0

Vieta’s formula for quadratic equations - class-XI

Description: vieta’s formula for quadratic equations
Number of Questions: 60
Created by:
Tags: algebra complex numbers basic algebra maths theory of equations
Attempted 0/56 Correct 0 Score 0

Sum of roots is $-1$ and sum of their reciprocals is $\dfrac{1}{6}$, then equation is?

  1. $x^2+x-6=0$

  2. $x^2-x+6=0$

  3. $6x^2+x+1=0$

  4. $x^2-6x+1=0$


Correct Option: A
Explanation:

$\Rightarrow$  Let $\alpha$ and $\beta$ are roots of the equation.

According to the given condition,
$\Rightarrow$  $\alpha+\beta=-1$                             ------ ( 1 )
Again according to the given condition,
$\Rightarrow$  $\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{1}{6}$

$\Rightarrow$  $\dfrac{\beta+\alpha}{\alpha\beta}=\dfrac{1}{6}$

$\Rightarrow$  $6(\alpha+\beta)=\alpha\beta$
$\Rightarrow$  $6(-1)=\alpha\beta$                          [ From ( 1 ) ]
$\therefore$  $\alpha\beta=-6$               ----  ( 2 )
Now, required equation,
$\Rightarrow$  $x^2-(\alpha+\beta)x+(\alpha\beta)=0$
Using ( 1 ) and ( 2 ) we get,
$\Rightarrow$  $x^2-(-1)x+(-6)=0$
$\therefore$  $x^2+x-6=0$

If the roots of $x^{3}-kx^{2}+14x-8=0$ are in geometric progression ,then $k=$

  1. -3

  2. 7

  3. 4

  4. 0


Correct Option: B
Explanation:

Let $\dfrac{a}{r}.a.ar $ be the roots 

$\Rightarrow \dfrac{a}{r}.a.ar=8$

$\Rightarrow a^{3}=8$

$\Rightarrow a=2$

$a=2 $ is a root given equation

$\Rightarrow 8-4k+28-8=0$

$\Rightarrow K=7$

The quadratic equation whose roots are twice the roots of  $2 x ^ { 2 } - 5 x + 2 = 0$  is:

  1. $8 x ^ { 2 } - 10 x + 2 = 0$

  2. $x ^ { 2 } - 5 x + 4 = 0$

  3. $2 x ^ { 2 } - 5 x + 2 = 0$

  4. $x ^ { 2 } - 10 x + 6 = 0$


Correct Option: B
Explanation:

$\begin{array}{l} Let\, \alpha \, and\, \beta \, be\, the\, root\, of\, the\, given\, equation. \ Then,\, \alpha +\beta =\frac { 5 }{ 2 } and\, \alpha \beta =\frac { 2 }{ 2 } =1 \ \therefore 2\alpha +2\beta  \ \therefore \left( { \alpha +\beta  } \right)  \ \therefore 5\left( { 2\alpha  } \right) \left( { 2\beta  } \right) =4 \ So\, the\, required\, equation\, is: \ { x^{ 2 } }-5x+4=0 \end{array}$


So, option $B$ is correct answer.

The sum and the product of the zeroes of a quadratic polynomial are $ \dfrac{-1}{2} $ and $ \dfrac{1}{2}$ respectively, then the polynomial is :

  1. $2x^{2}+x+1$

  2. $2x^{2}-x+1$

  3. $2x^{2}-x-1$

  4. $2x^{2}+x-1$


Correct Option: A
Explanation:

Given: Sum of zeroes $=-\dfrac 12$ and product of zeroes $=\dfrac 12$

We know,
$x^2-(\text{sum of zeroes})x+(\text{product of zeroes})=0$
$\Rightarrow x^2-\left(-\dfrac 12\right)x+\dfrac 12=0$
$\Rightarrow 2x^2+x+1=0$
is the required polynomial.

If $(b - c){x^2} + (c - a)x + (a - b) = 0$ has equal roots then $a,b,c$ are in :

  1. A.P.

  2. G.P.

  3. H.P.

  4. none


Correct Option: A
Explanation:
We have,

$(b-c)x^2+(c-a)x+(a-b)=0$

Comparing with the quadratic equation

$Ax^2+Bx+C=0$

$A=(b-c),B=c-a,C=a-b$

Discriminate when roots are equal

$D=B^2-4AC=0$

$D=(c-a)^2−4(b-c)(a-b)=0$

$D=(c^2+a^2−2ac)-4(ba-ac-b^2+bc)=0$

$D=c^2+a^2−2ac-4ab+4ac+4b^2-4bc=0$

$c^2+a^2+2ac-4b(a+c)+4b^2=0$

$(a+c)^2-4b(a+c)+4b^2=0$

$[(a+c)-2b]^2=0$

$a+c=2b$

So,

$a, b, c$ are in $A.P$

Hence, this is the answer.

If α+β=5α+β=5
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:


Given
$\alpha^3 + \beta^3 = 35$
Sum of roots, $\alpha + \beta = 5$
Cubing both sides, 
$\alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = 125$
$35 + 3\alpha\beta(5) = 125$
$15\alpha \beta =125-35$
$\alpha \beta =\frac { 90 }{ 15 } $
Product of roots, $\alpha\beta = 6$

The equation will be, $x^2 - Sx + P = 0$ will be
$x^2 - 5x + 6 = 0 $
Answer:1 as the given equation is true.

If $P ( \alpha , \beta )$ moves on $x ^ { 2 } + y ^ { 2 } - 2 x + 6 y + 1 = 0$ then minimum value of $a ^ { 2 } + \beta ^ { 2 } - 2 a - 4 \beta$ is 

  1. -3

  2. -1

  3. 1

  4. 3


Correct Option: B

The sum and the product of zeroes of a quadratic polynomial $p(x)$ are $-7$ and $-10$ respectively. Then $p(x)$ is :

  1. $x^{2}-7x-10$

  2. $x^{2}-7x+10$

  3. $x^{2}+7x-10$

  4. $x^{2}+7x+10$


Correct Option: C
Explanation:
Given: Sum of zeroes $=-7$ and product of zeroes $=-10$
We know that
$p(x)=x^2-(\text{sum of zeroes})x+(\text{product of zeroes})$
$\Rightarrow p(x)=x^2-(-7)x+(-10)$
$\Rightarrow p(x)=x^2+7x-10$
is the required polynomial.

If $\alpha$ and $\beta$ are the roots of the equation $ax^{2} \, + \, bx \, + \, c \, = \, 0$. The equation whose roots are as given below.
$\alpha \, + \,\dfrac{1}{\beta} \, , \, \beta \, + \, \dfrac{1}{\alpha}$ is $acx^2 \, + \, b(a \, + \, c) \, x \, + \, (a \, + \, c)^2 \, = \, 0$

  1. True

  2. False


Correct Option: A
Explanation:

$\Rightarrow$  $\alpha$ and $\beta$ are roots of the equation $ax^2+bx+c=0$

$\Rightarrow$  $\alpha+\beta=\dfrac{-b}{a}$                       -------- ( 1 )
$\Rightarrow$  $\alpha\beta=\dfrac{c}{a}$                    ------- ( 2 )
Now,
$\Rightarrow$  $\alpha+\dfrac{1}{\beta}+\beta+\dfrac{1}{\alpha}=(\alpha+\beta)+\left(\dfrac{1}{\beta}+\dfrac{1}{\alpha}\right)$

                                    $=(\alpha+\beta)+\left(\dfrac{\alpha+\beta}{\alpha\beta}\right)$
                 
                                    $=\dfrac{-b}{a}+\dfrac{\dfrac{-b}{a}}{\dfrac{c}{a}}$     [ By using ( 1 ) and ( 2 ) ]

                                    $=\dfrac{-b}{a}-\dfrac{b}{c}$

                                    $=\dfrac{-bc-ba}{ac}$

$\therefore$   $\alpha+\dfrac{1}{\beta}+\beta+\dfrac{1}{\alpha}=\dfrac{-b(a+c)}{ac}$                    ----- ( 3 )

$\Rightarrow$  $\left(\alpha+\dfrac{1}{\beta}\right)\left(\beta+\dfrac{1}{\alpha}\right)=\alpha\beta+1+1+\dfrac{1}{\alpha\beta}$
 
                                            $=\dfrac{c}{a}+2+\dfrac{1}{\dfrac{c}{a}}$

                                            $=\dfrac{c}{a}+2+\dfrac{a}{c}$
 
                                            $=\dfrac{a^2+2ac+c^2}{ac}$

$\therefore$  $\left(\alpha+\dfrac{1}{\beta}\right)\left(\beta+\dfrac{1}{\alpha}\right)=\dfrac{a^2+2ac+c^2}{ac}$              ----- ( 4 )
Now, new equation,

$\Rightarrow$  $x^2-\left(\alpha+\dfrac{1}{\beta}+\beta+\dfrac{1}{\alpha}\right)x+\left[\left(\alpha+\dfrac{1}{\beta}\right)\left(\beta+\dfrac{1}{\alpha}\right)\right]=0$
By using ( 3 ) and ( 4 ),

$\Rightarrow$  $x^2+\dfrac{b(a+c)}{ac}x+\dfrac{a^2+2ac+c^2}{ac}$

$\Rightarrow$  $acx^2+b(a+c)x+(a+c)^2=0$

If $\dfrac{x^2 - bx}{ax - c} = \dfrac{m - 1}{m + 1}$ has roots which are numerically equal but of opposite sings, the value of m must be:

  1. $\dfrac{a-b}{a + b}$

  2. $\dfrac{a + b}{a - b}$

  3. c

  4. $\dfrac{1}{c}$


Correct Option: A
Explanation:

$\Longrightarrow \cfrac { { x }^{ 2 }-bx }{ ax-c } =\cfrac { m-1 }{ m+1 } \ \Longrightarrow (m+1){ x }^{ 2 }-b(m+1)x=(m-1)ax-c(m-1)\ \Longrightarrow (m+1){ x }^{ 2 }-[b(m+1)+(m-1)a]x+c(m-1)=0$

Roots are numerically equal but of opposite sign.
$\therefore$ Sum of roots = 0
$\Longrightarrow (b+a)m+(b-a)=0$ 
$\therefore m=\cfrac { a-b }{ a+b } $

If $\alpha$ and $\beta$ are the roots of the equation $ax^{2} \, + \, bx \, + \, c \, = \, 0$. The equation whose roots are as given below.
$\dfrac{\alpha }{\beta } \, ,\dfrac{\beta }{\alpha}$ is $acx^2 \, - \, (b^2 \, - \, 2ac) \, x \, + \, ac \, = \, 0$

  1. True

  2. False


Correct Option: A
Explanation:

$\Rightarrow$  $\alpha$ and $\beta$ are roots of the equation $ax^2+bx+c=0$

$\Rightarrow$  $\alpha\beta=\dfrac{c}{a}$           ------ ( 1 )
$\Rightarrow$  $\alpha+\beta=\dfrac{-b}{a}$         ----- ( 2 )
$\Rightarrow$  $(\alpha+\beta)^2=\alpha^2+\beta^2+2\alpha\beta$
Using ( 1 ) and ( 2 ),
$\Rightarrow$  $\left(\dfrac{-b}{a}\right)^2=\alpha^2+\beta^2+2\times \dfrac{c}{a}$

$\Rightarrow$  $\dfrac{b^2}{a^2}=\alpha^2+\beta^2+\dfrac{2c}{a}$

$\therefore$   $\alpha^2+\beta^2=\dfrac{b^2}{a^2}-\dfrac{2c}{a}$

$\therefore$  $\alpha^2+\beta^2=\dfrac{b^2-2ac}{a^2}$          ------ ( 3 )
Now,
$\Rightarrow$  $\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}=\dfrac{\alpha^2+\beta^2}{\alpha\beta}$

                     $=\dfrac{\dfrac{b^2-2ac}{a^2}}{\dfrac{c}{a}}$           [ Using ( 1 ) and ( 3 ) ]

$\Rightarrow$  $\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}=\dfrac{b^2-2ac}{ac}$           ----- ( 4 )

$\Rightarrow$  $\dfrac{\alpha}{\beta}.\dfrac{\beta}{\alpha}=1$   ---- ( 5 )
New equation,
$\Rightarrow$  $x^2-\left(\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}\right)x+\left(\dfrac{\alpha}{\beta}.\dfrac{\beta}{\alpha}\right)=0$
By Using ( 4 ) and ( 5 ),
$\Rightarrow$  $x^2-\left(\dfrac{b^2-4ac}{ac}\right)x+1=0$

$\Rightarrow$  $acx^2-(b^2-4ac)x+1=0$
$\therefore$  We can see equation given in question is correct.

A quadratic polynomial $p(x)$ with $3$ and $\dfrac{-2}{5}$  as the sum and product of zeroes, respectively is $10x^2+30x-4$

  1. True

  2. False


Correct Option: B
Explanation:

$10x^2+30x-4=0$

$\alpha+\beta=-\cfrac{30}{10}=-3$
$\alpha\beta=\cfrac{-4}{10}=\cfrac{-2}{5}$
So, a quadratic polynomial $p(x)$ with $3$ and $\cfrac{-2}{5}$ as the sum and product of zeroes, respectively is $10x^2+30x-4$ is false.

If the roots of a quadratic equation are reciprocals of the roots of $ax^2 + bx + c = 0$, then what will be the coefficient of $c$?

  1. $x$

  2. $x^2$

  3. $-x$

  4. $x^3$


Correct Option: B
Explanation:

We know to find the equation with reciprocal roots, we simply put $\dfrac {1}{x}$ in the place of $x$.
so, $a(\dfrac {1}{x})^2 + b(\dfrac {1}{x}) + c = 0$
On taking LCM we get the required equation
$a + bx + cx^2 = 0$
So the coefficient of $c$ is $x^2$

Find the Quadratic Equation whose roots are Reciprocal of $ax^2 + bx + c = 0$.

  1. $ax^2 + bx + c = 0$

  2. $a(\dfrac {1}{x})^2 + b(\dfrac {1}{x}) + c = 0$

  3. $3ax^2 + 2bx + c = 0$

  4. None of the above


Correct Option: B
Explanation:

We know that for reciprocal roots, we only need to replace $x$ by $\dfrac {1}{x}$, in the given equation.
So the above equation becomes:
$a(\dfrac {1}{x})^2 + b(\dfrac {1}{x}) + c = 0$, which is the required answer.

If A.M. of the roots of a quadratic equation is $8/5$ and A.M. of their reciprocals is $8/7$, then the equation is?

  1. $7x^2-16x+8=0$

  2. $3x^2-12x+7=0$

  3. $5x^2-16x+7=0$

  4. $7x^2-16x+5=0$


Correct Option: C
Explanation:

$\Rightarrow$  Let $\alpha$ and $\beta$ are the roots of the equation.

According to the question,
$\Rightarrow$ $\dfrac{\alpha+\beta}{2}=\dfrac{8}{5}$

$\therefore$  $\alpha+\beta=\dfrac{16}{5}$                ----- ( 1 )

According to the equation,
$\Rightarrow$  $\dfrac{\dfrac{1}{\alpha}+\dfrac{1}{\beta}}{2}=\dfrac{8}{7}$
$\Rightarrow$  $\dfrac{\alpha+\beta}{2\alpha\beta}=\dfrac{8}{7}$
$\Rightarrow$  $7(\alpha+\beta)=16\alpha\beta$
$\Rightarrow$  $\dfrac{7\times \dfrac{16}{5}}{16}=\alpha\beta$
$\therefore$    $\alpha\beta=\dfrac{7}{5}$          - ------ ( 2 )
Now, new eqution,
$\Rightarrow$  $x^2-(\alpha+\beta)x+(\alpha.\beta)=0$
From ( 1 ) and ( 2 ),
$\Rightarrow$  $x^2-\dfrac{16}{5}x+\dfrac{7}{5}=0$
$\Rightarrow$  $5x^2-16x+7=0$   

If $\alpha, \beta$ are the root of a quadratic equation $x^2 - 3x+5=0$, then the equation whose roots are $(\alpha^2 - 3 \alpha +7)$ and $(\beta^2 -3\beta +7)$ is

  1. $x^2 +4x+1=0$

  2. $x^2 -4x+4=0$

  3. $x^2 -4x-1=0$

  4. $x^2 +2x+3=0$


Correct Option: B
Explanation:

Since $\alpha, \beta$ are the root of equation $x^2-3x+5=0$
So, $\alpha^2-3\alpha +5=0$
$\beta^2 -3\beta +5=0$
$\therefore \alpha^2 -3\alpha =-5$
$\beta^2 - 3 \beta =-5$
Putting in $(\alpha^2 - 3 \alpha +7) $  &  $(\beta^2 - 3\beta +7)$    ....... (1)
$-5 +7, -5 +7$
$\therefore$ 2 and 2 are the roots
$\therefore$ The required equation is $x^2 - 4x+4=0$

If the roots of ${a _1}{x^2}\, + \,{b _1}x\, + \,{c _1}\, = \,0$ are ${\alpha _1},\,{\beta _1},\,$ and those of ${a _2}{x^2}\, + \,{b _2}x\, + {c _2}\, = \,0$ are ${\alpha _2}\,,{\beta _2}$ such that ${\alpha _1}\,{\alpha _2} = \,{\beta _1}\,{\beta _2}\, = \,1$, then

  1. $\dfrac{{{a _1}}}{{{a _2}}} = \,\dfrac{{{b _1}}}{{{b _2}}}\, = \,\dfrac{{{c _1}}}{{{c _2}}}$

  2. $\dfrac{{{a _1}}}{{{c _2}}} = \,\dfrac{{{b _1}}}{{{b _2}}}\, = \,\dfrac{{{c _1}}}{{{a _2}}}$

  3. ${a _1}\,{a _2}\, = \,{b _1}\,{b _2}\, = \,{c _1}\,{c _2}$

  4. None of these


Correct Option: A
Explanation:

$a _1x^2+b _1x+c _1=0$

$\alpha _1+\beta _1=\cfrac{-b _1}{a _1}$
$\alpha _1\beta _1=\cfrac{c _1}{a _1}$

$a _2x^2+b _2x+c _2=0$
$\alpha _2+\beta _2=\cfrac{-b _2}{a _2}$
$\alpha _2\beta _2=\cfrac{c _2}{a _2}$

$\alpha _1\alpha _2=\beta _1\beta _2=1$
$\therefore \alpha _1\beta _1\alpha _2\beta _2=(\alpha _1\alpha _1)\cdot (\beta _1\beta _1)=1\cdot 1=1$
$\therefore \alpha _1\beta _1\alpha _2\beta _2=(\alpha _1\alpha _1)\cdot (\beta _1\beta _1)=\cfrac{c _1}{a _1}\cdot \cfrac{c _2}{a _2}=1$
$\implies \cfrac{c _1}{a _2}=\cfrac{a _1}{c _2}$
Now, $\alpha _1+\beta _1=\cfrac{-b _1}{a _1}$
$\implies \cfrac{1}{\alpha _2}+\cfrac{1}{\beta _2}=\cfrac{-b _1}{a _1}$
$\implies \cfrac{\alpha _2+\beta _2}{\alpha _2\beta _2}=\cfrac{-b _1}{a _1}$
$\implies \cfrac{-b _2/a _2}{c _2/a _2}=\cfrac{-b _1}{a _1}$
$\implies \cfrac{b _2}{c _2}=\cfrac{b _1}{a _1}$
$\implies \cfrac{a _1}{c _2}=\cfrac{b _1}{b _2}$
$\therefore \cfrac{a _1}{a _2}=\cfrac{b _1}{b _2}=\cfrac{c _1}{c _2}$

If $alpha, beta$ are roots of $Ax^2 + Bx + C = 0$ and $\alpha^2, \beta^2$ are roots of $x^2 + px + q = 0$, the $p$ is equal to

  1. $\dfrac{B^2 - 2AC}{A^2}$

  2. $\dfrac{2AC - B^2}{A^2}$

  3. $\dfrac{B^2 - 4AC}{A^2}$

  4. $\dfrac{4AC - B^2}{A^2}$


Correct Option: B
Explanation:
$Ax^2+Bx+C=0$
$\alpha +\beta =\dfrac{-B}{A}$
$\alpha\beta =\dfrac{C}{A}$
Now it roots are $\alpha^2$ & $\beta^2$
Then equation will be
$(x-\alpha^2)(x-\beta^2)=0$
$x^2-x\beta^2-x\alpha^2+\alpha^2\beta^2=0$
$x^2-)(\alpha^2+\beta^2)x+\alpha^2\beta^2=0$
$x^2+[-(\alpha^2+\beta^2)]x+\alpha^2\beta^2=0$
$\alpha +\beta =\dfrac{-B}{-A}$
$\Rightarrow \alpha^2+\beta^2+2\alpha\beta =\dfrac{B^2}{A^2}$
$\alpha^2+\beta^2=\dfrac{B^2}{A^2}-\dfrac{2C}{A}$
$-(\alpha^2+\beta^2)=\dfrac{2C}{A}-\dfrac{B^2}{A^2}=\dfrac{2AC-B^2}{A^2}$
$p=\dfrac{2AC-B^2}{A^2}$.

If $\alpha+\beta$$=-2$ and ${\alpha}^{3}+{\beta}^{3}$$=-56$ then the quadratic equation whose roots are $\alpha,\beta$ is 

  1. ${ x }^{ 2 }+2x-16$$=0$

  2. ${x}^{2}+2x-15$$=0$

  3. ${x}^2+2x-12$$=0$

  4. ${x}^{2}+2x-8$$=0$


Correct Option: D
Explanation:

$\Rightarrow$  $\alpha+\beta=-2$             ------ ( 1 )


$\Rightarrow$  $\alpha^3+\beta^3=-56$


$\Rightarrow$  $(\alpha+\beta)^3=\alpha^3+\beta^3+3\alpha^2\beta+3\alpha\beta^2$

$\Rightarrow$  $(\alpha+\beta)^3=\alpha^3+\beta^3+3\alpha\beta(\alpha+\beta)$

$\Rightarrow$  $(-2)^3=-56+3\alpha\beta(-2)$            [ Using ( 1 ) and ( 2 ) ]

$\Rightarrow$  $-8+56=-6\alpha\beta$

$\Rightarrow$  $48=-6\alpha\beta$

$\Rightarrow$  $\alpha\beta=-8$                      ----- ( 2 )

The required quadratic equation,

$x^2-(\alpha+\beta)x+(\alpha\beta)=0$

Using ( 1 ) and ( 3 ) we get,
$\Rightarrow$  $x^2+2x-8=0$

If $\alpha \neq \beta$ but $\alpha^2 = 5 \alpha -3$ and $\beta^2 = 5\beta -3$, then the equation whose roots are $\dfrac{\alpha}{\beta}$ and $\dfrac{\beta}{\alpha}$is

  1. $3x^2 - 25x+3=0$

  2. $x^2 +5x-3=0$

  3. $x^2 -5x+3=0$

  4. $3x^2 - 19x+3=0$


Correct Option: D
Explanation:
${\alpha}^{2}=5\alpha-3$

${\alpha}^{2}-5\alpha+3=0$

$\alpha=\dfrac{5\pm\sqrt{{5}^{2}-4\times 1\times 3}}{2}$

$\alpha=\dfrac{5\pm\sqrt{25-12}}{2}$

$\alpha=\dfrac{5\pm\sqrt{13}}{2}$

${\beta}^{2}=5\beta-3$

${\beta}^{2}-5\beta+3=0$

$\beta=\dfrac{5\pm\sqrt{{5}^{2}-4\times 1\times 3}}{2}$

$\beta=\dfrac{5\pm\sqrt{25-12}}{2}$

$\beta=\dfrac{5\pm\sqrt{13}}{2}$

Given:$\alpha\neq\,\beta$

Let $\alpha=\dfrac{5+\sqrt{13}}{2}$ and $\beta=\dfrac{5-\sqrt{13}}{2}$

$\Rightarrow\,\dfrac{\alpha}{\beta}=\dfrac{\dfrac{5+\sqrt{13}}{2}}{\dfrac{5-\sqrt{13}}{2}}$

$=\dfrac{5+\sqrt{13}}{5-\sqrt{13}}$

$=\dfrac{5+\sqrt{13}}{5-\sqrt{13}}\times \dfrac{5+\sqrt{13}}{5+\sqrt{13}}$

$=\dfrac{25+13+10\sqrt{13}}{25-13}$

$=\dfrac{38+10\sqrt{13}}{12}$

$=\dfrac{19+5\sqrt{13}}{6}$

$\Rightarrow\,\dfrac{\beta}{\alpha}=\dfrac{\dfrac{5-\sqrt{13}}{2}}{\dfrac{5+\sqrt{13}}{2}}$

$=\dfrac{5-\sqrt{13}}{5+\sqrt{13}}$

$=\dfrac{5-\sqrt{13}}{5+\sqrt{13}}\times \dfrac{5-\sqrt{13}}{5-\sqrt{13}}$

$=\dfrac{25+13-10\sqrt{13}}{25-13}$

$=\dfrac{19-10\sqrt{13}}{12}$

$=\dfrac{19-5\sqrt{13}}{6}$

Sum of the zeroes$=\dfrac{\alpha}{\beta}+\dfrac{\beta}{\alpha}$

$=\dfrac{19+5\sqrt{13}}{6}+\dfrac{19-5\sqrt{13}}{6}$

$=\dfrac{19+5\sqrt{13}+19-5\sqrt{13}}{6}$

$=\dfrac{2\times 19}{6}=\dfrac{19}{3}$

Product of the zeroes$=\dfrac{\alpha}{\beta}\times\dfrac{\beta}{\alpha}$

$=\dfrac{19+5\sqrt{13}}{6}\times\dfrac{19-5\sqrt{13}}{6}$

$=\dfrac{361-25\times 13}{36}=\dfrac{361-325}{36}=\dfrac{36}{36}=1$

Now,we know the foumula for finding quadratic equations,
${x}^{2}-\left(sum\,of \,the \,zeroes\right)x+product\,of\,the \,zeroes=0$

${x}^{2}-\dfrac{19}{3}x+1=0$

Hence the equation is $3{x}^{2}-19x+3=0$

If the difference of the roots of the quadratic equation is 3 and difference between their cubes is 189, then the quadratic equation is x2±9x+18=0x2±9x+18=0
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

Let the roots of the equation be a and b
then, $a^3 - b^3 = 189$
and $a - b = 3$
cubing both sides:
$(a-b)^3 = 27 $
$a^3 - b^3 - 3ab (a-b) = 27$
$189 -3ab(3) = 27 $
$162 = 9 ab$
$ab = 18$
Similarly, $(a+b)^2 = (a -b)^2  + 4ab$
$(a+b)^2 = 3^2 + 4(18)$
$(a+b)^2 = 9 + 72 $
$a +b = \pm 9$
The general form of equation is $x^2 -Sx + P = 0 $, hence the equation will be
$x^2 \pm 9x + 18 = 0$

If $\alpha , \beta$ are the roots of the equation $ { x }^{ 2 } - 2x + 3 = 0$, obtain the equation whose roots are ${ \alpha  }^{ 3 } - 3{ \alpha  }^{ 2 } + 5\alpha - 2,  { \beta  }^{ 3 } - { \beta  }^{ 2 } + \beta + 5$.

  1. ${x}^{2}-3x+2=0$

  2. ${x}^{2}+3x-2=0$

  3. $-{x}^{2}-3x+2=0$

  4. $-{x}^{2}+3x-2=0$


Correct Option: A,D
Explanation:

If $\alpha, \beta$ are the roots of $x^2-2x+3=0$
then $\displaystyle \alpha ^{2}-2\alpha +3= 0$ ...(1)
and $\displaystyle \beta^2-2\beta+3=0$  ....(2)
$\displaystyle \therefore \alpha ^{2}= 2\alpha -3, \alpha ^{3}= 2\alpha ^{2}-3\alpha $
$\displaystyle \therefore P= \left ( 2\alpha ^{2}-3\alpha  \right )-3\alpha ^{2}+5\alpha -2$
$\displaystyle = -\alpha ^{2}+2\alpha -2= 3-2= 1,$ by (1)
Similarly $\displaystyle Q= 2 \therefore S= 3, P= 2$
Hence reqd. eq. is $\displaystyle x^{2}-3x+2= 0.$ or $-x^2+3x-2=0$

If the difference of the roots of a quadratic equation is 4 and the difference of their cubes is 208, then the quadratic equation is $x^{2}\, \pm\, 8x\, +\, 12\, =\, 0$
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

Let the roots of the equation be a and b
then, $a^3 - b^3 = 208$
and $a - b = 4$
cubing both sides:
$(a-b)^3 = 64 $
$a^3 - b^3 - 3ab (a-b) = 64$
$208 -3ab(4) = 64 $
$144 = 12 ab$
$ab = 12$
Similarly, $(a+b)^2 = (a -b)^2  + 4ab$
$(a+b)^2 = 4^2 + 4(12)$
$(a+b)^2 = 16 + 48 $
$a +b = \pm 8$
The general form of equation is $x^2 -Sx + P = 0 $, hence the equation will be
$x^2 \pm 8x + 12 = 0$

Let $\alpha$ and $\beta$ be the roots of the equation ${ x }^{ 2 }+x+1=0$. The equation whose roots are ${ \alpha  }^{ 19 },{ \beta  }^{ 7 }$ is

  1. ${ x }^{ 2 }-x-1=0$

  2. ${ x }^{ 2 }-x+1=0$

  3. ${ x }^{ 2 }+x-1=0$

  4. ${ x }^{ 2 }+x+1=0$


Correct Option: D
Explanation:

$ { x }^{ 2 }+x+1=0$


$\Rightarrow \left( x-\omega  \right) \left( x-{ \omega  }^{ 2 } \right) =0$

$\Rightarrow x=\omega ,{ \omega  }^{ 2 }$

$\therefore \alpha =\omega ,\beta ={ \omega  }^{ 2 }$   $(\because \omega ,{ \omega  }^{ 2 }$ are cube roots of unity $)$

Hence, ${ \alpha  }^{ 3 }=\omega ^3 =1$
             ${ \beta  }^{ 3 }=[{\omega ^3}]^2 = 1$
             $\alpha \beta =\omega^3=1$

$\therefore { \alpha  }^{ 19 }={ \left( { \alpha  }^{ 3 } \right)  }^{ 6 }\alpha ={ 1 }^{ 6 }\alpha =\alpha =\omega $ and ${ \beta  }^{ 7 }={ \beta  }^{ 6 }.\beta ={ 1 }^{ 2 }.\beta =\beta ={ \omega  }^{ 2 }$

$\\ \Rightarrow { \alpha  }^{ 19 }+{ \beta  }^{ 7 }=\omega +{ \omega  }^{ 2 }=-1$ 
$\Rightarrow { \alpha  }^{ 19 }{ \beta  }^{ 7 }=\omega .{ \omega  }^{ 2 }={ \omega  }^{ 3 }=1$

Hence equation whose roots are ${ \alpha  }^{ 19 },{ \beta  }^{ 7 }$ is

${ x }^{ 2 }-\left( { \alpha  }^{ 19 }+{ \beta  }^{ 7 } \right) x+{ \alpha  }^{ 19 }{ \beta  }^{ 7 }=0$

$\Rightarrow { x }^{ 2 }+x+1$

Which of the following quadratic equation has the sum of their roots $4$ and the sum of the cubes of their roots as $28$? 

  1. $x^2 - 4x + 3 = 0$

  2. $x^2 - 4x - 5 = 0$

  3. $x^2 - 3x + 4 = 0$

  4. $x^2 + 4x + 3 = 0$


Correct Option: A
Explanation:

Let $\alpha$ and $\beta$ be the roots of the equation.
Hence
$\alpha+\beta=4$
and $\alpha^{3}+\beta^{3}=28$
Now $\alpha^{3}+\beta^{3}$ can be written as

$=(\alpha+\beta)^{3}-3\alpha\beta(\alpha+\beta)$
Hence
$28=64-12\alpha\beta$
$12\alpha\beta=36$
$\alpha\beta=3$
Therefore,
$x^{2}-(\alpha+\beta)x+\alpha\beta=0$
$x^{2}-(4x)+3=0$
Hence, option $A$ is correct.

If one root of the quadratic equation $ax^{2}\, +\, bx\, +\, c\, =\, 0$ is the square of the other, then $b^{3}\, +\, a^{2}c\, +\, ac^{2}\, =\, 3abc$
Say yes or no.

  1. Yes

  2. No

  3. Ambiguous

  4. Data insufficient


Correct Option: A
Explanation:

Let one root of $ax^2 + bx + c =0$ be $\alpha$ and other be $\alpha^2$
then, $\alpha + \alpha^2 = \frac{-b}{a}$
$\alpha^3 = \frac{c}{a}$
or $\alpha = (\frac{c}{a})^{({\frac{1}{3}})}$
Now put the value of $\alpha$ in $\alpha + \alpha^2 = \frac{-b}{a}$
$\frac{c}{a}^{\frac{1}{3}} + \frac{c}{a}^{\frac{2}{3}} = \frac{-b}{a}$
Cubing both sides:

$(\frac{c}{a})^{({\frac{3}{3}})} + (\frac{c}{a})^{({\frac{6}{3}})} + 3 {(\frac{c}{a})^{({\frac{1}{3}})}}\times{(\frac{c}{a})^{({\frac{2}{3}})}}((\frac{c}{a})^{({\frac{1}{3}})} + (\frac{c}{a})^{({\frac{2}{3}})}) = (\frac{-b}{a})^3$

$\frac{c}{a} + \frac{c^2}{a^2} + 3\frac{c}{a}(\frac{-b}{a}) = \frac{-b^3}{a^3}$

$a^2c + ac^2 - 3abc = - b^3 $
$b^3 + a^2c + ac^2 = 3abc$

If the roots of the equation $2x^2 - 3x + 5 = 0$ are reciprocals of the roots of the equation $ax^2 + bx + 2 = 0$, then

  1. $a = 2, b = 3$

  2. $a = 2, b = -3$

  3. $a = 5, b = -3$

  4. $a = 5, b = 3$


Correct Option: C
Explanation:

Let $\alpha ,\beta $ are roots of $2{ x }^{ 2 }-3x+5=0$ 
Then to get equation whose roots are $\displaystyle \dfrac { 1 }{ \alpha  } ,\dfrac { 1 }{ \beta  } $ 
Replace $\displaystyle x\rightarrow \frac { 1 }{ x } \ $
We get $5{ x }^{ 2 }-3x+2=0$.

If each root of the equation ${x}^{2}+11{x}+13=0$ is diminished by $4$, then the resulting equation is

  1. ${x}^{2}+3{x}-15=0$

  2. ${x}^{2}+3{x}+73=0$

  3. ${x}^{2}+19{x}+73=0$

  4. ${x}^{2}-3{x}-4=0$


Correct Option: C
Explanation:

$ The\quad roots\quad of\quad the\quad equation\quad { x }^{ 2 }+11x+13=0\quad is\quad diminished\quad by\quad 4\quad i.e.\ the\quad variable\quad becomes\quad (x+2).\ \therefore \quad
The\quad new\quad equation\quad is\quad \ (x+4)^{ 2 }+11(x+4)+13=0\ \Rightarrow { x }^{ 2 }+8x+16+11x+44+13=0\ \Rightarrow { x }^{ 2 }+19x+73=0\ Ans-\quad Option\quad C .$

If $\displaystyle \alpha, \beta $ are the roots of $\displaystyle x^{2}+3x+3=0$  then find the quadratic equation whose roots are $\displaystyle (\alpha +\beta )$ and $\displaystyle \alpha \beta $

  1. $\displaystyle x^{2}=1$

  2. $\displaystyle x^{2}=4$

  3. $\displaystyle x^{2}=9$

  4. None of these


Correct Option: C
Explanation:

For the equation, sum of roots $ = \alpha  + \beta = -\dfrac {3}{1} = -3 $
Product of roots $ = \alpha  \times \beta = \dfrac {3}{1} = 3 $

So, the eqn with roots $ = \alpha  + \beta$ and $ \alpha  \times \beta $ is $ (x - (-3))(x-3) = 0 $
$ => x^{2} -9 = 0 $

If $a, b, g$  are the roots of the equation $(x - 2$ ) $\displaystyle \left ( x^{2}+6x-11 \right )=0$ therefore $(a + b + g)$  equals

  1. $-4$

  2. $\dfrac{23}{6}$

  3. $13$

  4. $-8$


Correct Option: A
Explanation:

Given, $(x-2)(x^{2}+6x-11)=0$
$x^{3}+6x^{2}-11x-2x^{2}-12x-22=0$
$x^{3}+4x^{2}-23x-22=0$
Then $a=1  ,b=4  g=-22$
Sum of roots $(a+b+g) =\displaystyle \frac{-b}{a}=\frac{-4}{1}=-4$

The roots of equation $\displaystyle x^{2}+px+q=0$ are $1 $ and $2$ . The roots of the equation $\displaystyle qx^{2}-px+1=0$ must be

  1. $-1,$ $\displaystyle -\frac{1}{2}$

  2. $\displaystyle \frac{1}{2},1$

  3. $\displaystyle -\frac{1}{2},1$

  4. $\displaystyle -1,\frac{1}{2}$


Correct Option: A
Explanation:

The equation can be written as $x^{ 2 }+px+q=0$

The roots are $1$ and $2$
Sum of roots $= 3= -p$
Product of roots $= 2= q$
The second equation is $2x^{ 2 }+3x+1=0$
$2x^{ 2 }+2x+x+1=0$
$ \Longrightarrow 2x(x+1)+1(x+2)=0$
$\Longrightarrow (x+1)(2x+1)=0$
$ \Longrightarrow x=-1 $ or $-1/2$

The equation whose roots are twice the roots of $x^2 -3x +3=0$ is

  1. $x^2-6x+12=0$

  2. $x^2-3x+6=0$

  3. $2x^2-3x+3=0$

  4. $4x^2-6x+3=0$


Correct Option: A
Explanation:

$x^2 -3x = 3 = 0$ ........ (1)
Here, $a +\beta =3$ and $a\beta =3$. Therefore,
$2(a +\beta ) =6$
$2\times 2a\beta = 4a\beta =4 \times 3= 12$
The equation whose roots are double of (1),
$x^2 -$(sum of the roots)x + product of the roots $=0$
will be $x^2 -6x + 12 =0$

The equation whose roots are the squares of the roots of equation $x^2 -x +1= 0$ is

  1. $x^2-x+1=0$

  2. $x^2+x+1=0$

  3. $x^2-x-1=0$

  4. $-x^2-x-1=0$


Correct Option: B
Explanation:

The given equation is $x^2 -x + 1 = 0$ ....... (1)
Here, $a +\beta = 1$ and $a\beta = 1$. Therefore,
$a^2+\beta^2 = (a + \beta)^2 -2a\beta = 1-2= -1$
and $a^2\beta^2 = (a\beta)^2 = 1^2= 0$
Therefore, the equation whose roots are square of 1 is $x^2$ -(sum of the roots)x +product $=0$
or $x^2-(-1)x+ 1 =0$
or $x^2+x+ 1 =0$

If $m$ and $n$ are the roots of the equation $(x + p)(x + q) - k = 0$, then the roots of the equation $(x - m)(x - n) + k = 0$ are-

  1. $p$ and $q$

  2. $1/p$ and $1/q$

  3. $-p$ and $-q$

  4. $p + q$ and $p - q$


Correct Option: C
Explanation:

$(x+p)(x+q)-k=0\ \Longrightarrow { x }^{ 2 }+(p+q)x+pq-k=0$

$m$ and $n$ are the roots of this equation
So, we have
Sum of roots $= -(p+q)=m+n$
Product of the roots $=pq-k= mn$
$\Rightarrow pq=mn+k$
Consider, $(x-m)(x-n)+k=0$ 
$\Rightarrow { x }^{ 2 }-(m+n)x+mn+k=0$
Sum of roots is $ m+n$
But $m+n= (-p)+(-q)$
Product of the roots $=mn+k$
But $mn+k= pq= (-p)(-q)$
Hence, the roots of the new equation are $-p,-q$

If $\alpha$ and $\beta$ are the roots of $x^{2} + p = 0$ where p is a prime, which equation has the roots $\dfrac {1}{\alpha}$ and $\dfrac {1}{\beta}$?

  1. $\dfrac {1}{x^{2}} + \dfrac {1}{p} = 0$

  2. $px^{2} + 1 = 0$

  3. $px^{2} - 1 = 0$

  4. $\dfrac {1}{x^{2}} - \dfrac {1}{p} = 0$


Correct Option: B
Explanation:

${ x }^{ 2 }+p=0$

roots are $\alpha & \beta $
sum = $\alpha +\beta =0$
product=$\alpha \beta =p$
New roots are $\cfrac { 1 }{ \alpha  } & \cfrac { 1 }{ \beta  } $
sum = $\cfrac { 1 }{ \alpha  } +\cfrac { 1 }{ \beta  } =\cfrac { \alpha +\beta  }{ \alpha \beta  } =0\ $
product = $\cfrac { 1 }{ \alpha \beta  } =\cfrac { 1 }{ p } $
equation 
${ x }^{ 2 }$-(sum of roots)x+product of roots = 0
${ x }^{ 2 }-0+\cfrac { 1 }{ p } =0\ { px }^{ 2 }+1=0$

The equation formed by multiplying each root of $ax^2  + bx + c = 0$ by 2 is $ x^2 + 36x + 24 = 0$.Which one of the following is correct ?

  1. $ bc = a^2 $

  2. $ bc = 36 a^2 $

  3. $ bc = 72 a^2 $

  4. $ bc = 108 a^2 $


Correct Option: D
Explanation:

let $p,q$ be roots of equation $ax^2+bx+c=0$


So $p+q=\left(-\dfrac{b}{a}\right)$ and $pq=c/a$


$\Rightarrow b=-a(p+q),c=apq$

New equation is $x^2+36x+24=0$ and roots are $2p,2q$

So $2p+2q=-36$

$\Rightarrow p+q=-18$

$2p\times 2q=24$

$\Rightarrow pq=6$

Then, value of $bc$ is $[-a(p+q)][apq]=-a(-18)a6=108a^2$

If $\alpha , \beta$ are the roots of the equation $ax^2+bx+c=0$ then the quadratic equation whose roots are $\alpha + \beta , \alpha \beta$ is:

  1. $a^2 x^2 +a(b-c) x+bc=0$

  2. $a^2 x^2 + a(b-c) x-bc=0$

  3. $ax^2 +(b+c) x+bc=0$

  4. $ax^2-(b+c)x-bc=0$


Correct Option: B
Explanation:

From the first equation, we can conclude that
$\alpha+\beta=-\cfrac{b}a$  ...(i)

$\alpha\beta=\cfrac{c}a$      ...(ii)

Therefore, the new equation will be

$x^2-(\alpha+\beta+\alpha\beta)x+(\alpha+\beta)(\alpha\beta)=0$

Substituting the values from (i) and (ii), we get

$x^2-\left(\cfrac{-b+c}{a}\right)x+\left(\cfrac{-bc}{a^2}\right)=0$

$a^2x^2+a(b-c)x-bc=0$


Hence, the answer is
$a^2x^2+a(b-c)x-bc=0$

If $\alpha$ and $\beta$ are the roots of the equation $ax^2+bx+c=0$ and if $px^2+qx+r=0$ has roots $\displaystyle \frac{1-\alpha}{\alpha}$ and $\displaystyle \frac{1-\beta}{\beta}$, then $r$ is

  1. $a+2b$

  2. $a+b+c$

  3. $ab+bc+ca$

  4. $abc$


Correct Option: B
Explanation:
The equation with roots $\cfrac1{\alpha}$ and $\cfrac1{\beta}$
$=a\left(\cfrac1x\right)^2+b\left(\cfrac1x\right)+c$
$=cx^2+bx+a=0$ ..(1)
Now $\cfrac{1-\alpha}{\alpha}=\cfrac{1}{\alpha}-1$
Similarly $\cfrac{1-\beta}{\beta}=\cfrac{1}{\beta}-1$
Therefore the quadratic equation containing these roots is
$c\left(x+1\right)^2+b\left(x+1\right)+a$
$=cx^2+\left(b+2c\right)x+a+b+c = 0$
By comparing coefficients we get with $px^2+qx+r=0$ we get
$r=a+b+c$

If $\alpha , \beta$ are the roots of the equation $9x^2+6x+1=0$, then the equation with the roots $\cfrac{1}{\alpha}, \cfrac{1}{\beta}$ is :

  1. $2x^2+3x+18=0$

  2. $x^2+6x-9=0$

  3. $x^2+6x+9=0$

  4. $x^2-6x+9=0$


Correct Option: C
Explanation:
$\left(x-\cfrac1{\alpha}\right)\left(x-\cfrac1{\beta}\right)=0$
$x^2-\left(\cfrac{1}{\alpha}+\cfrac{1}{\beta}\right)x+\left(\cfrac{1}{\alpha\beta}\right)=0$
$x^2-\left(\cfrac{\alpha+\beta}{\alpha\beta}\right)x+\left(\cfrac{1}{\alpha\beta}\right)=0$
From the given equation we know
$\alpha+\beta=-\cfrac69$
$\alpha\beta=\cfrac19$
By substituting we get
$x^2-\left(-6\right)x+9=0$
$x^2+6x+9=0$

If $\alpha$ and $\beta$ are roots of $2{ x }^{ 2 }-3x-6=0$, then the equation whose roots are ${ \alpha  }^{ 2 }+2$ and ${ \beta  }^{ 2 }+2$ will be

  1. $4{ x }^{ 2 }+49x-118=0$

  2. $4{ x }^{ 2 }-49x-118=0$

  3. $4{ x }^{ 2 }-49x+118=0$

  4. $4{ x }^{ 2 }+49x+118=0$


Correct Option: C
Explanation:

$2x^{2}-3x-6=0$

$\alpha+\beta=\dfrac{3}{2}$
$\alpha\beta=-3$
Now roots are $\alpha^{2}+2$   and   $\beta^{2}+2$
$sum=\alpha^{2}+2+\beta^{2}+2$
$=(\alpha+\beta)^{2}-2\alpha\beta+4$
$=\dfrac{9}{4}+6+4$
$=\dfrac{49}{4}$
$Product=(\alpha^{2}+2)(\beta^{2}+2)$
$=\alpha^{2}\beta^{2}+2(\alpha^{2}+\beta^{2})+4$
$=9+2\times\dfrac{33}{4}+4=13+\dfrac{33}{2}=\dfrac{59}{2}$
Equation
$x^{2}-\dfrac{49x}{4}+\dfrac{59}{2}=0$
$4x^{2}-49x+118=0$

If $\alpha, \beta$ are the roots of $x^2 + px+1=0$ and $\gamma, \delta $ are the roots of $x^2+qx+1=0$, then $(\alpha - \gamma) (\beta - \gamma)(\alpha - \delta) (\beta + \delta)=$

  1. $2q^2$

  2. $2p^2$

  3. $p^2-q^2$

  4. $q^2 - p^2$


Correct Option: D
Explanation:

$\alpha, \beta$ are the roots of $x^2 + px+1=0$
$\Rightarrow \alpha+\beta = -p,  \alpha \beta =1$

$\gamma, \delta$ are the roots of $x^2+qx+1=0$
$\Rightarrow \gamma \delta =1, \gamma^2+q\gamma +1=0$,
$\delta^2 +q\delta +1=0$

$(\alpha - \gamma)(\beta -\gamma)(\alpha + \delta)(\beta + \delta)$
$=[\alpha \beta - \gamma (\alpha + \beta)+\gamma^2][\alpha \beta + \delta (\alpha + \beta) + \delta^2]$
$=(1+p \gamma + \gamma^2)(1-p\delta + \delta^2)$
$=(p \gamma - q \gamma)(-p \delta - q\delta)$
$=-\gamma \delta (p-q)(p+q)$
$=-(p^2-q^2) = q^2 - p^2$

Hence, option D.

Find the equation whose sum of roots and product of roots are the product and sum of roots of $x^2 + 5x + 6 = 0$ respectively.

  1. $x^2 - 6x - 5 = 0$

  2. $x^2 - 5x - 6 = 0$

  3. $x^2 + 11x - 1 = 0$

  4. None of the above


Correct Option: A
Explanation:

In the given equation
sum of roots $= -5$ and product of roots $= 6$
The standard form of a quadratic equation is: $x^2 - (S)x + P = 0$, where S and P are sum and product of roots.
So according to question
$x^2 - (6)x + (-5) = 0$
The required equation will be $x^2 - 6x - 5 = 0$

If $\alpha, \beta $ are the roots of $ax^2+bx+c=0$ then the equation whose roots are $2+\alpha , 2+\beta$ is:

  1. $ax^2+x(4a-b) + 4a-2b+c=0$

  2. $ax^2+x(4a-b) + 4a+2b+c=0$

  3. $ax^2+x(b-4a) = 4a+2b+c=0$

  4. $ax^2+x(b-4a) + 4a-2b+c=0$


Correct Option: D
Explanation:

$\alpha, \beta$ are the roots of $\Rightarrow { ax }^{ 2 }+bx+c=0$
Then, $a(\alpha)^2 + b(\alpha)+c =0$
Now, $\alpha +2 = x $
Hence, $\alpha = x -2$
Thus, replace $\alpha$ by $x-2$ in the given equation,
Required equation is
$a(x-2)^2+b(x-2)+c=0$
$\Rightarrow a(x^2-4x+4)+bx-2b+c=0$
$\Rightarrow ax^2 +(b-4a) x+(4a-2b+c)=0$
$\Rightarrow ax^{ 2 }+x(b-4a)+4a-2b+c=0$

If $\alpha , \beta$ are the roots of the equation $x^2 - 3x + 1 = 0$, then the equation with roots $\displaystyle \frac{1}{\alpha - 2} , \frac{1}{\beta - 2}$ will be

  1. $x^2- x- 1 = 0$

  2. $x^2 + x - 1 = 0$

  3. $x^2 + x + 2 = 0$

  4. none of these


Correct Option: A
Explanation:
$\alpha , \beta$ are the roots of the equation $x^2 - 3x + 1 = 0$
$\Rightarrow  \alpha^2-3\alpha+1=0$ ------(1)
Let $\displaystyle\dfrac{1}{\alpha-2}=y$
$\Rightarrow\displaystyle \alpha=2+\dfrac{1}{y}$
From (1), we get
$\displaystyle\left(2+\dfrac{1}{y}\right)^2-3\left(2+\dfrac{1}{y}\right)+1=0$
$\Rightarrow\displaystyle \dfrac{(2y+1)^2}{y^2}-\dfrac{3(2y+1)}{y}+1=0$
$\Rightarrow y^2-y-1=0$
$\therefore$ The equation with roots $\displaystyle \dfrac{1}{\alpha - 2} , \dfrac{1}{\beta - 2}$ is $x^2-x-1=0$
Hence, option A.

If $\alpha, \beta$ are roots of $ax^2+bx+c=0$, then one root of the equation $ax^2-bx(x-1) + c(x-1)^2=0$ is :

  1. $\displaystyle \left ( \frac{\alpha}{1- \alpha} \right )$

  2. $\displaystyle \left ( \frac{1-\beta}{\beta} \right )$

  3. $\displaystyle \left ( \frac{\alpha}{1+ \alpha} \right )$

  4. $\displaystyle \left ( \frac{\beta}{1+ \beta} \right )$


Correct Option: C,D
Explanation:

We have, $ax^2-bx^2+bx+cx^2-2cx+c=0$

$(a-b+c)x^2+(b-2c)x+c=0$

Sum of the roots (S)
$\displaystyle \frac{b-2c}{a-b+c} = \frac{\left ( -\frac{b}{a} + \frac{2c}{a} \right )}{\left ( 1- \frac{b}{a} + \frac{c}{a}\right )}$

$\displaystyle S = \frac{\alpha+\beta+1\alpha \beta}{2+ \alpha + \beta+ \alpha \beta}=\frac{\alpha}{\alpha+1}+ \frac{\beta}{\beta+1}$

Product of the roots (P) $\displaystyle =\frac{c}{a-b+c}$

$\Rightarrow \displaystyle P= \frac{\left ( \frac{c}{a} \right )}{\left ( 1- \frac{b}{c}+\frac{c}{a}\right )}$

$\displaystyle=\frac{\alpha \beta}{1+\alpha+\beta+\alpha \beta} = \frac{\alpha}{(\alpha+1)} \cdot \frac{\beta}{(\beta+1)}$

Thus the roots are $ \displaystyle \frac{\alpha}{\alpha+1} and \frac{\beta}{\beta+1}$

If $\alpha $ and $\beta$ be the roots of the equation $x^{2}+px+q = 0$, then the equation whose roots are $\alpha^{2}+\alpha\beta$ and $\beta^{2}+\alpha\beta$ is

  1. $x^{2}+p^{2}x+p^{2}q = 0$

  2. $x^{2}-q^{2}x+p^{2}q = 0$

  3. $x^{2}+q^{2}x+p^{2}q = 0$

  4. $x^{2}-p^{2}x+p^{2}q = 0$


Correct Option: D
Explanation:

Since $\alpha$ and $\beta$ are roots of the equation
$x^{2}+px+q = 0$, therefore
$\alpha + \beta = -p$      ...(i)
and $\alpha\beta = q$      ...(ii)
Sum of the roots $= \alpha^{2}+\alpha\beta+\beta^{2}+\alpha\beta$
$= (\alpha+\beta)^{2} = p^{2}$
Product of the roots $=(\alpha^{2}+\alpha\beta)(\beta^{2}+\alpha\beta)$
$= \alpha\beta (\alpha+\beta)^{2} = qp^{2}$
Required equation will be
$x^{2}$-(Sum  of  the  roots)$x$ + Product  of  the  roots = $0$
or $x^{2}-p^{2}x+qp^{2} = 0$

If $\alpha $ and $\beta \,\,\,\,$ are roots of equation $\,\,{x^3} - 2x + 3 = 0$,then the equation whose roots are $\,\dfrac{{\alpha  - 1}}{{\alpha  + 1}}$ and $\,\,\dfrac{{\beta  - 1}}{{\beta  + 1}}$ will be

  1. $3{x^2} - x - 1 = 0$

  2. $3{x^2} + 2x + 1 = 0$

  3. $3{x^2} - x + 1 = 0$

  4. ${x^2} - 2x + 1 = 0$


Correct Option: C
Explanation:

$x^3-2x+3=0$

$\alpha+\beta=2$
$\alpha\beta=3$
$x^2-\left(\cfrac{\alpha-1}{\alpha+1}+\cfrac{\beta-1}{\beta+1}\right)x+\left(\cfrac{\alpha-1}{\alpha+1}\right)\left(\cfrac{\beta-1}{\beta+1}\right)=0$
$\Rightarrow x^2(\alpha+1)(\beta+1)-x((\alpha-1)(\beta+1)+(\beta-1)(\alpha+1))+(\alpha-1)(\beta-1)=0$
$\Rightarrow x^2(\alpha\beta+(\alpha+\beta)+1)-x(\alpha\beta+\alpha-\beta-1+\alpha\beta+\beta-\alpha-1)+(\alpha\beta-(\alpha+\beta)+1)=0$
$\Rightarrow x^2(3+2+1)-x(3-1)+(3-2+1)=0$
$\Rightarrow 6x^2-2x+2=0$
$\Rightarrow 3x^2-x+1=0$

Find a quadratic equation whose roots $\displaystyle \alpha$ and $ \displaystyle \beta $ are connected by the relation:
$\displaystyle \alpha +\beta = 2$ and $\displaystyle \frac{1-\alpha }{1+\beta }+\frac{1-\beta }{1+\alpha }= 2\left ( \frac{4\lambda ^{2}+15}{4\lambda ^{2}-1} \right )$

  1. $\displaystyle x^{2}-2x-\frac{\left ( 4\lambda ^{2}+11 \right )}{4}= 0$

  2. $\displaystyle x^{2}+2x-\frac{\left ( 4\lambda ^{2}-11 \right )}{4}= 0$

  3. $\displaystyle x^{2}-2x+\frac{\left ( -2\lambda ^{2}+11 \right )}{4}= 0$

  4. None of these


Correct Option: A
Explanation:

$\displaystyle \alpha +\beta = 2$ and let $\displaystyle \alpha \beta = p$
$\displaystyle \therefore $ Equation is $\displaystyle x^{2}-2x+p= 0$ ...(1)
We have to find the value of p.
Now $\displaystyle

\frac{1-\alpha }{1+\beta }+\frac{1-\beta }{1+\alpha }= \frac{\left (

1-\alpha ^{2} \right )+\left ( 1-\beta ^{2} \right )}{1+\left ( \alpha

+\beta  \right )+p}$
or $\displaystyle \frac{2-\left ( \alpha

^{2}+\beta ^{2} \right )}{1+2+p}= \frac{2-\left { \left ( \alpha +\beta

 \right )^{2}-2\alpha \beta  \right }}{3+p}$
or $\displaystyle

\frac{2-4+2p}{3+p}:or:\frac{2\left ( p-1 \right )}{p+3}= 2\left (

\frac{4\lambda ^{2}+15}{4\lambda ^{2}-1} \right )$
or $\displaystyle \frac{p-1}{p+3}= \frac{4\lambda ^{2}+15}{4\lambda ^{2}-1}$
or $\displaystyle

p\left [ \left ( 4\lambda ^{2}-1 \right )-\left ( 4\lambda ^{2}+15

\right ) \right ]= 3\left ( 4\lambda ^{2}+15 \right )+\left ( 4\lambda

^{2}-1 \right )$
or $\displaystyle -16p= 16\lambda ^{2}+44= 4\left ( 4\lambda ^{2}+11 \right )$
$\displaystyle \therefore p= -\frac{\left ( 4\lambda ^{2}+11 \right )}{4}$
Putting for $p$ in (1) we get the required equation as
$\displaystyle x^{2}-2x-\frac{\left ( 4\lambda ^{2}+11 \right )}{4}= 0$

If $\alpha \neq \beta, \alpha^{2}=5\alpha -3$, and $\beta^{2}=5\beta-3$, then the equation having $\alpha/\beta$ and $\beta/\alpha$ as its roots is

  1. $3x^{2}-19x+3=0$

  2. $3x^{2}+19x-3=0$

  3. $3x^{2}-19x-3=0$

  4. $x^{2}+5x+3=0$


Correct Option: A
Explanation:
${ \alpha  }^{ 2 }=5\alpha -3\quad { \beta  }^{ 2 }=5\beta -3$
Equation is ${ x }^{ 2 }-5x+3=0$
$\alpha +\beta =5\quad \alpha \beta =3$
If $\cfrac { \alpha  }{ \beta  } ,\cfrac { \beta  }{ \alpha  } $ are roots
Sum of roots$=\cfrac { \alpha  }{ \beta  } +\cfrac { \beta  }{ \alpha  } =\cfrac { { \alpha  }^{ 2 }+{ \beta  }^{ 2 } }{ \alpha \beta  } =\cfrac { { \left( \alpha +\beta  \right)  }^{ 2 }-2\alpha \beta  }{ \alpha \beta  } $
$=\cfrac { 25-2\left( 3 \right)  }{ 3 } =\cfrac { 19 }{ 3 } $
Products of roots$=\cfrac { \alpha  }{ \beta  } \times \cfrac { \beta  }{ \alpha  } =1$
${ x }^{ 2 }-\cfrac { 19 }{ 3 } x+1=0$
$\therefore 3{ x }^{ 2 }-19x+3=0$

In a $\triangle ABC, C=90^{o}$. Then $\tan A$ and $\tan B$ are the roots of the equation

  1. $abx^{2}-c^{2}x+1=0$

  2. $abx^{2}-(a^{2}+b^{2})x+ab=0$

  3. $c^{2}x^{2}-abx+c^{2}=0$

  4. $ax^{2}-bx+a=0$


Correct Option: A
Explanation:
$\tan A$ & $\tan B$ are roots 
Sum $=(\tan A+\tan B)$
Product $=\tan A\tan B$
$\angle C=90^o$
$\angle A+\angle B=90^o$
$\tan A \tan B=1$
$\tan B=1/\tan A$
$x^2-(\tan A+\tan B)x+1=0$
$x^2\dfrac {2}{\sin 2A}x+1=0$
$\Rightarrow \ x^2-\dfrac {c^2}{ab}x+1=0 \Rightarrow \ x^2 (ab)-c^2 (x)+1=0$
$\tan A+\tan B=\tan A+\dfrac {1}{\tan A}$
$=\dfrac {2\tan ^2 A+1}{2\tan A}=\dfrac {2}{\sin 2A}$
$\sin 2A=\dfrac {2\tan A}{1+\tan^2 A}$


If $\displaystyle \alpha $ are $\displaystyle \beta $ are the roots of $\displaystyle x^{2}+x+1=0$  then find the equation whose roots $\displaystyle \alpha ^{2}$ and $\displaystyle \beta ^{2}$

  1. $\displaystyle x^{2}+x+1=0$

  2. $\displaystyle x^{2}+2x+1=0$

  3. $\displaystyle x^{2}+x+2=0$

  4. $\displaystyle x^{2}+2x+2=0$


Correct Option: A
Explanation:

For the given equation, sum of roots $ = \alpha + \beta  = -\dfrac {1}{1} = -1 $

Product of roots $ = \alpha \times \beta =  \dfrac {1}{1} =1 $

Now, $ {\alpha}^{2} + \beta ^{2} = (\alpha + \beta )^{2} - 2(\alpha \times \beta)= (-1)^{2} - 2(1) = 1-2 = -1 $

And $ {\alpha}^{2} \times \beta ^{2} = (\alpha \times \beta )^{2} = 1 $

Equation whose roots are $ {\alpha}^{2} $ and $ \beta ^{2} $ is $ x^{2} -(Sum \ of \ roots)x +  Product \ of \ roots  = 0 $
$ => x^{2} -({\alpha}^{2} + \beta ^{2})x +  {\alpha}^{2} \times \beta ^{2}  = 0 $
$ => x^{2} -(-1)x+ 1  = 0 $
$ => x^{2} +x+ 1  = 0 $

Two students Ragini and Gourav were asked to solve a quadratic equation $\displaystyle ax^{2}+bx+c=0,a\neq 0$ Ragini made some mistake in writing b and found the roots as 3 and $\displaystyle -\frac{1}{2}$ Gourav too made mistake in writing c and found the roots -1 and $\displaystyle -\frac{1}{4}$ The correct roots of the given equation should be

  1. $-2,$ $\displaystyle \frac{3}{4}$

  2. $3, -1$

  3. $\displaystyle -\frac{1}{2}$, -1

  4. $3,$ $\displaystyle -\frac{1}{4}$


Correct Option: A
Explanation:

Given: Ragini found roots as $3, -\dfrac 12$ when copied the wrong coefficient of $x$ and Gourav found roots as $-1, -\dfrac 14$ when copied wrong constant term.

To find the correct roots of the given equation
Sol: Viete's formula for the roots $x _1$ and $x _2$ of equation $ax^2+bx+c=0$:  $x _1+x _2=−\dfrac ba$ and $ x _1\times x _2=\dfrac ca$
According to Ragini, she copied the constant term and the coefficient of $ x^2$ correctly. Hence $3\times -\dfrac 12=-\dfrac 32=\dfrac ca$
And according to Gourav, he copied coefficient of $x$ and $x^2$ correctly. Hence $-1+\left(-\dfrac 14\right)=-\dfrac 54=-\dfrac ba$
Hence the equation becomes,
$x^2+\dfrac 54x-\dfrac 32=0\implies 4x^2+5x-6=0$
$\implies 4x^2+8x-3x-6=0\\implies 4x(x+2)-3(x+2)=0\\implies (4x-3)(x+2)=0\\implies x _1=-2, x _2=\dfrac 34$
are the correct roots of the given equation.

Rohan and Sohan were attempting to solve the quadratic equation  $\displaystyle x^{2}-ax+b=0$. Rohan copied the coefficient of x wrongly and obtained the roots as 4 and 12 . Sohan copied the constant term wrongly and obtained the roots as -19 and 3. Find the correct roots

  1. -8, -10

  2. -8, -6

  3. -4, -12

  4. 4, 12


Correct Option: C
Explanation:

With the roots $ 4, 12 $, the equation was $ (x-4))(x-12) ={x}^{2} -4x  -12x + 48 = {x}^{2} -16x + 48 $

As Rohan made a mistake in noting the coffecient of $ x $ , in the original equation, coefficient of $ {x}^{2} = 1 $ and constant $ = 48 $

Now, with the roots $ -19, 3 $, the equation was $ (x-(-19))(x-3) = (x+19)(x-3) = {x}^{2} + 19x -3x -57 = {x}^{2} + 16x -57 $

As Sohan made a mistake in noting just the constant term in the original  equation, coefficient of $ {x}^{2} = 1 $ and of $ x = 16 $

So, we get the original equation as $ {x}^{2} + 16x + 48 = 0 $
Solving it, we get $ {x}^{2} + 4x +12x + 48 = 0 $
$ => x(x+4) + 12(x+4) = 0 $
$ => (x+4)(x+12) = 0 $
$ => x = -4, -12 $

If the equation formed by decreasing each root of $ax^{2}+bx+c=0$ by $1$ is $2x^{2}+8x+2=0$, then

  1. $\mathrm{a}=-\mathrm{b}$

  2. $\mathrm{b}=-\mathrm{c}$

  3. $\mathrm{c}=-\mathrm{a}$

  4. $\mathrm{b}=\mathrm{a}+\mathrm{c}$


Correct Option: B
Explanation:

Since the equation $2{ x }^{ 2 }+8x+2=0$ has roots which are 1 less than those of the equation $a{ x }^{ 2 }+bx+c=0$ then if we replace $ x $ by $ x+1 $ in latter we'll get the former.
$\Rightarrow a(x+1)^{ 2 }+b(x+1)+c=0$
$\Rightarrow  a{ x }^{ 2 }+(2a+b)x+a+b+c=0$
comparing this equation with that of $2{ x }^{ 2 }+8x+2=0$
we get option (b) as the correct answer

If $\displaystyle \alpha ,\beta $ are the roots of $\displaystyle x^{2}+x+1=0 $ and $\displaystyle \gamma ,\delta  $ are the roots of $\displaystyle x^{2}+3x+1=0 $ then $\displaystyle \left ( \alpha -\gamma  \right )\left ( \beta +\delta  \right )\left ( \alpha +\delta  \right )\left ( \beta -\gamma  \right )$ = 

  1. 2

  2. 4

  3. 6

  4. 8


Correct Option: D
Explanation:
${ x }^{ 2 }+x+1=0$
If $\alpha ,\beta $ are the roots, then $\alpha +\beta =-1\quad ,\quad \alpha \beta =1$
Solving the above equation, we get the $\alpha =\dfrac { -1+i\sqrt { 3 }  }{ 2 } ,\quad \beta =\dfrac { -1-i\sqrt { 3 }  }{ 2 } \\ $

Similarly, ${ x }^{ 2 }+3x+1=0$
If $\gamma ,\delta  $ are the roots, then $\gamma +\delta =-3\quad ,\quad \gamma \delta =1$
Solving the above equation, we get the $\gamma =\dfrac { -3+\sqrt { 5 }  }{ 2 } ,\quad \delta =\dfrac { -3-\sqrt { 5 }  }{ 2 } $

$(\alpha -\gamma )(\beta -\gamma )(\alpha +\delta )(\beta +\delta )$ is..
$(\alpha -\gamma )(\beta -\gamma )$
$=\alpha \beta -\gamma (\alpha +\beta )+{ \gamma  }^{ 2 }\\ =1-(-1)(\dfrac { -3+\sqrt { 5 }  }{ 2 } )+(\dfrac { 14-6\sqrt { 5 }  }{ 4 } )\\ =1+(\dfrac { -3+\sqrt { 5 }  }{ 2 } )+(\dfrac { 14-6\sqrt { 5 }  }{ 4 } )\\ =\dfrac { 12-4\sqrt { 5 }  }{ 4 } \\ =3-\sqrt { 5 } $

$(\alpha +\delta )(\beta +\delta )\\ =\alpha \beta +\delta (\alpha +\beta )+\delta ^{ 2 }\\ =1+(-1)(\dfrac { -3-\sqrt { 5 }  }{ 2 } )+(\dfrac { 14+6\sqrt { 5 }  }{ 4 } )\\ =1+(\dfrac { 3+\sqrt { 5 }  }{ 2 } )+(\dfrac { 14+6\sqrt { 5 }  }{ 4 } )\\ =\dfrac { 24+8\sqrt { 5 }  }{ 4 } \\ =6+2\sqrt { 5 } =\quad 2(3+\sqrt { 5 } )$

Multiplying the above two results, we get
$2(3+\sqrt { 5 } )(3-\sqrt { 5 } )\\ =\quad 2(9\quad -\quad 5)\quad \\ =8$


Umesh and Varun are solving an equation of the form $\displaystyle x^{2}+bx+c=0$. In doing so Umesh commits a mistake in noting down the constant term and finds the roots as $-3$ and $-12$. And Varun commits a mistake in noting down the coefficient of $x$ and find the roots as $-27$ and $-2$. If so find the original equation

  1. $\displaystyle x^{2}-15x+36=0$

  2. $\displaystyle x^{2}+15x+36=0$

  3. $\displaystyle x^{2}-15x+54=0$

  4. $\displaystyle x^{2}+15x+54=0$


Correct Option: D
Explanation:

With the roots $ -3, -12 $, the equation was $ (x-(-3))(x-(-12) = (x+3)(x+6) = {x}^{2} + 3x + 12x + 36 = {x}^{2} + 15x + 36 $

As Umesh made a mistake in noting just the constant term, in the original equation, coefficient of $ {x}^{2} = 1 $ and of $ x = 15 $

Now, with the roots $ -27, -2 $, the equation was $ (x-(-27))(x-(-2)) = (x+27)(x+2) = {x}^{2} + 27x + 2x + 54 = {x}^{2} + 29x + 54 $

As Varun made a mistake in noting the coffecient of $ x $ in the original  equation, coefficient of $ {x}^{2} = 1 $ and constant $ = 54 $

So, we get the original equation as $ {x}^{2} + 15x + 54 = 0 $

- Hide questions