Non-homogeneous linear equations - class-XI
Description: non-homogeneous linear equations | |
Number of Questions: 57 | |
Created by: Saurabh Mittal | |
Tags: business maths maths applications of matrices and determinants matrices |
Which of the given values of $x$ and $y$ make the following pair of matrices equal.
$\displaystyle \begin{bmatrix} 3x+7 & 5 \ y+1 & 2-3x \end{bmatrix}=\begin{bmatrix} 0 & y-2 \ 8 & 4 \end{bmatrix}$
Solve the following system of equations by consistency- in consistency method $x+y+z=6,\ x-y+z=2,\ 2x-y+3z=9$
Number of real values of $'a'$ for which the system of equations $2ax-2y+3z=0, x+ay+2z=0$ and $2x+az=0$ has a non-trivial solution, is equal to
Let $X=\begin{bmatrix} { x } _{ 1 } \ { x } _{ 2 } \ { x } _{ 3 } \end{bmatrix};A=\begin{bmatrix} 1 & -1 & 2 \ 2 & 0 & 1 \ 3 & 2 & 1 \end{bmatrix}$ and $B=\begin{bmatrix} 3 \ 1 \ 4 \end{bmatrix}$. If $AX=B$, then $X$ is equal to
If $-9$ is a root of the equation $\begin{vmatrix} x & 3 & 7 \ 2 & x & 2 \ 7 & 6 & x \end{vmatrix}=0$, then the other two roots are
For what value of $K$, the equation $kx-9y=66$ and $2x-3y=8$ will have no solutions?
If $a,\ b,\ c$ are non zeros, then the system of equations $\left( \alpha +a \right) x+\alpha y+\alpha z=0,\ \alpha x+\left( \alpha +b \right) y+\alpha z=0,\ \alpha x+\alpha y+\left( \alpha +c \right) z=0$ has a non trivial solution if
The system of equation $5x+2y=4$,$7x+3y=5$ are inconsistent.
If $3x-4y+2z=-1$, $2x+3y+5z=7$, $x+z=2$, then $x=?$
The number of values of $k$ for which the system of equations
$(k+1)x+8y = 4 $
$kx+(k+3)y = 3k-1$
has infinitely many solutions is
If $f(x),g(x)$ and $h(x)$ are three polynomials of degree $2$ and $\Delta(x) \left| \begin{matrix} f\left( x \right) \ f'\left( x \right) \ f"\left( x \right) \end{matrix}\begin{matrix} g\left( x \right) \ g'\left( x \right) \ g"\left( x \right) \end{matrix}\begin{matrix} h\left( x \right) \ h'\left( x \right) \ g"\left( x \right) \end{matrix} \right|$ then polynomial of degree (whenever defined)
The system of linear equations$X-Y+Z=1$$X+Y-Z=3$$X-4Y+4Z=\alpha $ has:
Solve the equation for $x$.
$\left|\begin{matrix} a^2 & a & 1 \ \sin(n+1)x & \sin{nx} & \sin(n-1)x \ \cos(n+1)x & \cos{nx} & \cos(n-1)x\end{matrix}\right| = 0$. Given that $ a>0$
If the system of linear equations
$x+ay+z=3$
$x+2y+2z=6$
$x+5y+3z=b$
Has infinitely many solutions, then
If $A,B,C$ are the angles of a triangle, the system of equations, $(\sin A)x+y+z=\cos Ax+(\sin B)y+z=\cos B$
$x+y+(\sin C)z=1-\cos C$ has
The number of solutions of the equation $3x+3y-z=5,\ x+y+z=3,\ 2x+2y-z=3$
If the system of equation $x-ky-z=0,kx-y-z=0,x+y-z$ has a non-zero solution, the possible values of $k$ are
The straight lines
$\left.\begin{matrix}
2kx-2y+3=0\
x+ky+2=0\
2x+k=0
\end{matrix}\right}k\in R$ pass through the same point for
The system of equations
\begin{matrix}kx +y+z=1& & \
x+ky+z=k& & \
x+y+kz=k^{2}& &
\end{matrix}$
have no solution,if k equals ?
Find the real value of $r$ for which the following system of linear equation has a non-trivial solution $2rx-2y+3z=0$$x+ry+2z=0$$2x+rz=0$
The number of solutions of the system of equations $2x+y-z=7 , x-3y-2z=1 , x+4y-3z=5,$ are
The system of equations
$\displaystyle x + y + z = 2$
$\displaystyle 2x - y + 3z = 5$
$\displaystyle x - 2y - z + 1 = 0$
written in matrix form is
If the following system of equations possess a non-trivial solution over the set of rationals
$x + ky + 3z = 0$
$3x + ky - 2z = 0$
$2x + 3y - 4z = 0$,
then x,y,z are in the ratio
If the system of equations $ax+by+c=0$ $bx+cy+a=0$ ,$cx+ay+b=0$ has a solution then the system of equations $(b+c)x+(c+a)y+(a+b)z=0$ ,$(c+a)x+(a+b)y+(b+c)z=0$ , $(a+b)x+(b+c)y+(c+a)z=0$ has
Let $\lambda$ and $\alpha$ be real. Find the set of all values of $\lambda$ for which the system of linear equations
$\lambda x + (sin \alpha) y + (cos \alpha) z = 0$
$x + (cos \alpha) y + (sin \alpha) z = 0$
$ - x + (sin \alpha) y + (cos \alpha) z = 0$
has a non-trivial solution. For $\lambda = 1$, find all values of $\alpha$ which are possible
The number of distinct real roots of $\displaystyle \left | \begin{matrix}\sin x &\cos x &\cos x \\cos x &\sin x &\cos x \\cos x &\cos x &\sin x \end{matrix} \right |= 0$ in the interval $\displaystyle -\frac{\pi }{4}\leq x\le\frac{\pi }{4}$ is
If the system of equations $2x+3y=7,(2a-b)y=21$ has infinitely many solutions, then -
The system of equation $\displaystyle \alpha x+y+z=\alpha-1,:x+\alpha y+z=\alpha-1,:x+y+\alpha z=\alpha-1$ has no solution if $\alpha$ is
The solution set of the equation $\left| \begin{matrix} 2 & 3 & x \ 2 & 1 & { x }^{ 2 } \ 6 & 7 & 3 \end{matrix} \right| =0$ is
If a,b,c$\in $ R. Than the system of the equation is :$\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } -\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1.\ \ \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } +\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1.\ \ \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } -\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1\ \ has\quad $.
Which of the given values of $x$ and $y$ make the following pairs of matrices equal?
$\begin{bmatrix}3x + 7 & 5\ y + 1 & 2 - 3x\end{bmatrix}$ and $\begin{bmatrix} 0&y - 2 \ 8 & 4\end{bmatrix}$
Suppose $a _1, :a _2,: ... $ are real numbers, with $a _1\neq 0$. If $a _1, :a _2,:a _3,:...$ are in A.P. Then,
if $x= -5 $ is a root of $\displaystyle \Delta =\begin{vmatrix}
2x+1 & 4 & 8 \
2 & 2x & 2 \
7 & 6 & 2x
\end{vmatrix}=0$ then the other two roots are
Given the system of equations
$(b+c)(y+z)-ax=b-c$
$(c+a)(z+x)-by=c-a$
$(a+b)(x+y)-cz=a-b$
(where $a+b+c\neq 0$); then $x:y:z$ is given by
Use matrix to solve the following system of equations
$x+ y +z = 3$
$2x+3y +4z= 7$
Investigate for what values of $\lambda, \mu$ the simultaneous equation $x+y+z=6; x+2y+3z=10$ & $x+2y+\lambda z=\mu$ have an infinite number of solutions
The equations $x+4y-2z=3$, $3x+y+5z=7$ and $2x+3y+z=5$ have
Let $a,\ b,\ c$ be any real numbers. Suppose that there are real numbers $x, y, z$ not all zero such that $x=cy+bz,\ y=az+cx$ and $z=bx+ay$. Then $a^{2}+b^{2}+c^{2}+2abc$ is equal to
One of the roots of $\begin{vmatrix} x+a & b & c\ a & x+b & c\ a & b & x+c \end{vmatrix}=0$ is :
For the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8 and 2x + 3y +$\lambda$z $=\mu$.Under what condition does the above system of equations have infinitely many solutions.
The system $2x+3y+z=5, 3x+y+5z=7, x+4y-2z=3$ has:
If AX = B where A is $3 \times 3$ and X and B are $3\times 1$ matrices then which of the following is correct?
The system of equations , $ ax+y+z = a-1 $ , $x+ay+z = a-1 $, $x+y+az = a-1 $has no solution, if a is
The three distinct straight lines $ax+by+c=0$;$bx+cy+a=0$ and $cx+ay+b=0$ are concurrent then
If $\omega$ is a cube root of unity and $x+ y + z = a, x + \omega y + \omega^2 z = b, x + \omega^2 y + \omega z = c$, then $x = $ ............
If $f(x) = ax^2 + bx + c, a, b, c \in R$ and equation $f(x)- x = 0$ has non-real roots $\alpha, \beta$. Let $\gamma, \delta$ be the roots of $f(f(x)) - x = 0$ ($\gamma, \delta$ are not equal to $\alpha, \beta$). Then $\begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ is
If $\displaystyle \omega$ is cube root of unity and $\displaystyle x + y + z = a$, $\displaystyle x + \omega y + \omega^{2} z = b$, $\displaystyle x + \omega^{2} y + \omega z = b$ then which of the following is not correct?
Consider the system of equations $x-2y+3z=-1,
-x+y-2z=k , x-3y+4z=1$
STATEMENT - 2 : The determinant $\begin{vmatrix}
1 & 3 & -1\
-1 & -2& k\
1& 4& 1
\end{vmatrix}$ $\neq 0$ for $k\neq 3$
The values of $\theta $ lying between $\theta =0$ and $\theta =\dfrac {\pi}{2}$ and satisfying the equation
$\begin{vmatrix}
1+\sin ^{2}\theta & \cos ^{2}\theta & 4\sin 6\theta \
\sin ^{2}\theta & 1+\cos ^{2}\theta & 4\sin 6\theta \
\sin ^{2}\theta & \cos ^{2}\theta & 1+4\sin 6\theta
\end{vmatrix}$
are given by
If $ \displaystyle a+b+c=0$ then value of $ \displaystyle (s) $ of $x$ which makes $\displaystyle \begin{vmatrix}
a-x &c &b \
c&b-x &a \
b & a &c-x
\end{vmatrix}$ zero is (are)
Consider the system of equations:
$x+y+z=0$
$\alpha x+\beta y+\gamma z=0$
$\alpha^2 x+\beta^2 y+\gamma^2 z=0$
Then the system of equations has
The following system of equations
$x+y+z=1$
$2x+2y+2z=3$
$3x+3y+3z=4$ has
Let $S$ be the set of all column matrices $\begin{bmatrix}b _{1}\b _{2} \ b _{3}
\end{bmatrix}$ such that $b _{1}, b _{2}, b _{3} \ \epsilon \ \mathbb {R}$ and the system of equation (in real variables)
$-x + 2y + 5z = b _{1}$
$2x - 4y + 3z = b _{2}$
$x - 2y + 2z = b _{3}$
has at least one solution. Then, which of the following system(s) (in real variables) has/have at least one solution of each $\begin{bmatrix}b _{1}\ b _{2}\ b _{3}
\end{bmatrix}\epsilon \ S$?
If $a{ e }^{ x }+b{ e }^{ y }=c;\quad p{ e }^{ x }+q{ e }^{ y }=d$ and $\quad { \Delta } _{ 1 }=\begin{vmatrix} a & b \ p & q \end{vmatrix};{ \Delta } _{ 2 }=\begin{vmatrix} c & b \ d & q \end{vmatrix};{ \Delta } _{ 3 }=\begin{vmatrix} a & c \ p & d \end{vmatrix}$ then the value of $(x,y)$ is:
System of equations
$x + 2y + z = 0, 2x + 3y- z = 0 $ and $(tan\theta) x + y -3z = 0$ has non-trivial solution then number of value(s) of $\theta \epsilon (-\pi,\pi)$ is equal to?
The number of values of $\theta \in (0,\pi )$ for which the system of linear equations
x+3y+7z=0
x+4y+7z=0
$(\sin { 3\theta } )x+(\cos { 2\theta } )y+2z=0$
has a non trivial solution is :