N th root of unity - class-XII
Description: n th root of unity | |
Number of Questions: 64 | |
Created by: Tanuja Atwal | |
Tags: demoivre's theorem maths complex numbers |
If $z _{1}$ is a root of the equation $a^{n} _{0}z^{n}+a _{1}z^{n-1}+....+a _{n-1^{z}}+a _{n}=3$, where $|a _{i}|<2$ for $i=0,1,....,n.$ Then,
The number of common roots of the 15th and of 25th roots of unity are
If $\alpha $ is a non- real fifth root of unity, then the value of ${3^{\left[ {1 + a + {a^2} - {a^{ - 1}}} \right]}}$,is
Let principle argument of complex number be re-defined between $(\pi,3\pi)$, then sum of principle arguments of roots of equation $z^{n}+z^{2}+1=0$ is
The value of the expression
If $p, q, r, s, t$ are the roots of the equation $x^5-1 = 0$, then $p^{ 10 }+q^{ 10 }+{ r }^{ 10 }+{ s }^{ 10 }+t^{ 10 }=$
If $1, a _1, a _2, ..a _{n-1}$ are $n^{th}$ roots of unity then $\dfrac{1}{1-a _1}+\dfrac{1}{1-a _2}+....+\dfrac{1}{1-a _{n-1}}$ equals?
If $1,{z} _{1},{z} _{2},{z} _{n-1}$ are the ${n}^{th}$ roots of unity then the value of $\dfrac{1}{3-z _{1}}+\dfrac{1}{3-z _{2}}+.......+\dfrac{1}{3-z _{n-1}}$ is equal to
If $1,{a _1},{a _2},....{a _{n - 1}}$ are ${n^{th}}$ roots of unity then $\frac{1}{{1 - {a _1}}} + \frac{1}{{1 - {a _2}}} + .... + \frac{1}{{1 - {a _{n - 1}}}}$ equals
If $1, \alpha _1, \alpha _2, \alpha _3, \alpha _4, \alpha _5, \alpha _6$, are seven, $7^{th}$ root of unity them $|(3-\alpha _1)(3-\alpha _3)(3-\alpha _5)|$ is?
If $1,{\alpha _1},{\alpha _2}....{\alpha _8}$ are nine, ninth roots of unity (taken in counter-clock wises direction) then $\left| {\left( {2 - {\alpha _1}} \right)\left( {2 - {\alpha _3}} \right)\left( {2 - {\alpha _5}} \right)\left( {2 - {\alpha _7}} \right)} \right|$ is equal to
Number of values of $z$ (real or complex) simultaneously satisfying the system of equations
$1+z+{z}^{2}+{z}^{3}+....+{z}^{17}=0$ and $1+z+{z}^{2}+{z}^{3}+.....+{z}^{13}=0$ is
If $1,{\alpha _1},{\alpha _2},{\alpha _3}$ are the fourth roots of unity, then the value of $\left( {1 + {\alpha _1}} \right)\left( {1 + {\alpha _2}} \right)\left( {1 + {\alpha _3}} \right)$ is equal to
If $n^{th}$ root of unity be $1,a _{1},a _{2},...a _{n-1}$, then $\displaystyle \sum^{n-1} _{r=1}\dfrac {1}{2+a _{r}}$ is equal to
Let $a^{k}$ where $k=0.1.2....2013$ are the $2014^{th}$ roots of unity. If $Z _{1}$ and $Z _{2}$ be any two complex number such that $|Z _{1}|=|Z _{2}|=\dfrac{1}{\sqrt{2014}}$, then the value of $\displaystyle \sum _{ k=0 }^{ 2013 }{ { \left| { Z } _{ 1 }+{ a }^{ k }{ Z } _{ 2 } \right| }^{ 2 } } $ is equal to
If $x _{1},x _{2},x _{3}$ are three real solutions of the equations $x^{2\ell nx-1}+e^{1/9}=(1+e^{/9})(x^{\ell-0.5})$ none of them being unity. Find $x _{1}x _{2}x _{3}$:
If $1, a _1, a _2,......a _{n-1}$ are the n nth roots of unity, then?
If $z _{1}$ and $z _{2}$ be the $n^{th}$ roots of unity which subtend a right angle at the origin, then $n$ must be of the form
If $A=\begin{bmatrix} a & b\ 0 & a\end{bmatrix}$ is nth root of $I _2$, then choose the correct statements.
The value of $\displaystyle\ \alpha^{4n-1}+\alpha^{4n-3}, n\epsilon\mathbb{N}$ and $\displaystyle\ \alpha$ is a nonreal fourth root of unity is
If $1,{ \alpha } _{ 1 },{ \alpha } _{ 2 },{ \alpha } _{ 3 }$ and $\alpha _4$ be the roots of $x^5-1=0$, then $\displaystyle \frac { \omega -{ \alpha } _{ 1 } }{ { \omega }^{ 2 }-{ \alpha } _{ 1 } } .\frac { \omega -{ \alpha } _{ 2 } }{ { \omega }^{ 2 }-{ \alpha } _{ 2 } } .\frac { \omega -{ \alpha } _{ 3 } }{ { \omega }^{ 2 }-{ \alpha } _{ 3 } } .\frac { \omega -{ \alpha } _{ 4 } }{ { \omega }^{ 2 }-{ \alpha } _{ 4 } } =$
Let, $z _1$ and $z _2$ be $n$th roots of unity which subtend a right angle at the origin. Then n must be of the from
If 1, $a _{1},a _{2},.....a _{n-1} $ are $n^{th} $ roots of unity then $\frac{1}{1-a _{1}} +\frac{1}{1-a _{2}}+...+\frac{1}{1-a _{n-1}}$ equals
If $\omega$ is a complex cube root of unity, then the equation $\left|z-\omega\right|^{2}+\right|z-\omega^{2}\right|^{2}=\lambda$ will represent a circle if
Let $\displaystyle z _{1}$ and $\displaystyle z _{2}$ be the $n^{th}$ roots of unity, which are ends of a line segment that subtends a right angle at the origin. Then, $n$ must be of the form
Which one is not a root of the fourth root of unity
If $z _{1},z _{2}$be two $nth$ roots of unity such that they represent two point $A,B$ in the Argand plane where $\angle AOB=60^{\circ}$ and $O$ is the orgin then the positive integer $n$ is of the form
If $\left| { a } _{ 1 } \right| <1,\lambda _{ 1 }\ge 0$ for $i=1,2,3....n$, and ${ \lambda } _{ 1 }+{ \lambda } _{ 2 }+{ \lambda } _{ 3 }+...+\lambda _{ n }=1$ then the value ....$+\left| \lambda _{ n }{ a } _{ n } \right| $ is
If ${ z } _{ 1 },{ z } _{ 2 }$ are two complex numbers and ${ \omega }^{ k },k=0,1,...,n-1$ are the nth roots of unity, then $\displaystyle \sum _{ k=0 }^{ n-1 }{ { \left| { z } _{ 1 }+{ z } _{ 2 }{ \omega }^{ k } \right| }^{ 2 } } $
If $\displaystyle \alpha$ is a non-real root of $\displaystyle x^{5}+1=0$ then $\displaystyle \alpha ^{10n+2}+\alpha ^{5n+2}+\alpha ^{5n}$, where n is an odd positive integer,has the value
If $z _ { 1 }$ and $z _ { 2 }$ be the $n ^ { th }$ roots of unity which subtend right angle at the origin. Then $n$ must be of the form
The value of the expression $\left( \omega -1 \right) \left( \omega -{ \omega }^{ 2 } \right) \left( \omega -{ \omega }^{ 3 } \right) ...\left( \omega -{ \omega }^{ n-1 } \right) ,$ where $\omega$ is the nth root of unity, is
If $1,\ \alpha _{1},\ \alpha _{2},\ \alpha _{3},\ \alpha _{4},\ \alpha _{5},\ \alpha _{6}$ are sevan $7^{th}$ root of unity then $|(3-\alpha _{1})(3-\alpha _{3})(3-\alpha _{5})|$ is
The maximum number of real root of the equation $\displaystyle x^{2n} - 1 = 0$ is
If $\alpha $ is a non-real root of $x^6=1$ then $\displaystyle \frac{\alpha ^5+\alpha ^3+\alpha +1}{\alpha ^2+1}=$
The roots of the equation $z^{5}+z^{4}+z^{3}+z^{2}+z+1=0$ are given by
If $\displaystyle \alpha $ is non-real and $\displaystyle \alpha=\sqrt[5]{1} ,$ then the value of $\displaystyle 2^{\left | 1+\alpha +\alpha ^{2}+\alpha ^{3}-\alpha ^{-1} -\alpha^{-2}\right |} $ is equal to
If $1,\omega ,\omega ^{2},....\omega ^{n-1}$ are $n,n^{th}$ roots ofunity then the value of $\left ( 13-\omega \right )\left ( 13-\omega ^{n-1} \right )$ equals
If $\displaystyle w\neq 1 $ is $n^{th}$ root of unity, then value of $\displaystyle \sum _{k=0}^{n-1}\left | z _{1}+w^{k}z _{2} \right |^{2} $ is
If $\omega$ be a complex $n ^ { t h }$ root of unity, then $\sum _ { r = 1 } ^ { n } ( a r + b ) \omega ^ { r - 1 }$ is
Solutions of the equation $z^{7}-1=0$ are given by
Solve the equation $\displaystyle z^{n-1}=\bar{z},n\epsilon N.$
lf $z _{1},z _{2}$ are $n^{th}$ roots of unity which are ends of a line segment that subtends $\displaystyle \frac{\pi}{2}$ at the origin.
If $\alpha,\ \beta,\ \gamma$ and $\Delta $ are the roots of the equation $x^{4}-1=0$, then the value of $\displaystyle \frac{a\alpha+b\beta+c\gamma+d\Delta}{a\gamma+b\Delta +c\alpha+d\beta}+\frac{a\gamma+b\Delta +c\alpha+d\beta}{a\alpha+b\beta+c\gamma+d\Delta }$ is
The number of roots of the equation $z^{15}=1$ satisfying $|\arg(z)|<\pi/2$ is
The order of $-i$ in the multiplicative group of $4^{th}$ roots of unity is
lf 1, $a _{1},\ a _{2},...,\ a _{n-1}$ are $n^{th}$ roots of unity then $\displaystyle \frac{1}{1-a _{1}}+\frac{1}{1-a _{2}}+\ldots+\frac{1}{1-a _{n-1}}$ equals?
If $w \neq 1$ is $n^{th}$ root of unity, then value of $ \displaystyle \sum _{k=0}^{n-1} \left| z _{1} w^{k} z _{2} \right| ^{2}$ is
Let $z _1$ and $z _2$ be ${ n }^{ th }$ roots of unity which subtend a right angle at the origin. Then n must be of the form
If 1, ${ a } _{ 1 },{ a } _{ 2 },....{ a } _{ n-1 }$ are the nth roots of unity then
i) $\left( 1-{ a } _{ 1 } \right) \left( 1-{ a } _{ 2 } \right) \left( 1-{ a } _{ 3 } \right) ......\left( 1-{ a } _{ n-1 } \right) =n$
ii) $1+{ a } _{ 1 }+{ a } _{ 2 }+....+{ a } _{ n-1 }=0$
iii) $\dfrac { 1 }{ 2-{ a } _{ 1 } } +\dfrac { 1 }{ 2-{ a } _{ 2 } } +....+\dfrac { 1 }{ 2-{ a } _{ n-1 } } =\dfrac { \left( n-2 \right) { 2 }^{ n-1 }+1 }{ { 2 }^{ n }-1 } $
If $1, z _1, z _2, z _3, ...., z _{n-1}$ be the nth roots of unity and $\omega$ be a non-real complex cube root of unity, then the product
$\Pi _{r=1}^{n-1}(\omega-z _r)$ can be equal to
If $\omega$ is a complex $n$th root of unity, then $\displaystyle \sum _{r=1}^{n} (ar + b)\omega^{r-1}$ is equal to
$\begin{array} { l } { 1 , a _ { 1 } , \ldots , a _ { 4 } \text { are the } 5 ^ { \text { th } } \text { roots of unity. The value } } \ { \text { of } \left( 1 + a _ { 1 } \right) \dots \left( 1 + a _ { 4 } \right) \text { is } } \end{array}$ ?
The no. of common roots of $15th$ roots of unity which are also $25th$ the roots of unity is
If $p$ and $q$ are distinct prime numbers, then the number of distinct imaginary numbers which are $p$th as well as $q$th roots of unity are
The value of ${ \left( 16 \right) }^{ 1/4 }$ are
Find all those roots of the equation $z^{12} - 56z^6 - 512 = 0$ whose imaginary part is positive.
If $\displaystyle 1,a _{1},a _{2}...,a _{n-1} $ are $\displaystyle n^{th}$ roots of unity, then $\displaystyle \frac{1}{1-a _{1}}+\frac{1}{1-a _{2}}+...+\frac{1}{1-a _{n-1}}$ equals
If $n\ge 3$ and $1,\alpha _1, \alpha _2, ... , \alpha _{n-1}$ are $nth$ roots of unity, then the value of $\displaystyle\sum _{1 \le i < j \le n-1}{\alpha _i\alpha _j}$ is
$\alpha _{1},\alpha _{2},\alpha _{3},\alpha _{4},.........\alpha _{100},$ are all the $100^{th}$ roots of unity. Then the numerical value of $\sum _{1 \leq i}^{ } \sum _{j \leq 100}^{ } (\alpha _{i}\alpha _{j})^{5}$ is
lf $a=\displaystyle \cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}, \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$, then $\alpha, \beta$ are the roots of the equation
Suppose A is a complex number and $ n \in N, $ such that $A^{n} = (A + 1)^{n} =1, $ then the least value of $n$ is
If $1,$$\alpha _{1},\alpha _{2,} \alpha _{3},\alpha _{4}$ be the roots of $z^{5}-1=0$ and $\omega $ be an imaginary cube root of unity,