \dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i$
$\alpha^2 = \left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i \right) \left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i \right) = \dfrac{1}{4} + \dfrac{\sqrt{3}}{4} i + \dfrac{\sqrt{3}}{4} i - \dfrac{3}{4} = \dfrac{-1}{2} + \dfrac{\sqrt{3}}{2} i$
$\alpha^3 = \left(\dfrac{-1}{2} + \dfrac{\sqrt{3}}{2} i \right) \left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i \right) = \dfrac{-1}{4} = \dfrac{\sqrt{3}}{4} i + \dfrac{\sqrt{3}}{4} - \dfrac{3}{4}= -1$
$\dfrac{\alpha^5 + \alpha^3 + \alpha + 1}{\alpha^2 + 1} = \alpha^3 + \dfrac{\alpha + 1}{\alpha^2 + 1}$
$= -1 + \dfrac{\left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i + 1 \right)}{\left(-\dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i + 1 \right)}$
$= \dfrac{\dfrac{1}{2} - \dfrac{\sqrt{3}}{2} i - 1 + \dfrac{1}{2} + \dfrac{\sqrt{3}}{2} i + 1}{(\dfrac{-1}{2} + \dfrac{\sqrt{3}}{2} i + 1)}$
$= \dfrac{1}{\alpha^2 + 1} = \dfrac{\alpha^2}{\alpha^4 + \alpha^2}$
$= \alpha^4 = \alpha^2 . \alpha^2 = \left(\dfrac{\sqrt{3}}{2} i - \dfrac{1}{2} \right) \left(\dfrac{\sqrt{3}}{2} i - \dfrac{1}{2} \right) = -\dfrac{\sqrt{3}}{2} i - \dfrac{1}{2}$
$= \dfrac{\alpha^2}{\alpha^4 + \alpha^2} = \dfrac{\alpha^2}{\left(\dfrac{-1}{2} + \dfrac{\sqrt{3}}{2} i - \dfrac{1}{2} - \dfrac{\sqrt{3}}{2} i\right)} = - \alpha^2$
Considering option C as $- \alpha^2$ , it is correct

The roots of the equation  $z^{5}+z^{4}+z^{3}+z^{2}+z+1=0$   are given by

  1. $-1$

  2. $\displaystyle -\frac{1}{2}+\frac{i\sqrt{3}}{2}$

  3. $\displaystyle \frac{1}{2}+\frac{i\sqrt{3}}{2}$

  4. $\displaystyle \frac{-1-i\sqrt{3}}{2}$


Correct Option: A,B,C,D
Explanation:

$\displaystyle { z }^{ 5 }+{ z }^{ 4 }+{ z }^{ 3 }+{ z }^{ 2 }+z+1=0\ \Rightarrow \frac { { z }^{ 6 }-1 }{ z-1 } =0\ \Rightarrow z\neq 1\quad &amp; \quad { z }^{ 6 }=1=\cos { 0 } +i\sin { 0 } \ \Rightarrow z={ \left( \cos { 0 } +i\sin { 0 }  \right)  }^{ \frac { 1 }{ 6 }  }=\cos { \frac { 2k\pi  }{ 6 }  } +i\sin { \frac { 2k\pi  }{ 6 }  } \ \Rightarrow z=\cos { \frac { k\pi  }{ 3 }  } +i\sin { \frac { k\pi  }{ 3 }  } $
where $k=0,1,2,3,4,5$.

For $k=0$,
$z=1$ but $z\neq 1$

For $k=1$,
$\displaystyle z=\cos { \frac { \pi  }{ 3 }  } +i\sin { \frac { \pi  }{ 3 }  } =\frac { 1+i\sqrt { 3 }  }{ 2 } $

For  $k=2$,
$\displaystyle z=\cos { \frac { 2\pi  }{ 3 }  } +i\sin { \frac { 2\pi  }{ 3 }  } =\frac { -1+i\sqrt { 3 }  }{ 2 } $

For  $k=3$,
$\displaystyle z=\cos { \frac { 3\pi  }{ 3 }  } +i\sin { \frac { 3\pi  }{ 3 }  } =-1$

For  $k=4$,
$\displaystyle z=\cos { \frac { 4\pi  }{ 3 }  } +i\sin { \frac { 4\pi  }{ 3 }  } =\frac { -1-i\sqrt { 3 }  }{ 2 } $

For $k=4$,
$\displaystyle z=\cos { \frac { 5\pi  }{ 3 }  } +i\sin { \frac { 5\pi  }{ 3 }  } =\frac { 1-i\sqrt { 3 }  }{ 2 } $

Hence, all the options A,B,C and D are correct.

If $\displaystyle \alpha $ is non-real and $\displaystyle \alpha=\sqrt[5]{1} ,$ then the value of $\displaystyle 2^{\left | 1+\alpha +\alpha ^{2}+\alpha ^{3}-\alpha ^{-1} -\alpha^{-2}\right |} $ is equal to

  1. 4

  2. 2

  3. 1

  4. none of these


Correct Option: A
Explanation:
$\alpha =\sqrt [ 5 ]{ 1 } ,$   ${ 2 }^{ \left| 1+\alpha +{ \alpha  }^{ 2 }+{ \alpha  }^{  3}-{ \alpha  }^{ -1 } -\alpha^{-2}\right|  }$

$\Rightarrow \alpha =1,$

$\Rightarrow { 2 }^{ \left| 1+1+1+1-1-1 \right|  }=2^2=4.$

${ 2 }^{ \left| 1+\alpha +{ \alpha  }^{ 2 }+{ \alpha  }^{  3}-{ \alpha  }^{ -1 } -\alpha^{-2}\right|  }=4$

Hence, the answer is $4.$

If $1,\omega ,\omega ^{2},....\omega ^{n-1}$ are $n,n^{th}$ roots ofunity then the value of $\left ( 13-\omega  \right )\left ( 13-\omega ^{n-1} \right )$ equals

  1. $ \displaystyle \frac{13^{n}+1}{3}$

  2. $ \displaystyle\frac{13^{n}-1}{3}$

  3. $ \displaystyle 13^{n}-1$

  4. None of these


Correct Option: D
Explanation:

$(13-w)(13-w^{n-1})$
$=(13-w)(13-\dfrac{w^{n}}{w})$
$=(13-w)(13-\overline{w})$
$=169-13(w+\overline{w})+w\overline{w}$
$=169-13(Re(w))+1$
$=170-13(Re(w))$
Hence answer is none of these.

If $\displaystyle w\neq 1 $ is $n^{th}$ root of unity, then value of $\displaystyle \sum _{k=0}^{n-1}\left | z _{1}+w^{k}z _{2} \right |^{2} $ is

  1. $\displaystyle n\left ( \left | z _{1} \right |^{2}+\left | z _{2} \right |^{2} \right )$

  2. $\displaystyle \left | z _{1} \right |^{2}+\left | z _{2} \right |^{2}$

  3. $\displaystyle \left ( \left | z _{1} \right |+\left | z _{2} \right | \right )^{2}$

  4. $\displaystyle n\left ( \left | z _{1} \right |+\left | z _{2} \right | \right )^{2}$


Correct Option: A

If  $\omega$  be a complex  $n ^ { t h }$  root of unity, then  $\sum _ { r = 1 } ^ { n } ( a r + b ) \omega ^ { r - 1 }$  is

  1. $\dfrac { n ( n + 1 ) a } { 2 }$

  2. $\dfrac { n b } { 1 - n }$

  3. $\dfrac { n a } { \omega - 1 }$

  4. none of these


Correct Option: A

Solutions of the equation $z^{7}-1=0$ are given by

  1. $\displaystyle z=-1,z=\cos \frac{2k\pi }{7}+i\sin \frac{2k\pi }{7},k=0,1,2, 3, 4, 5$

  2. $\displaystyle z=1\; and \; z=\cos \frac{2k\pi }{7}+i\sin \frac{2k\pi }{7},k=1,2,3, 4, 5, 6$

  3. $\displaystyle z=-1,z=\cos \frac{k\pi }{7}+i\sin \frac{k\pi }{7},k=0,1,2, 3, 4, 5$

  4. $\displaystyle z=1 \; and \; z=\cos \frac{k\pi }{7}+i\sin \frac{k\pi }{7},k=0,1,2,3, 4, 5$


Correct Option: B
Explanation:

${ z }^{ 7 }=1\ \Rightarrow z={ 1 }^{ \frac { 1 }{ 7 }  }={ \left( \cos { 0 } +i\sin { 0 }  \right)  }^{ \frac { 1 }{ 7 }  }$
$\Rightarrow z=\cos { \frac { 2k\pi  }{ 7 }  } +i\sin { \frac { 2k\pi  }{ 7 }  } $       ...De Moivre's Theorem}
Where $k=0,1,2,3,4,5,6$

For $k=0$
$z=1$
And $z=\cos { \frac { 2k\pi  }{ 7 }  } +i\sin { \frac { 2k\pi  }{ 7 }  } $ for $k=1,2,3,4,5,6$

Ans:B

Solve the equation $\displaystyle z^{n-1}=\bar{z},n\epsilon N.$

  1. $\displaystyle z =\sin \frac{2m\pi }{n}+i\cos \frac{2m\pi }{n}$

  2. $\displaystyle z =\sin \frac{2m\pi }{n}-i\cos \frac{2m\pi }{n}$

  3. $\displaystyle z =\cos \frac{2m\pi }{n}-i\sin \frac{2m\pi }{n}$

  4. $\displaystyle z =\cos \frac{2m\pi }{n}+i\sin \frac{2m\pi }{n}$


Correct Option: D
Explanation:

$z^{n-1}=\overline{z}$
Or 
$z^{n}=1$
This describes $nth$ roots of unity.
Hence let $z=e^{i\theta}$
$e^{in\theta}=e^{i2k\pi}$
Hence
$\theta=\dfrac{2k\pi}{n}$ Where $k\epsilon N$ and $0\leq K\leq n$
Hence
$z=cos\theta+isin\theta$
$=cos(\dfrac{2k\pi}{n})+isin(\dfrac{2k\pi}{n})$

lf $z _{1},z _{2}$ are $n^{th}$ roots of unity which are ends of a line segment that subtends $\displaystyle \frac{\pi}{2}$ at the origin. 

then $\mathrm{n}$ is of the form.

  1. $4k +1$

  2. $4k + 2$

  3. $4k + 3$

  4. $4k$


Correct Option: D
Explanation:

$z _{1}= e^{i\dfrac{2k _{1}\pi}{n}}$         $z _2= e^{i\dfrac{2k _{2}\pi }{n}}$

Given, $z _{1}= z _{2}e^{i\ ^{\pi }/ _{2}}$

$\Rightarrow e^{i\left ( \dfrac{2k _{1}-2k _{2}}{n} \right ){\pi }} = e^{i\ ^{\pi }/ _{2}}$
$\Rightarrow \dfrac{2(k _{1}-k _{2})\pi }{n} = \dfrac{\pi }{2}$
$or\ 2= 4(k _{1}-k _{2})=4k$

If $\alpha,\ \beta,\ \gamma$ and $\Delta $ are the roots of the equation $x^{4}-1=0$, then the value of $\displaystyle \frac{a\alpha+b\beta+c\gamma+d\Delta}{a\gamma+b\Delta +c\alpha+d\beta}+\frac{a\gamma+b\Delta +c\alpha+d\beta}{a\alpha+b\beta+c\gamma+d\Delta }$ is

  1. $ 3\beta$

  2. $0$

  3. $ 2\gamma$

  4. $-2$


Correct Option: D
Explanation:

Clearly,
$\alpha = e^{i0} = 1$
$\beta = e \frac{i2\pi}{4} = i$
$\gamma = e \frac{i4\pi}{4} = -1$
$\delta = e \frac{i6\pi}{4} = -i$
So, $\dfrac {a\alpha+b\beta+c\gamma+d\delta}{ a\gamma+b\delta+c\alpha+d\beta}=\dfrac {a+bi-c-di}{- a-bi+c+di}$
$=-1$
Similarly second expression is nothing but reciprocal of first
$=\frac{1}{-1}=-1$
Ans $ = -1-1 = -2$

The number of roots of the equation $z^{15}=1$ satisfying $|\arg(z)|<\pi/2$ is

  1. 6

  2. 7

  3. 8

  4. 9


Correct Option: B
Explanation:
For the nth root of unity of complex number $z$ i.e. $z^n = 1$, there are 'n' total roots.
In the present case, $n=15$, thus, we have 15 roots.

$|arg(z)|<\cfrac {\pi}{2}$ 
$\Rightarrow -\cfrac {\pi}{2} < arg(z) < \cfrac {\pi}{2}$

Each root is at equal angular distance i.e. $\dfrac{2\pi}{15}$      ...(because $\dfrac{2\pi}{n}$).

$\therefore$ between $-\cfrac {\pi}{2}$ and $\cfrac {\pi}{2}$, their will be 7 roots (imcluding 1).
Hence, the correct option is B. 

The order of $-i$ in the multiplicative group of $4^{th}$ roots of unity is

  1. $4$

  2. $3$

  3. $2$

  4. $1$


Correct Option: D
Explanation:

For the fourth roots of unity, consider the following equation
$(x^{4}-1)=0$
or
$x^{4}=1$
or
$x^{2}=\pm1$ Therefore,
$x^{2}=1$ or $x^{2}=-1$. Hence
$x=\pm1$ and $x=\pm i$
Hence order of $(-i)$ is $1$. 

lf 1, $a _{1},\ a _{2},...,\ a _{n-1}$ are $n^{th}$ roots of unity then $\displaystyle \frac{1}{1-a _{1}}+\frac{1}{1-a _{2}}+\ldots+\frac{1}{1-a _{n-1}}$ equals?

  1. $\displaystyle \frac{2^{n}-1}{n}$

  2. $\displaystyle \frac{n-1}{2}$

  3. $\displaystyle \frac{n}{n-1}$

  4. $\displaystyle \frac{n}{n+1}$


Correct Option: B
Explanation:
We know that $w,w^{2},1$ are the cube roots of unity
Hence,
$\cfrac{1}{1-w}+\cfrac{1}{1-w^{2}}$
$=\cfrac{1}{1-w}+\cfrac{1}{(1-w)(1+w)}$
Now,
$=\cfrac{1}{1-w}(1+\cfrac{1}{1+w})$
$=\cfrac{1}{1-w}(\cfrac{2+w}{1+w})$
$=\cfrac{2+w}{1-w^{2}}$
We know 
$1+w+w^{2}=0$
$2+w+w^{2}=1$ ...(by adding 1 on both sides).
$2+w=1-w^{2}$ substituting we get
$=\cfrac{2+w}{2+w}$
$=1$
$=\cfrac{3-1}{2}$
Hence, the correct alternative is $\cfrac{n-1}{2}$

If $w \neq 1$ is $n^{th}$ root of unity, then value of $ \displaystyle \sum _{k=0}^{n-1} \left| z _{1} w^{k} z _{2} \right| ^{2}$ is

  1. $n( \left| z _{1} z _{2}\right| ^{2})$

  2. $ \left| z _{1}\right| ^{2}+\left| z _{2}\right| ^{2}$

  3. $( \left| z _{1}\right|+\left| z _{2}\right|) ^{2}$

  4. $n ( \left| z _{1}\right|+\left| z _{2}\right|) ^{2}$


Correct Option: A

Let $z _1$ and $z _2$ be ${ n }^{ th }$ roots of unity which subtend a right angle at the origin. Then n must be of the form

  1. 4k + 1

  2. 4k + 2

  3. 4k + 3

  4. 4k


Correct Option: D
Explanation:

$Z _1 = e^{i\dfrac{2k _1\pi}{n}}$
$Z _2 = e^i{\frac{2k _2\pi}{n}}$
Now, $Z _1, Z _2$ subtend a right angle at origin
$\Rightarrow \frac {Z _1}{|Z _1|}=\frac {Z _2}{|Z _2|}e^{i(\frac{\pi}{2})}$

$\Rightarrow e^{i(k _1-k _2) \frac{2\pi}{n}} = e^{i(\frac{\pi}{2})} $

Hence, 

$ (k _1-k _2)\frac{2\pi}{n} = \frac{\pi}{2} $

$ \Rightarrow k _1 -k _2 = \frac{n}{4} $

As $k _1, k _2$ are integers, $n$ must be of the form $4k$

If 1, ${ a } _{ 1 },{ a } _{ 2 },....{ a } _{ n-1 }$ are the nth roots of unity then 
i) $\left( 1-{ a } _{ 1 } \right) \left( 1-{ a } _{ 2 } \right) \left( 1-{ a } _{ 3 } \right) ......\left( 1-{ a } _{ n-1 } \right) =n$
ii) $1+{ a } _{ 1 }+{ a } _{ 2 }+....+{ a } _{ n-1 }=0$
iii) $\dfrac { 1 }{ 2-{ a } _{ 1 } } +\dfrac { 1 }{ 2-{ a } _{ 2 } } +....+\dfrac { 1 }{ 2-{ a } _{ n-1 } } =\dfrac { \left( n-2 \right) { 2 }^{ n-1 }+1 }{ { 2 }^{ n }-1 } $

  1. True

  2. False


Correct Option: A

If $1, z _1, z _2, z _3, ...., z _{n-1}$ be the nth roots of unity and $\omega$ be a non-real complex cube root of unity, then the product
$\Pi _{r=1}^{n-1}(\omega-z _r)$ can be equal to

  1. $0$

  2. $1$

  3. $-1$

  4. $1+\omega$


Correct Option: A,B,D
Explanation:

$x^n-1=(x-1)(x-z _1)(x-z _2)....(x-z _{n-1})$
$\Rightarrow \dfrac {x^n-1}{x-1}=(x-z _1)(x-z _2)....(x-z _{n-1})$
Putting $x=\omega$, we have
$\Pi _{r=1}^{n-1}(\omega-z _r)=\dfrac {\omega^n-1}{\omega-1}=\left{\begin{matrix}0 & if \ n=3k, k\epsilon Z \ 1, & if\  n=3k+1, k\epsilon Z \ 1+\omega, & if\   n=3k+2, k\epsilon Z\end{matrix}\right.$

If $\omega$ is a complex $n$th root of unity, then $\displaystyle \sum _{r=1}^{n} (ar + b)\omega^{r-1}$ is equal to

  1. $\displaystyle \frac{n(n+1)a}{2}$

  2. $\displaystyle \frac{nb}{1-n}$

  3. $\displaystyle \frac{na}{\omega - 1}$

  4. $none\ of\ these$


Correct Option: C
Explanation:

Upon expanding, we get
$(a+b)+(2a+b)w+(3a+b)w^{2}+...(na+b)w^{n-1}$
$=a(1+2w+3w^{2}+...nw^{n-1})+b(1+w+w^{2}+...w^{n-1})$
$=a(1+2w+3w^{2}+...nw^{n-1})+b(\cfrac{1-w^{n}}{1-w})$
$=a(1+2w+3w^{2}+...nw^{n-1})+0$

Let
$S=a(1+2w+3w^{2}+...nw^{n-1})$
$Sw=a(w+2w^{2}+3w^{3}+...(n-1)w^{n-1}-nw^{n})$
$S(1-w)=a(1+w+w^{2}....w^{n-1})-anw^{n}$
$S(1-w)=a(\cfrac{1-w^{n}}{1-w})-anw^{n}$
$S(1-w)=a(0)-an$
$S=-\cfrac{an}{1-w}=\dfrac{an}{w-1}$
Hence, option 'C' is correct.

$\begin{array} { l } { 1 , a _ { 1 } , \ldots , a _ { 4 } \text { are the } 5 ^ { \text { th } } \text { roots of unity. The value } } \ { \text { of } \left( 1 + a _ { 1 } \right) \dots \left( 1 + a _ { 4 } \right) \text { is } } \end{array}$ ?

  1. $-16$

  2. $16$

  3. $-1$

  4. $1$


Correct Option: A

The no. of common roots of $15th$ roots of unity which are also $25th$ the roots of unity is

  1. $4$

  2. $3$

  3. $5$

  4. $2$


Correct Option: A

If $p$ and $q$ are distinct prime numbers, then the number of distinct imaginary numbers which are $p$th as well as $q$th roots of unity are

  1. min$(p, q)$

  2. max$(p, q)$

  3. $1$

  4. zero


Correct Option: D
Explanation:

It is given that, $p$ and $q$ are prime numbers.
Hence the only common $pth$ and $qth$ root of unity will be the number 1.
Thus there will be no common imaginary $pth$ and $qth$ root of unity.
Hence answer is zero.

The value of ${ \left( 16 \right)  }^{ 1/4 }$ are

  1. $\pm 2,\pm 2i$

  2. $\pm 4,\pm 4i$

  3. $\pm 1,\pm i$

  4. None of these


Correct Option: A
Explanation:

Let $x={ \left( 16 \right)  }^{ { 1 }/{ 4 } }$

${ x }^{ 4 }=16$

${ x }^{ 4 }-16=0$

${ x }^{ 4 }-{ 2 }^{ 4 }=0$

$\left( { x }^{ 2 }-{ 2 }^{ 2 } \right) \left( { x }^{ 2 }+{ 2 }^{ 2 } \right) =0$

$\left( x-2 \right) \left( x+2 \right) \left( { x }^{ 2 }+4 \right) =0$

$x-2=0,x+2=0,{ x }^{ 2 }+4=0$

$x=2,-2$ or ${ x }^{ 2 }=-4\Longrightarrow x=\pm \sqrt { -4 } =\pm 2i$

$\therefore x=\pm 2,\pm 2i$

Find all those roots of the equation $z^{12} - 56z^6 - 512 = 0$ whose imaginary part is positive.

  1. $2, 2 \left ( cos \frac{\pi}{3} + i sin \frac{\pi}{3} \right ), 2 \left ( cos \frac{2\pi}{3} + i sin \frac{2\pi}{3} \right ), - 2,$

    $ 2^{2/3} \left ( cos \frac{\pi}{6} + i sin \frac{\pi}{6} \right ), 2^{2/3} \left ( cos \frac{\pi}{2} + i sin \frac{\pi}{2} \right ), 2^{2/3} \left ( cos \frac{5\pi}{6} + i sin \frac{5\pi}{6} \right )$

  2. $2, 2 \left ( cos \frac{\pi}{3} + i sin \frac{\pi}{3} \right ), 2 \left ( cos \frac{2\pi}{3} + i sin \frac{2\pi}{3} \right ), - 2, $

    $2^{1/3} \left ( cos \frac{\pi}{6} + i sin \frac{\pi}{6} \right ), 2^{1/3} \left ( cos \frac{\pi}{2} + i sin \frac{\pi}{2} \right ), 2^{1/3} \left ( cos \frac{5\pi}{6} + i sin \frac{5\pi}{6} \right )$

  3. $2, 2 \left ( cos \frac{\pi}{3} + i sin \frac{\pi}{3} \right ), 2 \left ( cos \frac{2\pi}{3} + i sin \frac{2\pi}{3} \right ), - 2,$

    $ 2^{1/3} \left ( -cos \frac{\pi}{6} + i sin \frac{\pi}{6} \right ), 2^{1/3} \left ( -cos \frac{\pi}{2} + i sin \frac{\pi}{2} \right ), 2^{1/3} \left ( -cos \frac{5\pi}{6} + i sin \frac{5\pi}{6} \right )$

  4. $2, 2 \left ( -cos \frac{\pi}{3} + i sin \frac{\pi}{3} \right ), 2 \left ( -cos \frac{2\pi}{3} + i sin \frac{2\pi}{3} \right ), - 2,$

    $ 2^{2/3} \left ( cos \frac{\pi}{6} + i sin \frac{\pi}{6} \right ), 2^{2/3} \left ( cos \frac{\pi}{2} + i sin \frac{\pi}{2} \right ), 2^{2/3} \left ( cos \frac{5\pi}{6} + i sin \frac{5\pi}{6} \right )$


Correct Option: B
Explanation:

$(z^{6}-28)^{2}-784-512=0$
$(z^{6}-28)^{2}=1296$
$z^{6}-28=\pm36$
$z^{6}=64$ and $z^{6}=-8$
$z^{3}=\pm8$
$z=2$ and $z=-2$ ...(i)
$z^{6}=2^{3}.e^{i(2k-1)\pi}$
$z=2^{\frac{1}{2}}(e^{i\frac{(2k-1)\pi}{6}})$ where $k=1,2,3..6$.

If $\displaystyle 1,a _{1},a _{2}...,a _{n-1} $ are $\displaystyle n^{th}$ roots of unity, then $\displaystyle \frac{1}{1-a _{1}}+\frac{1}{1-a _{2}}+...+\frac{1}{1-a _{n-1}}$ equals

  1. $\displaystyle \frac{2^{n}-1 }{n}$

  2. $\displaystyle \frac{n-1 }{2}$

  3. $\displaystyle \frac{n}{n-1}$

  4. None of these


Correct Option: B
Explanation:

Given $\displaystyle z^{n}= 1,z= 1,a _{1}, a _{2},..., a _{n-1}$
Let $\displaystyle a= \frac{1}{1-z}\Rightarrow z= 1-\frac{1}{a}$
 $\displaystyle \therefore \left ( 1-\frac{1}{a} \right )^{n}= 1$
$\displaystyle \Rightarrow \left ( a-1 \right )^{n}-a^{n}= 0$
$\displaystyle \Rightarrow -C _{1}a^{n-1}+C _{2}a^{n-2}+...+\left ( -1 \right )^{n}= 0$ where  $\displaystyle a= \frac{1}{1-a _{1}}, \frac{1}{1-a _{2}}.....\frac{1}{1-a _{n-1}}$

$\displaystyle \Rightarrow \frac{1}{1-a _{1}}+\frac{1}{1-a _{2}}+.....+\frac{1}{1-a _{n-1}}= \frac{^{n}c _{2}}{n}= \frac{n-1}{2}$

If $n\ge 3$ and $1,\alpha _1, \alpha _2, ... , \alpha _{n-1}$ are $nth$ roots of unity, then the value of $\displaystyle\sum _{1 \le i < j \le n-1}{\alpha _i\alpha _j}$ is

  1. $0$

  2. $1$

  3. $-1$

  4. $(-1)^n$


Correct Option: B
Explanation:

Given that $ 1,{ \alpha  } _{ 1 },{ \alpha  } _{ 2 },....,{ \alpha  } _{ n }$ are $n$th roots of unity

$ \Rightarrow x^{n}=1$
So the sum of roots is $0$
$\Rightarrow 1+{ \alpha  } _{ 1 }+{ \alpha  } _{ 2 }+....,{ +\alpha  } _{ n }=0$
Sum of product of roots taken two at a time is $0$
$\Rightarrow 1({ \alpha  } _{ 1 }+{ \alpha  } _{ 2 }+....,{ +\alpha  } _{ n })+\sum _{ 1\le i<j\le n-1 }^{  }{ { \alpha  } _{ i }{ \alpha  } _{ j } } =0$
$\Rightarrow \sum _{ 1\le i<j\le n-1 }^{  }{ { \alpha  } _{ i }{ \alpha  } _{ j } } =-({ \alpha  } _{ 1 }+{ \alpha  } _{ 2 }+....,{ +\alpha  } _{ n })=-(-1)=1$

$\alpha _{1},\alpha _{2},\alpha _{3},\alpha _{4},.........\alpha _{100},$ are all the $100^{th}$ roots of unity. Then the numerical value of $\sum _{1 \leq i}^{ }  \sum _{j \leq 100}^{ } (\alpha _{i}\alpha _{j})^{5}$ is



  1. 20

  2. 0

  3. $(20)^{1/20}$

  4. None of these


Correct Option: B
Explanation:

$\sum _{1 \leq i}^{ }  \sum _{j \leq 100}^{ } \alpha _{i}^{5} \alpha _{j}^{5}=(\alpha _{1}^{5}+\alpha _{2}^{5}.......+\alpha _{100}^{5})^{2}-(\alpha _{1}^{10}+\alpha _{2}^{10}.......+\alpha _{100}^{10})$
=0-0=0

lf $a=\displaystyle \cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}, \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$, then $\alpha, \beta$ are the roots of the equation

  1. $x^{2}+x+1=0$

  2. $x^{2}+x+2=0$

  3. $x^{2}+2x+2=0$

  4. $x^{2}+2x+3=0$


Correct Option: B
Explanation:

$a={ e }^{ i2\pi /7 }\ a^ 7=1\ \alpha +\beta $

$=a+a^ 2+a^ 3+a^ 4+a^ 5+a^ 6\ =\dfrac{a(a^ 6-1)}{(a-1)}\ =\dfrac{(a^ 7-a)}{(a-1)}\ =\dfrac{(1-a)}{(a-1)}$
$=-1$
$\alpha \beta =(a+a^ 2+a^ 4)(a^ 3+a^ 5+a^ 6)\ =(a^ 4+a^ 6+a^ 7+a^ 5+a^ 7+a^ 8+a^ 7+a^ 9+a^ {10})\ =(a^ 4+a^ 6+1+a^ 5+1+a+1+a^ 2+a^ 3)\ =(3+a+a^ 2+a^ 3+a^ 4+a^ 5+a^ 6)\ =(3-1)$
$=2 $
The equation can be written as
 $x^ 2-(\alpha +\beta )x +\alpha \beta  =x^ 2+x+2$
Hence, option B is correct.

If the expression $z^5 =32$ can be factorised into linear and quadratic factors over real coefficients as $(z^5 - 32)=(z - 2) (z^2-pz+4)(z^2-qz+4)$, where p > q, then the value of $p^2-  2q$
  1. $8$

  2. $4$

  3. $-4$

  4. $-8$


Correct Option: A
Explanation:

Given,

$ { z }^{ 5 }=32 $ can be factorized as
$(z-2)({ z }^{ 2 }-pz+4)({ z }^{ 2 }-qz+4)$ where $ p>q.$
 To find the value of $ { p }^{ 2 }-2q$
 Solution,
${ z }^{ 5 }=32\ { z }^{ 5 }-32=0$
$ { z }^{ 5 }-{ 2 }^{ 5 }=0$
$ z=2$ 
Will be one of the factor of given equation.
$ \quad \quad \quad \quad \quad \quad \quad { z }^{ 4 }+{ 2z }^{ 3 }+{ 4z }^{ 2 }+8z+16\ \therefore \quad z-2\sqrt { { z }^{ 5 }-32\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  } \ \quad \quad \quad \cfrac { \pm { z }^{ 5 }\mp { 2z }^{ 4 } }{ { \quad \quad \quad \quad \quad \quad 2z }^{ 4 }-32 } \ \quad \quad \quad \quad \quad \quad \cfrac { \pm { 2z }^{ 4 }\mp 4{ z }^{ 3 } }{ \quad \quad \quad \quad \quad \quad \quad 4{ z }^{ 3 }-32 } \ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \cfrac { \pm 4{ z }^{ 3 }\mp 8{ z }^{ 2 } }{ \quad \quad \quad \quad \quad \quad \quad 8{ z }^{ 2 }-32 } \ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \cfrac { \pm 8{ z }^{ 2 }\mp 16z }{ \quad \quad \quad \quad \quad \quad \quad 16z-32 } \ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \cfrac { \pm 16z\mp 32 }{ 0 } \ (z-2)({ z }^{ 4 }+2{ z }^{ 3 }+4{ z }^{ 2 }+8z+16)\longrightarrow (1)\ { z }^{ 5 }-32=(z-2)({ z }^{ 2 }-pz+4)({ z }^{ 2 }-qz+4)\quad \ { z }^{ 5 }-32=(z-2)({ z }^{ 4 }+(p+q)z^{ 3 }+(8+pq){ z }^{ 2 }+16-(4p+4q)z)\longrightarrow (2)$
On comparing $ (1)&amp; (2)$ we get
$ p=-2-q\ 8+(-2-q)q=4\ -2q-{ q }^{ 2 }=-4\ { q }^{ 2 }+2q-4=0\ d=4+16=20\ q=\cfrac { -2\pm 2\sqrt { 5 }  }{ 5 } \ q=-1\pm \sqrt { 5 } \ { \parallel  }^{ rly }p=-1\pm \sqrt { 5 } $
But$\quad p>q\therefore p=-1+\sqrt { 5 } &amp; q=-1-\sqrt { 5 } $
value of ${ p }^{ 2 }-2q={ \left( -1+\sqrt { 5 }  \right)  }^{ 2 }+2{ \left( -1-\sqrt { 5 }  \right)  }\ =1+5-2\sqrt { 5 } +2+2\sqrt { 5 } \ { p }^{ 2 }-2q=8\ $

Suppose A is a complex number and $ n \in N, $ such that $A^{n} = (A + 1)^{n} =1, $ then the least value of $n$ is

  1. $3$

  2. $6$

  3. $9$

  4. $12$


Correct Option: B
Explanation:

$Since\quad { z }^{ n }=1\ \Rightarrow \quad { \left| z \right|  }^{ n }=1\ \quad \quad \quad \left| z \right| =1\ similarly,\ { \left( z+1 \right)  }^{ n }=1\ \Rightarrow \quad { \left| z+1 \right|  }^{ n }=1\ \left| z+1 \right| =1\ Let\quad z=a+ib\ \left| z \right| =\left| z+1 \right| \quad \Rightarrow \quad { a }^{ 2 }+{ b }^{ 2 }={ \left( a+1 \right)  }^{ 2 }+{ b }^{ 2 }\ { a }^{ 2 }+{ b }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }+2a+1\ \Rightarrow \quad 2a+1=0\ \therefore \quad a=\frac { -1 }{ 2 } \ putting\quad the\quad value\quad of\quad a\quad in\quad eq.\ \Rightarrow \quad { \left( \frac { -1 }{ 2 }  \right)  }^{ 2 }+{ b }^{ 2 }=1\ \Rightarrow \quad { b }^{ 2 }=\frac { 3 }{ 4 } \ \Rightarrow \quad b=\pm \frac { \sqrt { 3 }  }{ 2 } \ Now,\quad z+1=\quad \frac { 1 }{ 2 } \pm \frac { \sqrt { 3 }  }{ 2 } \ \Rightarrow \quad z+1={ e }^{ \pm \frac { zni }{ 3 }  }\ { \left( z+1 \right)  }^{ n }=\quad { e }^{ \pm \frac { zni }{ 3 }  }\ For\quad { \left( z+1 \right)  }^{ n }\quad to\quad be\quad 1\quad cos\quad \pm \frac { zn }{ 3 } =1\quad and\quad sin\quad \pm \frac { zn }{ 3 } =0\ This\quad can\quad only\quad happen\quad if\quad \pm \frac { zn }{ 3 } =2ak\quad for\quad integer\quad k.\ Solving\quad for\quad n,\quad we\quad get:\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \pm \frac { zn }{ 3 } =2ak\quad \Rightarrow \quad n=6k\ \quad \quad \quad \quad \quad \quad \quad k=\frac { 6 }{ n } \ least\quad value=\quad 6\ $

If $1,$$\alpha _{1},\alpha _{2,} \alpha _{3},\alpha _{4}$ be the  roots of $z^{5}-1=0$ and $\omega $ be an imaginary cube root of unity, 


then  $ \displaystyle \left ( \frac{\omega -\alpha _{1}}{\omega ^{2}-\alpha _{1}} \right )\left ( \frac{\omega -\alpha _{2}}{\omega ^{2}-\alpha _{2}} \right )\left ( \frac{\omega -\alpha _{3}}{\omega ^{2}-\alpha _{3}} \right )\left ( \frac{\omega -\alpha _{4}}{\omega ^{2}-\alpha _{4}} \right )$ is ?

  1. $\omega $

  2. $\omega^{2}$

  3. $1$

  4. $2$


Correct Option: A
Explanation:

We have,
$z^{5}-1=\left ( z-1 \right )\left ( z-\alpha _{1} \right )\left ( z-\alpha _{2} \right )\left ( z-\alpha 3 \right )\left ( z-\alpha _{4} \right )$
putting z=w,
$\Rightarrow w^{5}-1=\left ( w-1 \right )\left ( w-\alpha _{1} \right )\left ( w-\alpha _{2} \right )\left ( w-\alpha _{3} \right )\left ( w-\alpha _{4} \right )..............(1)$
Similarly putting $z=w^{2}$
$\left ( w^{2} \right )^{5}-1=w^{10}-1=\left ( w^{2}-1 \right )\left ( w^{2}-\alpha _{1} \right )\left ( w^{2}-\alpha _{2}\right )\left ( w^{2} -\alpha _{3}\right )\left ( w^{2}-\alpha _{4} \right ).........(2)$
So the required expression reduces to 
$ \displaystyle =\frac{\left ( w^{5} -1\right )/\left ( w-1 \right )}{\left ( w^{10}-1 \right )/\left ( w^{2} -1\right )}$
$=\frac{\left ( w^{2} -1\right )/\left ( w-1 \right )}{\left ( w-1 \right )/\left ( w^{2} -1\right )}$
$\left [ \because w^{3}=1,w^{5} =w^{3}w^{2}=w^{2}\right ]$
$=\frac{\left ( w^{2}-1 \right )^{2}}{\left ( w-1 \right )^{2}}$
$=\frac{\left ( w-1 \right )^{2}\left ( w+1 \right )^{2}}{\left ( w-1 \right )^{2}}$
$=1+2w+w^{2}$
$=w\left [ \because 1+w^{2} =-w\right ]$

- Hide questions