0

Descartes rule - class-XII

Description: descartes rule
Number of Questions: 62
Created by:
Tags: algebraic functions, equations and inequalities theory of equations maths quadratic expressions
Attempted 0/61 Correct 0 Score 0

The number of real solution of $x-\dfrac{1}{x^2-4}=2-\dfrac{1}{x^2-4}$ is 

  1. $0$

  2. $1$

  3. $2$

  4. $infinitie$


Correct Option: C
Explanation:
Given that:
$x-\dfrac{1}{x^2-4}=2-\dfrac{1}{x^2-4}$

$x^3-4x-1=2x^2-8-1$
$x^3-2x^2-4x+8=0$
$x^2(x-2)-4(x-2)=0$
$(x^2-4)(x-2)=0$
$(x-2)(x+2)(x-2)=0$
$(x-2)(x+2)=0$
$x=-2,+2$

Hence, 
There are two real solutions for the given expression.

Let $f(x)=1+2x+3x^2+.....+(n+1)x^n,$ where n is even. Then the number of real roots of the equation $f(x)=0$ is 

  1. $0$

  2. $1$

  3. $n$

  4. $None$ $of$ $these$


Correct Option: A

The general solution of the equation 
$tan \, x + tan \, 2x + \sqrt{3} \, tan \, x \, tan \, 2x = \sqrt{3}$ is 

  1. $x = \dfrac{n \pi}{3} + \dfrac{\pi}{9}, \, n \in z$

  2. $x = m \pi + \dfrac{\pi}{9}, \, n \in z$

  3. $x = \dfrac{(n + 1) \pi}{3}, n \in z$

  4. $x = \dfrac{n \pi}{3} + \dfrac{\pi}{3}, \, n \in z$


Correct Option: A
Explanation:
$\tan x+\tan 2x+\sqrt{3}\tan x\, \tan 2x=\sqrt{3}$

$\tan x+\tan 2x=\sqrt{3}-\sqrt{3}\tan x\, \tan 2x$

$\cfrac{\tan x+\tan 2x}{1-\tan x\, \tan 2x}=\sqrt{3}$

$\tan (x+2x)=\sqrt{3}$

$\tan 3x=\sqrt{3}$

$\tan 3x=\tan \cfrac{\pi }{3}$

$\Rightarrow 3x=n\pi+ \cfrac{\pi }{3}$   ( where $n$ is an integer )

$x=\cfrac{n\pi }{3}+\cfrac{\pi }{9}$

If $1+\surd {3}i/2$ is a root of equation $x^{4}-x^{3}+x1=0$ then its real roots are 

  1. $1,1$

  2. $-1,-1$

  3. $1,-1$

  4. $1,2$


Correct Option: C

The equation
$\left| {\begin{array}{{20}{c}}  {{{\left( {1 + x} \right)}^2}}&{{{\left( {1 - x} \right)}^2}}&{ - \left( {2 + {x^2}} \right)} \   {2x + 1}&{3x}&{1 - 5x} \   {x + 1}&{2x}&{2 - 3x} \end{array}} \right| + \left| {\begin{array}{{20}{c}}  {{{\left( {1 + x} \right)}^2}}&{2x + 1}&{x + 1} \   {{{\left( {1 - x} \right)}^2}}&{3x}&{2x} \   {1 - 2x}&{3x - 2}&{2x - 3} \end{array}} \right| = 0$

  1. has no real solution

  2. fas $4$ real solutions

  3. has two real and two non-real solutions

  4. has infinite number of solutions, real or non-real


Correct Option: A

If a,b,c and d are the real roots of the equation : $x^{4}+p _{1}x^{1}+p _{2}x^{2}+p _{3}x+p _{4}=0$ and $(1+a^{2})(1+b^{2})(1+c^{2})(1+d^{2})=k(1-p _{2}+p _{4})^{2}+(p _{3}-p _{1})^{2}$ then the value f k is:

  1. -1

  2. 1

  3. 2

  4. -2


Correct Option: B

Number of solutions of the equation $\cos 6x+\tan^2x+\cos 6x\tan^2x=1$ in the interval $[0, 2\pi]$ is?

  1. $4$

  2. $5$

  3. $6$

  4. $7$


Correct Option: C
Explanation:

$\left( \cos6x+1 \right) { \tan }^{ 2 }x$

so 6 solutions
30,150,210,330,0,180

At how many maximum points will a cubic equation cut the $x$ axis?

  1. $0$

  2. $2$

  3. $1$

  4. $3$


Correct Option: D
Explanation:

A cubic Equation can have at max 3 distinct roots, so it will cut the $x$ axis at $3$ points.

Find the point of intersection of $x+y=-1\x-y=15$

  1. (7, -8)

  2. (-7, 8)

  3. (7, 8)

  4. (-7, -8)


Correct Option: A
Explanation:

$x+y=-1\x=-1-y\x-y=15\-1-y-y=15\-2y=15+1\y=\dfrac{16}{-2}\y=-8\x-8=-1\x=-1+8\x=7\(x.y)=(7,-8)$

If $\alpha $ and $\beta $ are the roots of ${ x }^{ 2 }+px+q=0$ and ${ \alpha  }^{ 4 } , { \beta  }^{ 4 }$ are the roots of ${ x }^{ 2 }-rx+s=0$, then the equation ${ x }^{ 2 }-4qx+2{ q }^{ 2 }-r=0$ has always two real roots.

  1. True

  2. False


Correct Option: A

How is the Descartes rule used to find the number of roots in an equation?

  1. By counting the number of times the equation changes signs

  2. By counting positive signs in the equation

  3. By counting negative signs in the equation

  4. None of the above


Correct Option: A
Explanation:

Descartes rule counts the number of times the sign changes from either $+$ to $-$ or from $-$ to $+$

Equation $12x^4-56x^3+89x^2-56x+12=0$ has 

  1. four real and roots

  2. two irrational roots

  3. one integer roots

  4. two imaginary roots


Correct Option: A

If one root of a cubic equation is real and second root is imaginary, then what can be said about the third root?

  1. Can be imaginary or real

  2. Must be real

  3. Must be Imaginary

  4. must be zero


Correct Option: C
Explanation:

Cubic Equations can have at max $3$ roots. Also, imaginary roots always occur in a pair of conjugates.
Since here one root is real and the other is imaginary, the third one must be imaginary and it will be the conjugate of the second root.

The equation $x^3 + 6x^2 + 11x + 6 = 0$ has

  1. no negative roots

  2. no positive real roots

  3. no real roots

  4. $1$ positive and $2$ negative roots

  5. $1$ negative and $2$ positive roots


Correct Option: B
Explanation:

$x^3+6x^2+11x+6=0$

$(x+1)(x+2)(+3)=0$
$x=-1,-2,-3$
So, no positive real roots.

The roots of the cubic $x^{3} - (\pi - 1)x^{2} - \pi = 0$, are

  1. All three real and distinct

  2. One real and two coincident

  3. One real and two imaginary with product of the imaginary roots being $\pi$

  4. One real, two imaginary with sum of the imaginary roots being $(-\pi)$


Correct Option: C

The real value of $\lambda $ for which the equation, $3{x^3} + {x^2} - 7x + \lambda  = 0$, has two distinct real roots in $[0,\,1]$ lie in the interval $(s)$.

  1. $(-2,\,0)$

  2. $[0,\,1]$

  3. $[1,\,2]$

  4. $\left( { - \infty ,\,\infty } \right)$


Correct Option: B

lf the equation $4 x ^ { 2 } + 2 x ^ { 3 }-4 x - 2 = 0$ has two real roots $\alpha \text { and } \beta$ then between $\alpha \text { and } \beta$ the equation $8 x ^ { 3 } + 3 x ^ { 2 } - 2 = 0$ has 

  1. At least one root

  2. No root

  3. Exactly one root

  4. At most two roots


Correct Option: C

The values for  which ${x^4} - 2a{x^2} + {a^2} - a = 0$ has all real roots are 

  1. $-1$

  2. $1$

  3. $2$

  4. $3$


Correct Option: B
Explanation:

${x}^{4}-2a{x}^{2}+{a}^{2}-a=0$

This equation can also be written in quadratic form as
${({x}^{2})}^{2}=2a({x}^{2})+{a}^{2}-a=0$
Substituting ${x}^{2}=t$ where $t> 0$
we get
${t}^{2}-2Aat+{a}^{2}-a=0$
Now, for quadratic equation to have real rpots
${(-2a)}^{2}-4\times 1\times ({a}^{2}-a)\ge 0$
(...applied the condition for real roots of quadratic equation $a{x}^{2}+bx+c=0$ ${b}^{2}-4ac\ge 0$)
Hence
$4{A}^{2}-4({a}^{2}-a)\ge 0$
$\Rightarrow$ $4{a}^{2}-4{a}^{2}+4a\ge 0$
$4a\ge 0$
$a\ge 0$
Also we have $t\ge 0$
$\cfrac { -(2a)\pm \sqrt { 4a }  }{ 2.1 } \ge \quad 0$
$\cfrac { -(2a)\pm 2\sqrt { a }  }{ 2.1 } \ge \quad 0$
$-a\pm \sqrt { a } \ge 0$
This gives us the only solution possible from options given as $a=1$

Consider the equation $x^3+(112-2k)x^2+110x+2x-1=0$ having two positive integral roots $\alpha$ and $\beta$(where $\beta < 4, k\in R)$.
The value of $\alpha +\beta +\alpha\beta$ is?

  1. $330$

  2. $338$

  3. $350$

  4. $360$


Correct Option: A

Suppose $a$ and $b$ are real no. such that the roots of the cubic equation $ax^{3}-x^{2}+bx+1=0$ are all positive real no. then
$0 < 3ab \le 1$

  1. True

  2. False


Correct Option: A
Explanation:
The given equation is $ax^3-x^2+bx+1=0$
Let $\alpha,\,\beta,\,\gamma$ be the roots of the given equation.
We have
$\alpha+\beta+\gamma=\dfrac{1}{a}$
$\alpha\beta+\beta\gamma+\gamma\alpha=\dfrac{b}{a}$
$\alpha\beta\gamma=\dfrac{1}{a}$
It follows that $a,b$ are positive. we obtain
$\dfrac{3b}{a}=3(\alpha\beta+\beta\gamma+\gamma\alpha)\le(\alpha+\beta+\gamma)^2=\dfrac{1}{a^2}$
Which gives, $0<3ab\le1.$

If the sum of two roots of the equation $\displaystyle x^{3}+ax^{2}+bx+c= 0 $ is zero, then value of $ab$ equals

  1. $c$

  2. $2c$

  3. $-2c$

  4. $-c$


Correct Option: A
Explanation:

Given equation is $x^{3}+ax^{2}+bx+c= 0$

Let the roots be $\alpha, -\alpha, \beta$

Then $\alpha-\alpha+\beta=-a$

$\Rightarrow \beta=-a$       ....(1)

Also, $-{\alpha}^{2}+{\alpha}\beta-\alpha\beta=b$

$\Rightarrow -{\alpha}^{2}=b$       .....(2)

Also, $-{\alpha}^{2} \beta=-c$  ....(by (1)and (2))

$\Rightarrow -ab=-c$

$\displaystyle \Rightarrow ab= c $ 

If $\displaystyle x^{3}-mx^{2}-3x+2=0$ has two roots equal in magnitude but opposite in sign, then $m$ is:

  1. $\displaystyle \frac{3}{2}$

  2. $\displaystyle \frac{2}{3}$

  3. $\displaystyle -\frac{2}{3}$

  4. none of these


Correct Option: B
Explanation:

Let $\alpha ,-\alpha ,\beta $ be the roots of $x^{ 3 }-mx^{ 2 }-3x+2=0$
Then
${ s } _{ 1 }=\alpha -\alpha +\beta =m\ \Rightarrow \beta =m$
Substituting $x=m$ in equation, we get
$m^{ 3 }-m.m^{ 2 }-3.m+2=0\ \Rightarrow m=\cfrac { 2 }{ 3 } $
Hence, option 'B' is correct.

The equation $\displaystyle x^{4} - x^{3} + 1 = 0$, has

  1. all imaginary roots

  2. all four real roots

  3. two real and two imaginary roots

  4. none of these


Correct Option: C
Explanation:

Let $f(x)=x^4-x^3+1$

our first case is the positive-root case: 
In $f(x),$ there are two sign changes in the positive-root case. 
This number "two" is the maximum possible number of positive zeroes (that is, all the positive x-intercepts) for the given polynomial.
I've finished the positive-root case, so now I look at $f(-x)$. That is, having changed the sign on $x$, I'm now doing the negative-root case:
$f(-x)=x^4+x^3+1$
There is zero sign change in this negative-root case, so there is no negative root.
Therefore, there are max two positive roots and no negative roots, therefore remaining two roots are imaginary.
Hence, option C is correct. 

The equation $x-\dfrac{2}{x-1}=1-\dfrac{2}{x-1}$ has

  1. no root

  2. one root

  3. two equal roots

  4. infinitely many roots


Correct Option: A
Explanation:

For equation $x-\dfrac { 2 }{ x-1 } =1-\dfrac { 2 }{ x-1 } $, the term $'x-1'$ is in the denominator. Hence the solution isn't defined. For $x=1$ $\Rightarrow $ $x\neq 1$

We have our equation as $x-\dfrac { 2 }{ x-1 } =1-\dfrac { 2 }{ x-1 } $
cancelling the common term on both sides,we get $x=1$. 
But for well defined solution $x\neq 1$. Hence,this equation has no solution.

The equation $\displaystyle x - \frac{5}{x - 2} = 2 - \frac{5}{x - 2}$ has

  1. No real roots

  2. Only one real root

  3. Two real roots

  4. Infinitely many roots


Correct Option: A
Explanation:

$x-\dfrac { 5 }{ x-2 } =2-\dfrac { 5 }{ x-2 } $       ...(1)
Equation (1) is valid when $x\neq 2$
Rewriting eq. (1), we get $x=2$
But $x\neq 2$
Therefore, number of roots satisfying eq. (1) are zero.

Number of real roots of equation $\displaystyle 2x^{99}+3x^{98}+2x^{97}+3x^{96}+........+2x+3=0$ are

  1. $99$

  2. $49$

  3. $1$

  4. $3$


Correct Option: C
Explanation:

 $2x^{99}+3x^{98}+2x^{97}+3x^{96}+........+2x+3=0$ .... $(i)$

Taking $2x+3$ common, we get
$(2x+3)(x^{98}+x^{97}+...1)=0$
Since $x^{98}+x^{97}+...1$ can not be equal to zero
Therefore only $2x+3 =0$ or $x=-\dfrac{3}{2}$ is real root
Hence, number of real roots of equation $(i)$ is $1$.

The number of rational roots of $\displaystyle x^{10}-x^{9}-2=0$:

  1. $3$

  2. $2$

  3. $1$

  4. $0$


Correct Option: C
Explanation:

$x^{10}-x^9-2=x^{10}-2x^9+1x^9-2=(x^9+1)(x-2)$

$x=2,x^9=-1\Rightarrow x=\sqrt[9]{-1}$
Hence it has only one rational root.

If the equation $\displaystyle 5x^{5}-25x^{4}+ax^{3}+bx^{2}+cx-5=0$ has five positive roots, then the value of $2a + 3b + 2c$ is 
  1. 60

  2. 300

  3. 0

  4. cannot be determine


Correct Option: C

Find the number of rational roots of 
$\displaystyle P(x)=2x^{98}+3x^{97}+2x^{96}+.....+2x+3=0$

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: A
Explanation:

$P(x)=2x^{98}+3x^{97}+2x^{96}+.....+2x+3=0$

Carrying out the $2x+3$ and $x+1$ as common term
$(2x+3)(x^{97}+x^{96}+....1)=(2x+3)(x+1)(x^{96}+x^{94}+....1)$  
Hecne two rational roots are $x=\dfrac{-3}{2},-1$

The condition for the equation $\displaystyle ax^{2}+bx+c= 0$ to have one root $n$ times the other, is:

  1. $\displaystyle na^{2}= bc\left ( n+1 \right )^{2}$

  2. $\displaystyle nb^{2}= ac\left ( n+1 \right )^{2}$

  3. $\displaystyle nb^{2}= ac\left ( n-1 \right )^{2}$

  4. None of these


Correct Option: B
Explanation:

Given that the roots of the equation $ ax^2+bx+c=0 $ be such that one root is $n$ times the other. 
Let one root be $\alpha$, then the other root will be $n\alpha$ by given condition.
Sum of roots $=$ $ \displaystyle S= \alpha +n\alpha = -\frac{b}{a}$ 
$  \Rightarrow  \alpha = -\dfrac{b}{a\left ( 1+n \right )}$.....(1)
Product of roots $=  n\alpha ^{2}= \dfrac{c}{a}$ 
$ \Rightarrow  \alpha ^{2}= \dfrac{c}{an}$ ....(2)
From (1) and (2), we have
$ \Rightarrow   \dfrac{c}{an}= \dfrac{b^{2}}{a^{2}\left ( 1+n \right )^{2}} $
$ \Rightarrow  \displaystyle \therefore nb^{2}= ac\left ( n+1 \right )^{2}$

One root is three times the other, find the condition for a general quadratic equation

  1. $\displaystyle 3b^{2}= 16ac$

  2. $\displaystyle 3b^{2}= ac$

  3. $\displaystyle b^{2}= 16ac$

  4. $\displaystyle 9b^{2}= 16ac$


Correct Option: A
Explanation:

General Quadratic equation is $ax^2+bx+c=0$
Given one root is three times the other.
i.e $\alpha,3\alpha$ are the roots.
Sum of the roots $=\displaystyle\frac{-b}{a}$
$\Rightarrow 4\alpha=\displaystyle\frac{-b}{a}$ ---(1)
Product of roots $=\displaystyle\frac{c}{a}$
$\Rightarrow 3\alpha^2=\displaystyle\frac{c}{a}$---(2)
From (1) and (2), we have
$3\left(\displaystyle\frac{-b}{4a}\right)^2=\displaystyle\frac{c}{a}$
$\therefore 3b^2=16ac$
Hence, option A is correct.

Roots of the equation $\displaystyle (x+1)(x+2)(x+2)(x+3)(x+6)=15x^{2}$ are

  1. all real & rational

  2. all non real

  3. two rational and two imaginary

  4. two imaginary and two irrational


Correct Option: D

If one root of $x^{3}+ax^{2}+bx+c=0$ is the sum of the other two roots, then

  1. $a^{3}=4(ab-c)$

  2. $a^{3}=4(ab-2c)$

  3. $a^{3}=ab-c$

  4. $a^{3}=ab-2c$


Correct Option: B
Explanation:

Let the roots be $\alpha,\beta,\gamma$
Then
$\alpha=\beta+\gamma$.
Hence
$\alpha+\beta+\gamma=-a$
$2(\beta+\gamma)=-a$
$\beta+\gamma=\alpha=\dfrac{-a}{2}$ ...(i)
$\alpha.\beta+\beta.\gamma+\gamma.\alpha=b$
$\alpha(\beta+\gamma)+\beta.\gamma=b$
$\alpha^{2}+\beta.\gamma=b$
Or 
$\dfrac{a^{2}}{4}+\beta.\gamma=b$
$a^{2}+4\beta.\gamma=4b$ ...(ii)
And 
$\alpha.\beta.\gamma=-c$
Or 
$\dfrac{-a}{2}.\beta.\gamma=-c$
Or 
$\beta.\gamma=\dfrac{2c}{a}$.
Then
$a^{2}+4\beta.\gamma=4b$
$a^{2}+4\dfrac{2c}{a}=4b$
$a^{3}+8c=4ab$
Or 
$a^{3}=4(ab-2c)$.

If the sum of two roots of the equation $x^{3}-3x^{2}+kx+48=0$ is zero, then $k=$

  1. $16$

  2. $-16$

  3. $24$

  4. $-24$


Correct Option: B
Explanation:

Sum of two roots is zero. Using this we get the other root as $3$
Substitute $x=3$ and equating to zero we get, $k=-16$

One root of $x^{3}+x^{2}-2x-1=0$ lies between 

  1. $-1$ and $0$

  2. $-2$ and $-1$

  3. $-3$ and $-2$

  4. $-4$ and $-3$


Correct Option: A,B
Explanation:

$x^{ 3 }+x^{ 2 }-2x-1=0$
$f\left( 0 \right) =-1\ f\left( -1 \right) =1\ f\left( -2 \right) =-1\ f\left( -3 \right) =-13\ f\left( -4 \right) =-71$
As $f\left( -1 \right) >0$ and $f\left( -2 \right) <0$
Therefore one roots lies between $-2$ and $-1$

If two roots $\alpha,\beta$ of the equation $x^{4}-5x^{3}+11x^{2}-13x+6=0$ are connected by the relation $2\alpha+3\beta=7$, then the roots of the equation are

  1. $-1,3,1\pm i\sqrt{2}$

  2. $-1,3,1\pm i\sqrt{3}$

  3. $2, 1,1\pm i\sqrt{2}$

  4. $2, 1,1\pm i\sqrt{3}$


Correct Option: C
Explanation:

Let $\alpha ,\beta ,\gamma ,\delta $ are roots of $x^{ 4 }-5x^{ 3 }+11x^{ 2 }-13x+6=0$
${ s } _{ 1 }=\alpha +\beta +\gamma +\delta =5\ { s } _{ 4 }=\alpha \beta \gamma \delta =6$


For $\gamma ,\delta =1\pm i\sqrt { 2 } $ or $1\pm i\sqrt { 3 } \quad $
${ s } _{ 1 }\Rightarrow \alpha +\beta +2=5\Rightarrow \alpha +\beta =3$
Solving this with $2\alpha +3\beta =7$ we get
$\alpha =2$ and $\beta =1$

Now for $\gamma ,\delta =1\pm i\sqrt { 2 } $
$\alpha \beta \gamma \delta =2\left( 1+2 \right) =6$

And for $\gamma ,\delta =1\pm i\sqrt { 3 } $
$\alpha \beta \gamma \delta =2\left( 1+3 \right) =8$, not possible

Therefore, roots are $2, 1, 1\pm\sqrt{2}$
Hence, option 'C' is correct.

lf the difference of the squares of the roots of equation ${x}^{2} -6x+q=0$ is $24$, then the value of ${q}$ is:

  1. $ -7$

  2. $8$

  3. $5$

  4. $4$


Correct Option: C
Explanation:

Let $\alpha,\beta$ are roots of ${x}^{2}-6x+q=0,$ then

${ S } _{ 1 }=\alpha +\beta =6$
And ${ S } _{ 2 }=\alpha \beta =q$

Given ${ \alpha  }^{ 2 }-{ \beta  }^{ 2 }=24$
Now from ${ \left( \alpha -\beta  \right)  }^{ 2 }={ \left( \alpha +\beta  \right)  }^{ 2 }-4\alpha \beta $
$\Rightarrow { \left( \alpha -\beta  \right)  }^{ 2 }=36-4q\Rightarrow \left( \alpha -\beta  \right) =\sqrt { 36-4q } $

As ${ \alpha  }^{ 2 }-{ \beta  }^{ 2 }=24\Rightarrow \left( \alpha -\beta  \right) \left( \alpha +\beta  \right) =24$
$\Rightarrow \sqrt { 36-4q } \left( 6 \right) =24\Rightarrow \sqrt { 36-4q } =4$
$\Rightarrow 36-4q=16\Rightarrow 4q=20\Rightarrow q=5$

If the equation $\mathrm{a} _{\mathrm{n}}\mathrm{x}^{\mathrm{n}}+\mathrm{a} _{\mathrm{n}-1}\mathrm{x}^{\mathrm{n}-1}+\ldots\ldots+\mathrm{a} _{1}\mathrm{x}=0,\ \mathrm{a} _{1}\neq 0,\ \mathrm{n}\geq 2$, has a positive root $\mathrm{x}=\alpha$, then the equation $\mathrm{n}\mathrm{a} _{\mathrm{n}}\mathrm{x}^{\mathrm{n}-1}+(\mathrm{n}-1)\mathrm{a} _{\mathrm{n}-1}\mathrm{x}^{\mathrm{n}-2}+\ldots..+\mathrm{a} _{1}=0$ has a positive root, which is 

  1. greater than $\alpha$

  2. smaller than $\alpha$

  3. greater than or equal to $\alpha$

  4. equal to $\alpha$


Correct Option: B
Explanation:

=$ \because { a } _{ n }{ x }^{ 2\  }+{ a } _{ n }+{ x }^{ n-1 }+............+{ a } _{ 1 }x=\quad 0\quad \quad \quad { a } _{ 1 }\neq 0\quad n\ge 2 $

= has the root $x=\infty$ 
= ${ f }^{ 1 }(x)=\quad x{ a } _{ n }{ x }^{ n-1 }+\quad (x-1)\quad { a } _{ n-1 }{ x }^{ n-2 }+.......{ a } _{ n }$
= $\because f(x)=0$
Let us take an example to see 
Let a quadratic equation ${ x }^{ 2 }+2x-3=0$
${ x }^{ 2 }+3x-x-3=0$
$x(x+3)-1(x+3)=0 ........(i)$
$x=1\quad x=-3$
Now ${ f }^{ 1 }(x)=\quad 2x+1$
${ f }^{ 1 }(x)=\quad 0\quad =>\quad x=\quad -\cfrac { 1 }{ 2 } ..........(ii) $
From (i) and (ii) we can see that
The root of ${ f }^{ 1 }(x)$ is always less than the root of $f(x)$
Hence we can conclude
for $n{ a } _{ n }{ x }^{ n-1 }+(n-1){ a } _{ n-1 }{ x }^{ n-2 }+......{ a } _{ 1 }$
has roots always less than $\alpha $ for the value of $\alpha$.


If the sum of two roots of $x^{3}+ax+b=0$ is zero, then the value of $b$, is:

  1. $a$

  2. $1$

  3. $-1$

  4. $0$


Correct Option: D
Explanation:

$let\quad \alpha ,-\alpha ,\beta \quad be\quad the\quad roots\ Given\quad sum\quad of\quad the\quad roots\quad is\quad zero\ \alpha -\alpha +\beta =0\ \beta =0\ Therefore\quad product\quad of\quad the\quad roots\quad is\quad zero,\quad i.e.,\quad b=0$

lf one root of $\mathrm{x}^{2}-\mathrm{x}-\mathrm{k}=0(\mathrm{k}>0)$ is the square of the other root, then $\mathrm{k}=$ 

  1. $ 2\pm\sqrt{5}$

  2. $ 2+\sqrt{5}$

  3. $ 2-\sqrt{5}$

  4. $1$


Correct Option: B
Explanation:

$ Let\quad \alpha \quad and\quad \alpha ^{ 2 }\quad be\quad the\quad roots\quad as\quad per\quad the\quad given\quad condition.\ \therefore \quad \alpha +\alpha ^{ 2 }=1\quad and\quad { \alpha  }^{ 3 }=-k\ Now\quad (\alpha +\alpha ^{ 2 })^{ 3 }=1\ \Rightarrow { \alpha  }^{ 3 }+({ \alpha  }^{ 2 })^{ 3 }+3{ \alpha  }^{ 3 }(\alpha +\alpha ^{ 2 })=1\ Replacing\quad { \alpha  }^{ 3 }\quad by\quad -k\quad we\quad get\quad \ -k+k^{ 2 }-3k-1=0\ \Rightarrow { k }^{ 2 }-4k-1=0\ \Rightarrow k=\frac { 4+\sqrt { 20 }  }{ 2 } =2+\sqrt { 5 } \ or\quad k=\frac { 4-\sqrt { 20 }  }{ 2 } =2-\sqrt { 5 } <0\ But\quad k>0\quad therefore\quad we\quad reject\quad this\quad value.\ \therefore \quad k=2+\sqrt { 5 } \ Answer-\quad Option\quad B. $

How many real solutions does the equation $x^{7}+14x^{5}+16x^{3}+30x-560=0$ has?

  1. $3$

  2. $5$

  3. $7$

  4. $1$


Correct Option: D
Explanation:

Let  $f(x) =x^{7}+14x^{5}+16x^{3}+30\mathrm{x} -560$

$\Rightarrow f'(x)=7x^{6}+70x^{4}+48x^{2}+30>0$  $\forall x \in R$

$\therefore f$ is increasing also $\displaystyle
\lim _{x\rightarrow\infty}f(x)=\infty$ ; $\displaystyle
\lim _{x\to-\infty}f(x)=-\infty$

Hence, $f(x) =0$ has exactly one real root .

lf the sum of the roots of the equation $ax^2+bx+c=0$ is equal to sum of their squares, then

  1. $ab+b^2+2ac=0$

  2. $ab+a^2+2ac=0$

  3. $ab+{b}^{2}-2ac=0$

  4. $ab+{a}^{2}-2ac=0$


Correct Option: C
Explanation:

Let $\alpha, \beta$ are roots of $\displaystyle a{ x }^{ 2 }+bx+c=0$, then


$\displaystyle \alpha +\beta =-\frac { b }{ a } $

$\displaystyle \alpha \beta =\frac { c }{ a } $

As sum of roots is equal to sum of their square, then 
$\displaystyle \alpha +\beta ={ \alpha  }^{ 2 }+{ \beta  }^{ 2 }$

$\displaystyle \Rightarrow \alpha +\beta ={ \left( \alpha +\beta  \right)  }^{ 2 }-2\alpha \beta $

$\displaystyle \Rightarrow -\frac { b }{ a } ={ \left( -\frac { b }{ a }  \right)  }^{ 2 }-2\left( \frac { c }{ a }  \right) $

$\displaystyle \Rightarrow -\frac { b }{ a } =\frac { { b }^{ 2 } }{ { a }^{ 2 } } -\frac { 2c }{ a } $

$\displaystyle \Rightarrow -ab={ b }^{ 2 }-2ac$

$\displaystyle \Rightarrow { b }^{ 2 }+ab-2ac=0$ 

lf the sum of the squares of the roots of $x^{2}+px-3=0$ is $10$, then $p=$

  1. $ \pm 2$

  2. $\pm 3$

  3. $ 5$

  4. $-5$


Correct Option: A
Explanation:

Let $\alpha,\beta$ are roots of ${x}^{2}+px-3=0,$ then

${ S } _{ 1 }=\alpha +\beta =-p$
And ${ S } _{ 2 }=\alpha \beta =-3$

Given ${ \alpha  }^{ 2 }+{ \beta  }^{ 2 }=10$
Now from ${ \left( \alpha +\beta  \right)  }^{ 2 }={ \alpha  }^{ 2 }+{ \beta  }^{ 2 }+2\alpha \beta $
$\Rightarrow { \left( -p \right)  }^{ 2 }=10+2\left( -3 \right) =10-6=4$
$\Rightarrow { p }^{ 2 }=4$
$\Rightarrow p=\pm 2$

If the sum of two roots of the equation  $x^{4}-x^{3}+2x^{2}+kx+17=0$ equals to the sum of the other two, then $k $ is equal to

  1. $\displaystyle \frac{7}{8}$

  2. $-\displaystyle \frac{7}{8}$

  3. $\displaystyle \frac{9}{8}$

  4. $-\displaystyle \frac{9}{8}$


Correct Option: B
Explanation:

Let $\alpha ,\beta ,\gamma ,\delta $ be the roots of ${ x }^{ 4 }-{ x }^{ 3 }+2{ x }^{ 2 }+kx+17=0$
Such that $\alpha +\beta =\gamma +\delta $
Then ${ s } _{ 1 }=\alpha +\beta +\gamma +\delta =1\Rightarrow \alpha +\beta =\cfrac { 1 }{ 2 } $ 
${ s } _{ 2 }=\alpha \beta +\alpha \gamma +\alpha \delta +\beta \gamma +\beta \delta +\gamma \delta =2\Rightarrow { \left( \alpha +\beta  \right)  }^{ 2 }+\alpha \beta +\gamma \delta =2$
$\Rightarrow \alpha \beta +\gamma \delta =2-\cfrac { 1 }{ 4 } =\cfrac { 7 }{ 4 } $   ...(1)
${ s } _{ 3 }=\alpha \beta \gamma +\alpha \beta \delta +\alpha \gamma \delta +\beta \gamma \delta =-k\Rightarrow \left( \alpha +\beta  \right) \left( \alpha \beta +\gamma \delta  \right) =-k$
$\Rightarrow \left( \alpha \beta +\gamma \delta  \right) =-2k$   ...(2)
From (1) and (2), we have
$-2k=\cfrac { 7 }{ 4 } \Rightarrow k=-\cfrac { 7 }{ 8 } $

Let $P(x) = x^{32} - x^{25} + x^{18} - x^{11} + x^{4} - x^{3} + 1$. Which of the following are CORRECT?

  1. Number of real roots of $P(x) = 0$ are zero

  2. Number of imaginary roots of $P(x) = 0$ are $32$

  3. Number of negative roots of $P(x) = 0$ are zero

  4. Number of imaginary roots of $P(x) + P(-x) = 0$ are $32$


Correct Option: A,C,D

Find the equation $x^4+4rx+3s=0$ =0 has no real root, then 

  1. $r^2$

  2. $r^2>s^2$

  3. $r^4$

  4. $r^4>s^3$


Correct Option: A

If the sum of two of the roots of $x^4-2x^3-3x^2+10x-10=0$ is zero then the roots are

  1. $\pm \sqrt{5},1\pm i$

  2. $\pm \sqrt{5},1-i$

  3. $\large{\frac{1}{2}},-\large{\frac{1}{5}},\pm 1$

  4. $\sqrt{2},\sqrt{5},\pm 2$


Correct Option: A
Explanation:

let roots are $\pm a,b,c\ b+c=2\ -{ a }^{ 2 }bc=-10\ { a }^{ 2 }bc=10\ { -a }^{ 2 }+ab+ac+bc-ab-ac=-3\ bc-{ a }^{ 2 }=-3\ { a }^{ 2 }-bc=3\ $

let $bc=t$
from $(2) t=\frac { 10 }{ { a }^{ 2 } } \ (3)\quad \quad { a }^{ 2 }-t=3\ { a }^{ 2 }-\frac { 10 }{ { a }^{ 2 } } =3\ { a }^{ 4 }-{ 3a }^{ 2 }-10=0\ { a }^{ 4 }-{ 5a }^{ 2 }+{ 2a }^{ 2 }-10=0\ { a }^{ 2 }\left( { a }^{ 2 }-5 \right) +2\left( { a }^{ 2 }-5 \right) =0\ \left( { a }^{ 2 }-5 \right) \left( { a }^{ 2 }+2 \right) =0\ a=\pm \sqrt { 5 } \ bc=2\ c=\cfrac { 2 }{ b } \ b+\cfrac { 2 }{ b } =2\ { b }^{ 2 }-2b+2=0$
$\quad \quad b = 1 \pm i$
$ \quad \quad c = \cfrac{2}{b} = \cfrac{2}{1\pm i} = 1 \mp i$
$ \therefore $ roots are $ 1\pm i, \pm\sqrt5$

A polynomial of 6th degree $f(x)$ satisfies $f(x)=f(2-x),:\forall:x\epsilon R$, if $f(x)=0$ has 4 distinct and two equal roots, then sum of the roots of $f(x)=0$ is:

  1. $4$

  2. $5$

  3. $6$

  4. $7$


Correct Option: C
Explanation:

In the functional relation replace $x$ with $x+1$.

We have,
$f(1+x)=f(1-x)$
This shows that the function is symmetric about $x=1$.
There is one and only one double root. If the double root exists at any value $x _0$ other than at $x=1$, then a double root will also exist at a value of $2-x _0$.
Hence, the double root exists at $x=1$ 
Say two other roots are $\alpha$ and $\beta$
$f(\alpha)=f(2-\alpha)=0$
$\therefore 2-\alpha$ is also a root.
And similarly, $2-\beta$ is also a root.
$\therefore$ the roots are $1, 1, \alpha, \beta, 2-\alpha, 2-\beta$
Hence, sum of the roots is $6$

If two roots of the equations $x ^ { 3 } - p x ^ { 2 } + q x - r = 0$ are equal in magnitude but opposite in sign, for

  1. pr = q

  2. qr = p

  3. pq = r

  4. $p ^ { 2 } q ^ { 2 } = r$


Correct Option: C
Explanation:
let those are m, -m
now sum of three roots = p
hence third root will be p
now 
m*(-m) + m*p + (-m)*p = q
hence  –m2 = q
now m*( –m) * p = r
 –m2 p  = r
put value of  –m2 = q
hence  pq = r

If the equation ${x}^{4}-4{x}^{3}+a{x}^{2}+bx+1=0$ has four positive roots, then the value of $(a+b)$ is:

  1. $-4$

  2. $2$

  3. $6$

  4. cannot be determined


Correct Option: B
Explanation:

Given, $x^4 - 4x^3 + ax^2 + bx + 1 = 0$

let the root of equation be $\alpha, \beta, \gamma, \sigma$
$\alpha + \beta + \gamma + \sigma = 4$ ...(i)
$\alpha \beta \gamma \sigma = 1$ ... (ii)
$\dfrac{1}{4} (\alpha + \beta + \gamma + \sigma) = 1$
$\Rightarrow \dfrac{1}{4} (\alpha + \beta + \gamma + \sigma) = (\alpha \beta \gamma \sigma) \dfrac{1}{4}$
$\therefore A. M. = a. m.$
$\therefore \alpha = \beta = \gamma = \sigma$
$4 \alpha = 4$
$\therefore \alpha = 1$
$1 - 4 + a + b + 1 = 0$
$\therefore a + b = 2$

Given $P(x) = {x^4} + a{x^3} + b{x^2} + cx + d$ such that $x=0$ is the only real root of $P(x) = 0$. If $P(-1) < P(1) $,then in the interval $[-1,1]$

  1. $P(-1)$ is the minimum and $P(1)$ is the maximum of P

  2. $P(-1)$ is not the minimum but $P(1)$ is the maximum of P

  3. $P(-1)$ is the minimum and $P(1)$ is not the maximum of P

  4. neither $P(-1)$ is the minimum nor $P(1)$ is the maximum of P


Correct Option: B
Explanation:
Given:$P\left(x\right)={x}^{4}+a{x}^{3}+b{x}^{2}+cx+d$

${P}^{\prime}\left(x\right)=4{x}^{3}+3a{x}^{2}+2bx+c$

Since, $x=0$ is a solution for ${P}^{\prime}\left(x\right)=0$

$\Rightarrow\,c=0$

So, $P\left(x\right)={x}^{4}+a{x}^{3}+b{x}^{2}+d$   

Also we have $P\left(−1\right)<P\left(1\right)$

$\Rightarrow\,1-a+b+d<1+a+b+d$

$\Rightarrow\,A>0$

Since ${P}^{\prime}\left(x\right)=0,$ only when $x=0$

and $P\left(x\right)$ is differentiable in $\left(−1,1\right)$, we should have the maximum and minimum at the points

$x=−1,0$ and $1$ only.

Also, we have $P\left(−1\right)<P\left(1\right)$

So,Maximum of $P\left(x\right)=Max\left\{P\left(0\right),P\left(1\right)\right\}$ and
Minimum of $P\left(x\right)=Min\left\{P\left(−1\right),P\left(0\right)\right\}$

In the interval $\left[0,1\right]$

${P}^{\prime}{\left(x\right)}=4{x}^{3}+3a{x}^{2}+2bx=x\left(4{x}^{2}+3ax+2b\right)$

Since ${P}^{\prime}{\left(x\right)}$ has only one root $x=0$, then $4{x}^{2}+3ax+2b=0$ has no real roots.

So,${\left(3a\right)}^{2}-32b<0$

$\Rightarrow\,\dfrac{3{a}^{2}}{32}>b$

So,$b>0$

Thus, we have $a>0$ and $b>0$

So,${P}^{\prime}{\left(x\right)}=4{x}^{3}+3a{x}^{2}+2bx>0,$ for $x\in\left(0,1\right)$

Hence, $P\left(x\right)$ is increasing in $\left[0,1\right]$ and $P\left(x\right)$ is decreasing in $\left[−1,0\right]$

Therefore, Maximum of $P\left(x\right)=P\left(1\right)$ and Minimum $P\left(x\right)$ does not occur at $x=−1$ respectively.

If $o<\alpha<\beta<\gamma<\dfrac {\pi}{2}$, then the equation $\dfrac {1}{x-\sin \alpha}+\dfrac {1}{x-\sin\beta}+\dfrac {1}{x-\sin \gamma}=0$ has

  1. Imaginary roots

  2. Real and equal roots

  3. Real and unequal roots

  4. Rational roots


Correct Option: A
Explanation:

$\begin{array}{l} \frac { 1 }{ { x-\sin  \alpha  } } +\frac { 1 }{ { x-\sin  \beta  } } +\frac { 1 }{ { x-\sin  \gamma  } } =0 \ 0<\alpha <\beta <\gamma <\frac { \pi  }{ 2 }  \ let\, \alpha ={ 30^{ 0 } },\beta ={ 45^{ 0 } },\gamma ={ 60^{ 0 } } \ \Rightarrow \frac { 1 }{ { x-\frac { 1 }{ 2 }  } } =\frac { 1 }{ { x-2\sqrt { 2 }  } } =\frac { 1 }{ { x-\sqrt { \frac { 3 }{ 2 }  }  } } =0 \end{array}$

hence roots are real and unequal

The polynomial $\displaystyle (ax^{2}+bx+c)(ax^{2}-dx-c),ac\neq 0,$ has

  1. four real zeros

  2. at least two real zeros

  3. at most two real zeros

  4. no real zeros


Correct Option: B
Explanation:

For 
$ax^{2}+bx+c=0$
$b^{2}-4ac\geq 0$ for real roots ...(i)
and for 
$ax^{2}-dx-c=0$
$d^{2}+4ac\geq 0$ for real roots ...(ii)
Now, 
$ac\neq 0$
Hence, 
Case I
If $ac>0$
Hence, 
$ax^{2}-dx-x=0$ has positive roots.
Case II
If $ac<0$
Then,
$ax^{2}+bx+c=0$
has Real roots.
Hence, the above polynomial has atleast two real roots.

If $\alpha$ and $\beta$ are the zeros of polynomial $x^{2}-ax+b$, then the value of $\alpha^{2}\left(\dfrac {\alpha^{2}}{\beta}-\beta\right)+\beta^{2}\left(\dfrac {\beta^{2}}{\alpha}-\alpha\right)$ is

  1. $\dfrac {a(a^{2}-4b)(a^{2}-b)}{b}$

  2. $\dfrac {b(a^{2}-4b)(a^{2}-b)}{a}$

  3. $\dfrac {b^{2}(a^{2}-4b)(a^{2}-b)}{a}$

  4. None 


Correct Option: A
Explanation:
We have Sum of the roots$=\alpha+\beta=a$
Product of the roots$=\alpha\beta=b$

${\alpha}^{2}\left(\dfrac{{\alpha}^{2}}{\beta}-\beta\right)+{\beta}^{2}\left(\dfrac{{\beta}^{2}}{\alpha}-\alpha\right)$
$=\dfrac{{\alpha}^{2}}{\beta}\left({\alpha}^{2}-{\beta}^{2}\right)+\dfrac{{\beta}^{2}}{\alpha}\left({\beta}^{2}-{\alpha}^{2}\right)$
$=\dfrac{{\alpha}^{2}}{\beta}\left({\alpha}^{2}-{\beta}^{2}\right)-\dfrac{{\beta}^{2}}{\alpha}\left({\alpha}^{2}-{\beta}^{2}\right)$
$=\left({\alpha}^{2}-{\beta}^{2}\right)\left(\dfrac{{\alpha}^{2}}{\beta}-\dfrac{{\beta}^{2}}{\alpha}\right)$
$=\dfrac{\left({\alpha}^{2}-{\beta}^{2}\right)}{\alpha\beta}\left({\alpha}^{3}-{\beta}^{3}\right)$
$=\dfrac{\left(\alpha-\beta\right)\left(\alpha+\beta\right)}{\alpha\beta}\left(\alpha-\beta\right)\left({\alpha}^{2}+{\beta}^{2}+\alpha\beta\right)$
$=\dfrac{{\left(\alpha-\beta\right)}^{2}\left(\alpha+\beta\right)}{\alpha\beta}\left({\alpha}^{2}+{\beta}^{2}+\alpha\beta\right)$

We know that ${\alpha}^{2}+{\beta}^{2}={\left(\alpha+\beta\right)}^{2}-2\alpha\beta$ and 
${\left(\alpha-\beta\right)}^{2}={\left(\alpha+\beta\right)}^{2}-4\alpha\beta$

Using $\alpha+\beta=a$ and $\alpha\beta=b$ we have
${\left(\alpha-\beta\right)}^{2}={\left(\alpha-\beta\right)}^{2}={a}^{2}-4b$
And ${\alpha}^{2}+{\beta}^{2}+\alpha\beta={\left(\alpha+\beta\right)}^{2}-2\alpha\beta+\alpha\beta$
$={\left(\alpha+\beta\right)}^{2}-\alpha\beta={a}^{2}-b$
$=\dfrac{a\left({a}^{2}-4b\right)\left({a}^{2}-b\right)}{b}$



The value of $'a'$ for which the equation ${ x }^{ 3 }+ax+1=0$ and ${ x }^{ 4 }+a{ x }^{ 2 }+1=0$, have a common root is

  1. $a=2$

  2. $a=-2$

  3. $a=0$

  4. None of these


Correct Option: B
Explanation:

Consider the following equation
$x^{4}+ax^{2}+1=0$
$x^{3}+ax+1=0$
Subtracting equation (ii) from (i), we get 
$x^{4}-x^{3}+a(x^{2}-x)=0$
$x^{3}(x-1)+ax(x-1)=0$
$(x-1)(x^{3}+ax)=0$
$x(x-1)(x^{2}+a)=0$
Hence, we get $x=0$ $x=1$ and $x^{2}=-a$
Now out of the above two, $x=0$ is not a root of the following two equations.
We do not know the nature of '$a$'. 

Hence, we cannot determine that $x^{2}=-a$ will have real or imaginary roots.
Hence, we get $x=1$ as a common root for the above two equations.
Now for both the equations to have $x=1$ as a common root, 
$f(1)=0$
$1+a+1=0$
$a=-2$
Similarly substituting in the second equation, we get $a=-2$.
Hence, the required value of $a$ is $-2$.

Coordinates of a point P are $(a, b)$ where $a$ is a root of the equation 

$x^{2}+x-42=0$ 
and $b$ is an integral root of the equation
$x^{2}+ax+a^{2}-37=0$. 
The coordinates of P can be

  1. $(6, 4)$

  2. $(-7, 4)$

  3. $(-7, 3)$

  4. $(6, -3)$


Correct Option: B,C
Explanation:

$a^{2}+a-42=0\Rightarrow a=-7$ or $a=6.$
Since b is a root of $x^{2}+ax+a^{2}-37=0$
For $a=-7,$ we have $x^{2}-7x+49-37=0$
$\Rightarrow x^{2}-7x+12=0\Rightarrow x=4, 3 , so, b=4$ or $3.$
So the coordinates of P can be $(-7, 4)$ or $(-7, 3)$, 

For $a=6,$ we have $x^{2}+6x-1=0$ which does not give an integral value, so $a\neq 6.$

lf the difference of the roots of the equation $x^{2}-bx+c=0$ is equal to the differecne of the roots of the equation ${x}^{2}-{c}x+b=0$ and $b\neq c$, then $b+c=$

  1. $ 0$

  2. $2$

  3. $4$

  4. $-4$


Correct Option: D
Explanation:

Let $(\alpha, \beta )$ and $ (\gamma, \delta )$ be the roots of the first equation and second equation respectively. 

Then, for the first equation
$ \alpha +\beta =b$ and $ \alpha \beta =c$
Now $ (\alpha +\beta )^{ 2 }={ b }^{ 2 }$
$ \Rightarrow (\alpha -\beta )^{ 2 }+4\alpha \beta ={ b }^{ 2 }$
$ \Rightarrow (\alpha -\beta )^{ 2 }={ b }^{ 2 }-4\alpha \beta $
$ \Rightarrow |\alpha -\beta |=\sqrt { { b }^{ 2 }-4c } $
Similarly for the second equation
$ |\gamma -\delta |=\sqrt { { c }^{ 2 }-4b } $
As per the given condition,
$ \sqrt { { b }^{ 2 }-4c } =\sqrt { { c }^{ 2 }-4b } $
$\Rightarrow { b }^{ 2 }-4c={ c }^{ 2 }-4b$
$\Rightarrow { b }^{ 2 }-{ c }^{ 2 }=-4(b-c)$
$ \Rightarrow (b+c)(b-c)=-4(b-c)$
Therefore, option D is correct.

Let $\displaystyle a _{1}, a _{2},a _{3},a _{4},a _{5} \, \varepsilon \, R$ denote a rearrangement of equation $\displaystyle p _{1}x^{5}+p _{2}x^{3}+p _{3}x^{2}+p _{4}x+p _{5}=0$ then, equation  $\displaystyle a _{1}x^{4}+a _{2}x^{3}+a _{3}x^{2}+a _{4}x +a _{5}=0$ has 

  1. at least two real roots

  2. all four real roots

  3. only imaginary roots

  4. none of these


Correct Option: A
Explanation:
$a _{1}x^{4}+a _{2}x^{3}+a _{3}x^{2}+a _{4}x+a _{5}=0$
for $ x=1 $
$a _{1}+a _{2}+a _{3}+a _{4}+a _{5}=0$
for the given set of equation,
sum of  $p _{1}+p _{2}+p _{3}+p _{4}+p _{5}=0$ 
So, $a _{1}+a _{2}+a _{3}+a _{4}+a _{5}\epsilon R $  for any set of arrangement
Hence at least two real roots.

The sum of the solutions of the equation $64(81^{x})-84(144^{x})+27(256^{x})=0$  is:

  1. $1$

  2. $\dfrac{3}{2}$

  3. $\dfrac{5}{2}$

  4. None of these


Correct Option: B
Explanation:

Given, $64(81^{ x })-84(144^{ x })+27(256^{ x })=0$

$ \Rightarrow 64\left( \left( \cfrac { 9 }{ 16 }  \right) ^{ x } \right) ^{ 2 }-84\left( \cfrac { 9 }{ 16 }  \right) ^{ x }+27=0$
Let $\left( \cfrac { 9 }{ 16 }  \right) ^{ x }=t$
$64t^{ 2 }-84t+27=0$
Solving this, we get
$\Rightarrow t=\cfrac { 3 }{ 4 } ,t=\cfrac { 9 }{ 16 } \Rightarrow x=\cfrac { 1 }{ 2 } ,x=1$
Hence, sum of roots is 
$\cfrac { 1 }{ 2 } +1=\cfrac { 3 }{ 2 } $
Hence, option 'B' is correct.

If the sum of two roots of the equation $x^{4}+px^{3}+qx^{2}+rx+8=0$ is equal to the sum of the other two, then $p^{3}+8r=$

  1. $p^2 - 4pq$

  2. $2pq$

  3. $p^2 - pq$

  4. $4pq$


Correct Option: D
Explanation:

Let the roots of the equation be $a,b,c,d$. 
As per the question,
$a+b = c+d$ 
From the theory of polynomials, 
$a+b+c+d = -p$
$ \Rightarrow a+b=c+d= \displaystyle \frac{-p}{2} $

Also,
$ab+ac+ad+bd+bc+cd  = q $
$ \Rightarrow (a+b)(c+d) +ab+cd  =q $
$ \Rightarrow ab+cd = q - \displaystyle \frac{p^2}{4} $

Also, 
$abc+abd+bcd+adc = -r $
$ \Rightarrow ab(c+d) +cd(a+b) = -r $
$ \Rightarrow \displaystyle \frac {-p}{2} (ab+cd) = -r $
$ \Rightarrow \displaystyle \frac {-p}{2} ( q - \displaystyle \frac{p^2}{4} ) = -r $
$ \Rightarrow -4pq + p^3 = -8r $
$ \Rightarrow p^3 + 8r = 4pq $

lf one root of the equation $ax^{2}+bx+c=0$ is the square of the other, then

  1. $b^{2}+ac^{2}+a^{2}c=3abc$

  2. $b^{3}+ac^{2}+a^{2}c=3abc$

  3. $b^{2}+ac^{2}+a^{2}c+3abc=0$

  4. $b^{3}+ac^{2}+a^{2}c+3abc=0$


Correct Option: B
Explanation:

Given equation $a{ x }^{ 2 }+bx+c$
Given that, one root of the equation is square of another.
So, lets assume $\alpha$ , ${ \alpha  }^{ 2 }$ are roots of the given equation
We know that,
Sum of roots $=$ $\alpha +{ \alpha  }^{ 2 }=\dfrac { -b }{ a }$ 
Product of roots $=$ $ \alpha \times { \alpha  }^{ 2 }=\dfrac { c }{ a }$
$\alpha (1+\alpha )=\dfrac { -b }{ a } \longrightarrow 1  $
${ \alpha  }^{ 3 }=\dfrac { c }{ a } \longrightarrow 2 $
Cubing equation (1) on both sides and substitute the value from equation (2).
${ \alpha  }^{ 3 }{ (1+\alpha ) }^{ 3 }=\dfrac { -{ b }^{ 3 } }{ { a }^{ 3 } } \ { \alpha  }^{ 3 }({ \alpha  }^{ 3 }+1+3{ \alpha  }(1+\alpha ))=\dfrac { -{ b }^{ 3 } }{ { a }^{ 3 } } \ \dfrac { c }{ a } \left (\dfrac { c }{ a } +1+3\left (\dfrac { -b }{ a } \right)\right)=\dfrac { -{ b }^{ 3 } }{ { a }^{ 3 } } \ \dfrac { ({ c }^{ 2 }+ac-3bc) }{ { a }^{ 2 } } =\dfrac { -{ b }^{ 3 } }{ { a }^{ 3 } } \ a({ c }^{ 2 }+ac-3bc)=-{ b }^{ 3 }\ { b }^{ 3 }+a{ c }^{ 2 }+{ a }^{ 2 }c=3abc $

- Hide questions