0

Non-homogeneous linear equations - class-XI

Description: non-homogeneous linear equations
Number of Questions: 57
Created by:
Tags: business maths maths applications of matrices and determinants matrices
Attempted 0/56 Correct 0 Score 0

Which of the given values of $x$ and $y$ make the following pair of matrices equal.
$\displaystyle \begin{bmatrix} 3x+7 & 5 \ y+1 & 2-3x \end{bmatrix}=\begin{bmatrix} 0 & y-2 \ 8 & 4 \end{bmatrix}$

  1. $\displaystyle x=\frac { -1 }{ 3 } ,y=7$

  2. Not possible to find

  3. $\displaystyle y=7,x=\frac { -2 }{ 3 } $

  4. $\displaystyle x=\frac { -1 }{ 3 } ,y=\frac { -2 }{ 3 } $


Correct Option: B
Explanation:

$\displaystyle \begin{bmatrix} 3x+7 & 5

\ y+1 & 2-3x \end{bmatrix}=\begin{bmatrix} 0 & y-2 \ 8 & 4

\end{bmatrix}$
Equating the corresponding elements, we get,
$\displaystyle 3x+7=0\Rightarrow x=-\frac { 7 }{ 3 } $
$\displaystyle 5=y-2\Rightarrow y=7$
$\displaystyle y+1=8\Rightarrow y=7$
$\displaystyle 2-3x=4\Rightarrow x=-\frac { 2 }{ 3 } $
We find that on comparing the corresponding elements of the two matrices, we get two different values of $x$, which is not possible.
Hence, it is not possible to find the values of $x$ and $y$ for which the given matrices are equal.

Solve the following system of equations by consistency- in consistency method $x+y+z=6,\ x-y+z=2,\ 2x-y+3z=9$

  1. $1,3,2$

  2. $2,3,4$

  3. $5,2,6$

  4. $2,5,7$


Correct Option: A

Number of real values of $'a'$ for which the system of equations $2ax-2y+3z=0, x+ay+2z=0$ and $2x+az=0$ has a non-trivial solution, is equal to

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A

Let $X=\begin{bmatrix} { x } _{ 1 } \ { x } _{ 2 } \ { x } _{ 3 } \end{bmatrix};A=\begin{bmatrix} 1 & -1 & 2 \ 2 & 0 & 1 \ 3 & 2 & 1 \end{bmatrix}$ and $B=\begin{bmatrix} 3 \ 1 \ 4 \end{bmatrix}$. If $AX=B$, then $X$ is equal to

  1. $\begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}$

  2. $\begin{bmatrix} -1 \ -2 \ -3 \end{bmatrix}$

  3. $\begin{bmatrix} -1 \ 2 \ 3 \end{bmatrix}$

  4. $\begin{bmatrix} 0 \ 2 \ 1 \end{bmatrix}$


Correct Option: D
Explanation:
$AX=B$

$X=A^{-1}B$

$A^{-1}=\dfrac{1}{|A|}adj(A)$

Given,

$X=\begin{bmatrix}x _1\\ x _2\\ x _3\end{bmatrix}$

$A=\begin{bmatrix}1 &-1  &2 \\  2& 0 &1 \\  3& 2 &1 \end{bmatrix}$

$B=\begin{bmatrix}3\\ 1\\ 4\end{bmatrix}$

$|A|=\begin{vmatrix}1 &-1  &2 \\ 2 & 0 &1 \\  3&2  &1 \end{vmatrix}$

$=1(0-2)+1(2-3)+2(4-0)=-2-1+8=5$

$C _A=\begin{bmatrix}-2 &1  &4 \\  5& -5 &-5 \\  -1& 3 &2 \end{bmatrix}$

$adj(A)=C _A^T=\begin{bmatrix}-2 &5  &-1 \\  1& -5 &3 \\  4& -5 &2 \end{bmatrix}$

$A^{-1}=\dfrac{1}{5}\begin{bmatrix}-2 &5  &-1 \\  1& -5 &3 \\  4& -5 &2 \end{bmatrix}$

$X=A^{-1}B$

$=\dfrac{1}{5}\begin{bmatrix}-2 &5  &-1 \\  1& -5 &3 \\  4& -5 &2 \end{bmatrix}\begin{bmatrix}3\\ 1\\ 4\end{bmatrix}$

$=\dfrac{1}{5}\begin{bmatrix}-6+5-4\\ 3-5+12\\ 12-5+8\end{bmatrix}$

$=\dfrac{1}{5}\begin{bmatrix}-5\\ 10\\ 15\end{bmatrix}$

$=\begin{bmatrix} \left(\dfrac{-5}{5}\right)\\ \left(\dfrac{10}{5}\right)\\ \left(\dfrac{15}{5}\right)\end{bmatrix}$

$\begin{bmatrix}x _1\\ x _2\\ x _3\end{bmatrix}=\begin{bmatrix}-1\\ 2\\ 3\end{bmatrix}$

If $-9$ is a root of the equation $\begin{vmatrix} x & 3 & 7 \ 2 & x & 2 \ 7 & 6 & x \end{vmatrix}=0$, then the other two roots are

  1. $2,7$

  2. $-2,7$

  3. $2,-7$

  4. $-2,-7$


Correct Option: A
Explanation:
Given $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}=0$
Simplifying matrix we get,
$x(x^2-12)-3(2x-14)+7(12-7x)=x^3-12x-6x+42+84-49x=x^3-67x+126$
The equation can be simplified by, $x^3-67x+126(x+9)(x^2-9x+14)$
$(x^2-9x+14)=(x^2-7x-2x+14)=(x-2)(x-7),x=2,7$
Hence the roots are $2,7,-9$.

For what value of $K$, the equation $kx-9y=66$ and $2x-3y=8$ will have no solutions?

  1. $-6$

  2. $6$

  3. $\dfrac{33}{4}$

  4. none of these


Correct Option: B
Explanation:

$kx-ay=66-----(1)$

$2x-3y=8-----(2)$
$\begin{bmatrix} k & -9 \ 2 & -3 \end{bmatrix}=0$
$-3k+18=0\Rightarrow 3k=18$
$\ { k=6 } $

If $a,\ b,\ c$ are non zeros, then the system of equations $\left( \alpha +a \right) x+\alpha y+\alpha z=0,\ \alpha x+\left( \alpha +b \right) y+\alpha z=0,\ \alpha x+\alpha y+\left( \alpha +c \right) z=0$ has a non trivial solution if

  1. ${ \alpha }^{ -1 }=-\left( { a }^{ -1 }+{ b }^{ -1 }+{ c }^{ -1 } \right) $

  2. ${ \alpha }^{ -1 }=a+b+c$

  3. $\alpha +a+b+c=1$

  4. $\alpha =a+b+c$


Correct Option: A
Explanation:

Homogeneous steamy has non- trivial solution it's mean determinant is zero

So, $\begin{vmatrix} (\alpha +a) & \alpha  & \alpha  \ \alpha  & (\alpha +b) & \alpha  \ \alpha  & \alpha  & \alpha +c \end{vmatrix}=0$
$\Rightarrow (\alpha+a)[(\alpha +b)(\alpha +c)(\alpha +c)-\alpha ^2]-[\alpha ^2+ \alpha C-\alpha^2]+\alpha [\alpha ^2-\alpha^2-2b]=0$
$\Rightarrow (\alpha +a)[\alpha ^2+\alpha c \alpha b+b^c-\alpha^2]-\alpha^2c-\alpha ^2b=0$
$\Rightarrow \alpha 2/c+\alpha2/b+\alpha ac+\alpha ab+abc-\alpha ^2c-\alpha ^2b=0$
$\Rightarrow \alpha(ab+bc+ac)=-abc $
$\Rightarrow \alpha =\dfrac{-abc}{ab+bc+ac}$
$\Rightarrow \dfrac{1}{\alpha}=-\dfrac{-(ab+bc+ac)}{abc}$
$\Rightarrow \dfrac{1}{\alpha}=-\left(\dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{a}\right)$
$\Rightarrow \boxed{\alpha ^{-1}=-(a^{-1}+b^{-1}+c^{-1})}$

The system of equation $5x+2y=4$,$7x+3y=5$ are inconsistent.

  1. True

  2. False


Correct Option: B
Explanation:
$5x + 2y - 4 = 0$, $7x + 3y - 5 = 0$
$\dfrac{{{a _1}}}{{{a _2}}} = \dfrac{5}{7}$
$\dfrac{{{b _1}}}{{{b _2}}} = \dfrac{2}{3}$
$\dfrac{{{c _1}}}{{{c _2}}} = \dfrac{{ - 4}}{{ - 5}} = \dfrac{4}{5}$
Since $\dfrac{{{a _1}}}{{{a _2}}} \ne \dfrac{{{b _1}}}{{{b _2}}}$
The system of equations has unique solution
Therefore it is consistent
Thus it is false

If $3x-4y+2z=-1$, $2x+3y+5z=7$, $x+z=2$, then $x=?$

  1. $3$

  2. $2$

  3. $1$

  4. $-1$


Correct Option: A

The number of values of $k$ for which the system of equations 
$(k+1)x+8y = 4 $
$kx+(k+3)y = 3k-1$
has infinitely many solutions is

  1. $0$

  2. $1$

  3. $2$

  4. $infinite$


Correct Option: B
Explanation:

For infinitely many solutions,
$\displaystyle \frac { k+1 }{ k } =\frac { 8 }{ k+3 } =\frac { 4 }{ 3k-1 } $

$\Rightarrow k^{2}-4k+3=0 $ and $24k-8=4k+12$
$\Rightarrow k=3,k=1$ and $k=1$

Hence, $k=1$

If $f(x),g(x)$ and $h(x)$ are three polynomials of degree $2$ and $\Delta(x) \left| \begin{matrix} f\left( x \right)  \ f'\left( x \right)  \ f"\left( x \right)  \end{matrix}\begin{matrix} g\left( x \right)  \ g'\left( x \right)  \ g"\left( x \right)  \end{matrix}\begin{matrix} h\left( x \right)  \ h'\left( x \right)  \ g"\left( x \right)  \end{matrix} \right|$ then polynomial of degree (whenever defined)

  1. $2$

  2. $3$

  3. $0$

  4. $1$


Correct Option: C
Explanation:
$\triangle \left( x \right) =\begin{vmatrix} f\left( x \right)  & g\left( x \right)  & h\left( x \right)  \\ f^{ ' }\left( x \right)  & g^{ ' }\left( x \right)  & h^{ ' }\left( x \right)  \\ f^{ '' }\left( x \right)  & g^{ '' }\left( x \right)  & h^{ '' }\left( x \right)  \end{vmatrix}$
$\Rightarrow f\left( x \right) \left[ g^{ ' }\left( x \right) .h^{ '' }\left( x \right) -h^{ ' }\left( x \right) g^{ '' }\left( x \right)  \right] -g\left( x \right) \left[ f^{ ' }\left( x \right) h^{ '' }\left( x \right) -h^{ ' }\left( x \right) f^{ '' }\left( x \right)  \right] +h\left( x \right) \left[ f^{ ' }\left( x \right) g^{ '' }\left( x \right) -g^{ ' }\left( x \right) f^{ '' }\left( x \right)  \right] $
$\because f\left( x \right) ,g\left( x \right) ,h\left( x \right) $ are polynomial of degree $2$
$\therefore f^{ ' }\left( x \right) ,g^{ ' }\left( x \right) ,h^{ ' }\left( x \right) $ are of degree $1$
$\therefore f^{ '' }\left( x \right) ,g^{ '' }\left( x \right) ,h^{ '' }\left( x \right) $ are of degree $0$
$\therefore \triangle \left( x \right) $ is polynomial of degree $3$

The system of linear equations$X-Y+Z=1$$X+Y-Z=3$$X-4Y+4Z=\alpha $ has:

  1. A unique solution when $\alpha =2$

  2. A unique solution when $\alpha \neq 2$

  3. An infinite number of solutions, when $\alpha =2$

  4. An infinite number of solution, when $\alpha =-2$


Correct Option: A

Solve the equation for $x$.
$\left|\begin{matrix} a^2 & a & 1 \ \sin(n+1)x & \sin{nx} & \sin(n-1)x \ \cos(n+1)x & \cos{nx} & \cos(n-1)x\end{matrix}\right| = 0$. Given that $ a>0$

  1. $x = n\pi$

  2. $x = (n-1)\pi$

  3. $x = (n+1)\pi$

  4. None of these


Correct Option: A
Explanation:

$\left|\begin{matrix} a^2 & a & 1 \ \sin(n+1)x & \sin{nx} & \sin(n-1)x \ \cos(n+1)x & \cos{nx} & \cos(n-1)x\end{matrix}\right| = 0$
 
$ \Rightarrow \displaystyle { a }^{ 2 }\left[ \sin { nx } .\cos { \left( n-1 \right) x } -\cos { nx } .\sin { \left( n-1 \right) x }  \right] +a\left[ \sin  (n-1)x.\cos  (n+1)x-\cos  (n-1)x.\sin  (n+1)x \right] \ +1\left[ \sin  (n+1)x.\cos { nx } -\cos  (n+1)x.\sin { nx }  \right] =0$

$ \displaystyle \Rightarrow a^{ 2 }\sin  x-a\sin  2x+\sin  x=0\ \displaystyle \Rightarrow \sin  x\left( { a }^{ 2 }+1-2a\cos { x }  \right) =0\ \displaystyle \Rightarrow \sin  x=0\; { or }\; \cos { x } =\frac { { a }^{ 2 }+1 }{ 2a } \ \displaystyle \Rightarrow \sin  x=0\; { or }\; \cos { x } =1\quad \left( \because { a }^{ 2 }+1\ge 2a,\; a>0\Rightarrow \frac { { a }^{ 2 }+1 }{ 2a } \ge 1 \right) \ \displaystyle \Rightarrow x=n\pi \; or\; x=2n\pi, \; n \in I \ \displaystyle\Rightarrow x=n\pi $

If the system of linear equations 
$x+ay+z=3$
$x+2y+2z=6$
$x+5y+3z=b$
Has infinitely many solutions, then 

  1. $a=1, b\neq 9$

  2. $a \neq-1, b=9$

  3. $a=-1, b=9$

  4. $a=-1, b \neq 9$


Correct Option: A

If $A,B,C$ are the angles of a triangle, the system of equations, $(\sin A)x+y+z=\cos Ax+(\sin B)y+z=\cos B$
$x+y+(\sin C)z=1-\cos C$ has 

  1. No solutions

  2. Unique solution

  3. Infinitely many solutions

  4. Finitely many solutions


Correct Option: A

The number of solutions of the equation $3x+3y-z=5,\ x+y+z=3,\ 2x+2y-z=3$

  1. $1$

  2. $0$

  3. $infinite$

  4. $Two$


Correct Option: B

If the system of equation $x-ky-z=0,kx-y-z=0,x+y-z$ has a non-zero solution, the possible values of $k$ are

  1. $-1,2$

  2. $-1,1$

  3. $1,2$

  4. $0,1$


Correct Option: A

The straight lines
$\left.\begin{matrix}
2kx-2y+3=0\
x+ky+2=0\
2x+k=0
\end{matrix}\right}k\in R$  pass through the same point for

  1. no real value of $k$

  2. exactly one real value of $k$

  3. three real values of $k$

  4. all real values of $k$


Correct Option: B
Explanation:

Given equation of lines passes through same point i.e. lines are concurrent
$kx-2y+3=0\ 
x+ky+2=0\ 
2x+k=0$
$\Rightarrow \left| \begin{matrix} 2k & -2 & 3 \ 1 & k & 2 \ 2 & 0 & k \end{matrix} \right| =0$
$\Rightarrow k^{3}-2k-4=0$
$\Rightarrow (k-2)(k^2+2k+2)=0$
The discriminant of the quadratic expression is negative.
Hence there is only one real value of $k$

The system of equations

$\displaystyle 
\begin{matrix}kx +y+z=1&  & \
 x+ky+z=k&  & \
 x+y+kz=k^{2}&  &
\end{matrix}$
have no solution,if k equals ?

  1. 0

  2. 1

  3. -1

  4. -2


Correct Option: D
Explanation:

$\Delta =\begin{vmatrix} k & 1 & 1 \ 1 & k & 1 \ 1 & 1 & k \end{vmatrix}$

$\Rightarrow \Delta =(k-1)^{2}(k+2)$

Taking $\Delta=0$
$\Rightarrow (k-1)^{2}(k+2)=0$
$\Rightarrow k=1, k=-2$
At these values of k, system can have either no solution or infinitely many solution.

For k=1, equations takes the form $x+y+z=1$
Hence, infinitely many solution for k=1.

For k=-2,
$D _{1}=\begin{vmatrix} 1 & 1 & 1 \ -2 & -2 & 1 \ 4 & 1 & -2 \end{vmatrix}$
$D _{1}=9 \ne 0$

So, $D=0$, at least one $D _{1}\ne 0$
Hence, system has no solution for k=-2

Find the real value of $r$ for which the following system of linear equation has a non-trivial solution $2rx-2y+3z=0$$x+ry+2z=0$$2x+rz=0$

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A

The number of solutions of the system of equations $2x+y-z=7   ,   x-3y-2z=1 ,  x+4y-3z=5,$ are 

  1. 0

  2. 1

  3. 2

  4. infinitely many


Correct Option: A
Explanation:
From given, we have,

$\Delta =\begin{vmatrix} 2 &1  &-1 \\ 1 & 3 &-2 \\  1& 4 &-3 \end{vmatrix}$

$=2(9-8)-1(-3-2)-1(4+3)$

$=0$

$\Delta _1=\begin{vmatrix} 7 &1  &-1 \\ 1 & 3 &-2 \\  5& 4 &-3 \end{vmatrix}$

$=7(9-8)-1(-3-10)-1(4+15)$

$=1\neq 0$

Hence, the given system has no solution.

The system of equations
$\displaystyle x + y + z = 2$
$\displaystyle 2x - y + 3z = 5$
$\displaystyle x - 2y - z + 1 = 0$
written in matrix form is

  1. $\displaystyle \begin{bmatrix}

    x \

    y \

    z

    \end{bmatrix} \begin{bmatrix}

    1 & 1 & 1 \

    2 & -1 & 3 \

    1 & -2 & -1

    \end{bmatrix} = \begin{bmatrix}

    2 \

    5 \

    -1

    \end{bmatrix}$

  2. $\displaystyle \begin{bmatrix}

    1 & 1 & 1 \

    2 & -1 & 3 \

    1 & -2 & -1

    \end{bmatrix} : \begin{bmatrix}

    x \

    y \

    z

    \end{bmatrix} = \begin{bmatrix}

    -2 \

    -5 \

    1

    \end{bmatrix}$

  3. $\displaystyle \begin{bmatrix}

    1 & 1 & 1 \

    2 & -1 & 3 \

    1 & -2 & -1

    \end{bmatrix} : \begin{bmatrix}

    x \

    y \

    z

    \end{bmatrix} = \begin{bmatrix}

    2 \

    5 \

    -1

    \end{bmatrix}$

  4. none of these


Correct Option: C
Explanation:

Given system of equations can be written as
$AX=B$

$\begin{bmatrix} 1 & 1 & 1 \ 2 & -1 & 3 \ 1 & -2 & -1 \end{bmatrix}: \begin{bmatrix} x \ y \ z \end{bmatrix}=\begin{bmatrix} 2 \ 5 \ -1 \end{bmatrix}$

If the following system of equations possess a non-trivial solution over the set of rationals
$x + ky + 3z = 0$
$3x + ky - 2z = 0$
$2x + 3y - 4z = 0$,
then x,y,z are in the ratio 

  1. $ \displaystyle \frac{15}{2} : 1 : 3$

  2. $ \displaystyle \frac{15}{2} : -1 : - 3$

  3. $ \displaystyle \frac{15}{2} : 1 : - 3$

  4. $ \displaystyle -\frac{15}{2} : 1 : - 3$


Correct Option: D
Explanation:

For non trivial solution

$\Delta = 0$

$\therefore \begin{vmatrix}1 & k & 3\ 3 & k & -2\ 2 & 3 & -4\end{vmatrix} = 0$

applying $R _2 \rightarrow R _2 - 3R _1$ and $R _3 \rightarrow R _3 - 2 R _1$

$\therefore \begin{vmatrix}1 & k & 3\ 0 & -2k & -11\ 0 & 3-2k & -10\end{vmatrix} = 0$

$\Rightarrow \begin{vmatrix}-2k & -11 \3-2k  & -10\end{vmatrix} = 0$

$\Rightarrow 20k + 33- 22k = 0$

$\therefore k = \dfrac{33}{2}$

Putting the value of $k$ in the given equations. Then equations become

$\displaystyle x + \dfrac{33}{2} y + 3z = 0$               ...(i)

$\displaystyle 3x + \dfrac{33}{2} y - 2z = 0$              ...(ii)

$2x + 3y - 4z = 0$                           .....(iii)

Multiply (i) by 3 and subtract from (ii) then we get

$-33y - 11z = 0$

or   $z = - 3y$             ...(iv)

again multiply (i) by 2 and subtract from (iii) then we get

$-30y - 10z = 0$

$\therefore z = - 3y$                 ....(v)

Now let $y = \lambda,$

$ \therefore z = - 3 \lambda$

from (iii), $2x + 3 \lambda + 12 \lambda = 0$

$\therefore x = \displaystyle - \frac{15 \lambda}{2}$

$\therefore x : y : z = - \displaystyle \frac{15}{2} : 1 : - 3$

If the system of equations $ax+by+c=0$ $bx+cy+a=0$  ,$cx+ay+b=0$ has a solution then the system of equations $(b+c)x+(c+a)y+(a+b)z=0$   ,$(c+a)x+(a+b)y+(b+c)z=0$  , $(a+b)x+(b+c)y+(c+a)z=0$ has 

  1. only one solution

  2. no solution

  3. infinite number of solutions

  4. none of these


Correct Option: C
Explanation:

$ax+by+c=0,bx+cy+a=0,cx+ay+b=0$
Gives
$\begin{vmatrix} a & b & c \ b & c & a \ c & a & b \end{vmatrix}=0$
Now $(b+c)x+(c+a)y+(a+b)z=0,(c+a)x+(a+b)y+(b+c)z=0,(a+b)x+(b+c)y+(c+a)z=0$
gives
$\begin{vmatrix} b+c & c+a & a+b \ c+a & a+b & b+c \ a+b & b+c & c+a \end{vmatrix}=\begin{vmatrix} b & c & a \ c & a & b \ a & b & c \end{vmatrix}+\begin{vmatrix} c & a & b \ a & b & c \ b & c & a \end{vmatrix}=\begin{vmatrix} a & b & c \ b & c & a \ c & a & b \end{vmatrix}+\begin{vmatrix} a & b & c \ b & c & a \ c & a & b \end{vmatrix}=2\begin{vmatrix} a & b & c \ b & c & a \ c & a & b \end{vmatrix}=0$

Let $\lambda$ and $\alpha$ be real. Find the set of all values of $\lambda$ for which the system of linear equations
                 $\lambda x + (sin  \alpha) y + (cos  \alpha) z = 0$
                  $x + (cos  \alpha) y + (sin  \alpha) z = 0$
                  $ - x + (sin  \alpha) y + (cos  \alpha) z = 0$
has a non-trivial solution. For $\lambda = 1$, find all values of $\alpha$ which are possible

  1. $\pi/8$

  2. $7\pi/8$

  3. $15\pi/8$

  4. $9\pi/8$


Correct Option: A,B,D
Explanation:

To   find  all  values   of    $\alpha$   which   are  possible
For  $\lambda = 1 $
$ \begin{bmatrix}
1  & sin\alpha  & cos\alpha \
 1 & cos\alpha  & sin\alpha  \
 -1& sin\alpha   &  cos\alpha 
\end{bmatrix} = \begin{bmatrix}
0\
0\
0\end{bmatrix}$

On   Solving   this   equation, we   get
$ 2cos2\alpha = 0$
$ cos2\alpha  = 0 $
$ 2\alpha  = \dfrac{\pi }{2} $
 Finally  , we  get

$ \alpha  = \dfrac{\pi }{8}   $ 
 
$ \alpha  = \dfrac{7\pi }{8}   $     and

$ \alpha  = \dfrac{ 9\pi }{8}   $  

The number of distinct real roots of $\displaystyle \left | \begin{matrix}\sin x &\cos x  &\cos x \\cos x  &\sin x  &\cos x \\cos x  &\cos x  &\sin x \end{matrix} \right |= 0$ in the interval $\displaystyle -\frac{\pi }{4}\leq x\le\frac{\pi }{4}$ is

  1. 0

  2. 2

  3. 1

  4. 3


Correct Option: C
Explanation:
$\displaystyle \left | \begin{matrix}\sin x &\cos x  &\cos x \\\cos x  &\sin x  &\cos x \\\cos x  &\cos x  &\sin x \end{matrix} \right |= 0$

Applying ${ C } _{ 1 }\rightarrow { C } _{ 1 }+{ C } _{ 2 }+{ C } _{ 3 }$, we get

$\begin{vmatrix} \sin { x } +2\cos { x }  & \cos { x }  & \cos { x }  \\ \sin { x } +2\cos { x }  & \sin { x }  & \cos { x }  \\ \sin { x } +2\cos { x }  & \cos { x }  & \sin { x }  \end{vmatrix}=0$

Taking $\left( \sin { x } +2\cos { x }  \right) $ common from ${C} _{1}$, we get

$ \Rightarrow \left( \sin { x } +2\cos { x }  \right) \begin{vmatrix} 1 & \cos { x }  & \cos { x }  \\ 1 & \sin { x }  & \cos { x }  \\ 1 & \cos { x }  & \sin { x }  \end{vmatrix}=0$

Applying ${R} _{2}\rightarrow{R} _{2}-{R} _{1};{R} _{3}\rightarrow{R} _{3}-{R} _{1}$

$\Rightarrow \left( \sin { x } +2\cos { x }  \right) \begin{vmatrix} 1 & \cos { x }  & \cos { x }  \\ 0 & \sin { x-\cos { x }  }  & 0 \\ 0 & 0 & \sin { x-\cos { x }  }  \end{vmatrix}=0\\ \Rightarrow \left( \sin { x } +2\cos { x }  \right) { \left( \sin { x } -\cos { x }  \right)  }^{ 2 }=0\\ \Rightarrow \sin { x } +2\cos { x } =0,\quad \sin { x } -\cos { x } =0\\ \Rightarrow \tan { x } =-2,\quad \tan { x } =1$

If the system of equations $2x+3y=7,(2a-b)y=21$ has infinitely many solutions, then -

  1. $a=1,b=5$

  2. $a=5,b=1$

  3. $a=-1,b=5$

  4. $a=5,b=-1$


Correct Option: A

The system of equation $\displaystyle \alpha x+y+z=\alpha-1,:x+\alpha y+z=\alpha-1,:x+y+\alpha z=\alpha-1$ has no solution if $\alpha$ is

  1. either $-2$ or $1$

  2. $-2$

  3. $1$

  4. $2$


Correct Option: B
Explanation:

Here, $D =\begin{vmatrix} \alpha & 1 & 1 \ 1 & \alpha & 1 \ 1 & 1 & \alpha \end{vmatrix}$

$\Rightarrow D =(\alpha-1)^{2}(\alpha+2)$

Taking $D=0$
$\Rightarrow (\alpha-1)^{2}(\alpha+2)=0$
$\Rightarrow \alpha=1, \alpha=-2$
At these values of $\alpha$, system can have either no solution or infinitely many solution.

For $\alpha=1$, equations takes the form $x+y+z=0$
Hence, infinitely many solution for $\alpha=1$.

For $\alpha=-2$,
$D _{1}=\begin{vmatrix} -3 & 1 & 1 \ -3 & -2 & 1 \ -3 & 1 & -2 \end{vmatrix}$
$D _{1}=27 \ne 0$

So, $D=0$, at least one $D _{1}\ne 0$
Hence, system has no solution for $\alpha=-2$

The solution set of the equation $\left| \begin{matrix} 2 & 3 & x \ 2 & 1 & { x }^{ 2 } \ 6 & 7 & 3 \end{matrix} \right| =0$ is 

  1. $\left{ 1,-3 \right} $

  2. $\left{ 1,-1 \right} $

  3. $\left{ 1,3 \right} $

  4. $\theta $


Correct Option: A

If a,b,c$\in $ R. Than the system of the equation is :$\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } -\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1.\ \ \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } +\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1.\ \ \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } -\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1\ \ has\quad $.

  1. No solution

  2. a unique solution

  3. infinirty many solution

  4. finietil many solution


Correct Option: A

Which of the given values of $x$ and $y$ make the following pairs of matrices equal?
$\begin{bmatrix}3x + 7 & 5\ y + 1 & 2 - 3x\end{bmatrix}$ and $\begin{bmatrix} 0&y - 2 \ 8 & 4\end{bmatrix}$

  1. $x = -\dfrac {1}{3}, y = 7$

  2. $y = 7, x = -\dfrac {2}{3}$

  3. $x = -\dfrac {1}{3}, 4 = -\dfrac {2}{5}$

  4. Not possible to find


Correct Option: D
Explanation:

If the given matrices are equal then we have the following equations,

$3x+7=0$
Or, $ x=-\dfrac{7}{3}.$......(1).

And 
$5=y-2$
Or, $ y=7$.......(2)

And
$y+1=8$
Or, $y=7$.......(3)

And
$ 2-3x=4$
Or, $x=-\dfrac{2}{3}.$....(4)

From (1) and (4) we get contradicting result i.e. why $x$ and $y$ can't be found simultaneously.
So not possible to find $x$ and $y$.

Suppose $a _1, :a _2,: ... $ are real numbers, with $a _1\neq 0$. If $a _1, :a _2,:a _3,:...$ are in A.P.  Then,

  1. $A=\begin{bmatrix}a _1&a _2 &a _3 \a _4 &a _5 &a _6 \a _5 &a _6 &a _7 \end{bmatrix}$ is singular

  2. the system of equations $a _1x+a _2y+a _3z=0, : a _4x+a _5y+a _6z=0,:a _7x+a _8y+a _9z=0$ has infinite number of solutions

  3. $B=\begin{bmatrix}a _1&ia _2 \ ia _2 & a _1\end{bmatrix}$ is non singular

  4. none of these


Correct Option: A,B,C
Explanation:
Given ${ a } _{ 1 },{ a } _{ 2 }...$are in AP
${ a } _{ 1 }\neq 0$
Option A$=\begin{bmatrix} { a } _{ 1 } & { a } _{ 2 } & { a } _{ 3 } \\ { a } _{ 4 } & { a } _{ 5 } & { a } _{ 6 } \\ { a } _{ 7 } & { a } _{ 8 } & { a } _{ 9 } \end{bmatrix}$
$=\begin{bmatrix} { a } _{ 1 } & { a } _{ 1 }+d & { a } _{ 1 }+2d \\ { a } _{ 1 }+3d & { a } _{ 1 }+4d & { a } _{ 1 }+5d \\ { a } _{ 1 }+4d & { a } _{ 1 }+5d & { a } _{ 1 }+6d \end{bmatrix}\quad { C } _{ 1 }\rightarrow { C } _{ 2 }-{ C } _{ 2 }$
$=\begin{bmatrix} d & { a } _{ 1 }+d & { a } _{ 1 }+2d \\ d & { a } _{ 1 }+4d & { a } _{ 1 }+5d \\ d & { a } _{ 1 }+5d & { a } _{ 1 }+6d \end{bmatrix}{ C } _{ 2 }\rightarrow { C } _{ 3 }-{ C } _{ 2 }$
$=\begin{bmatrix} d & d & { a } _{ 1 }+2d \\ d & d & { a } _{ 1 }+5d \\ d & d & { a } _{ 1 }+6d \end{bmatrix}$
${ C } _{ 1 }\& { C } _{ 2 }$ are same $\Rightarrow \triangle =0$
The matrix is singular-correct
Option B - co efficients matrix$=\begin{bmatrix} { a } _{ 1 } & { a } _{ 2 } & { a } _{ 3 } \\ { a } _{ 4 } & { a } _{ 5 } & { a } _{ 6 } \\ { a } _{ 7 } & { a } _{ 8 } & { a } _{ 9 } \end{bmatrix}$
They are in AP
$\Rightarrow \triangle =0$
$\therefore $They have infinite solutions
Option B is also correct
Option C $B=\begin{bmatrix} { a } _{ 1 } & i{ a } _{ 2 } \\ i{ a } _{ 2 } & { a } _{ 1 } \end{bmatrix}$
$\Rightarrow \triangle ={ a } _{ 1 }^{ 2 }-\left( { i }^{ 2 }{ a } _{ 2 }^{ 2 } \right) $
$={ a } _{ 1 }^{ 2 }+{ a } _{ 2 }^{ 2 }$
$={ a } _{ 1 }^{ 2 }+{ \left( { a } _{ 1 }+d \right)  }^{ 2 }$
$=2{ a } _{ 1 }^{ 2 }+{ d }^{ 2 }+2{ a } _{ 2 }d>0$
Non singular
Option A,B, C are true

if $x= -5 $ is a root of $\displaystyle \Delta =\begin{vmatrix}
2x+1 & 4  & 8 \
2 & 2x  & 2 \
7 & 6  & 2x
\end{vmatrix}=0$ then the other two roots are

  1. $3 , 3.5$

  2. $1 , 3.5$

  3. $3 , 6$

  4. $2 , 6$


Correct Option: B
Explanation:

Applying $\displaystyle R _{1}\rightarrow R _{1}+R _{2}+R _{3}$ we get 

$\displaystyle \Delta =\begin{vmatrix}
2x+10 &2x+10  &2x+10 \ 
 2 & 2x  & 2 \ 
 7&6  & 2x
\end{vmatrix}$

Taking $2x+10$ common from $\displaystyle R _{1}$ and applying 

$\displaystyle C _{2}\rightarrow C _{2}-C _{1},C _{3}\rightarrow C _{3}-C _{1}$ we get

$\displaystyle \Delta =2\left ( x+5 \right )\begin{vmatrix}
1 &0  &0 \ 
 2 & 2x-2  & 0 \ 
 7&-1  & 2x-7
\end{vmatrix}$

$\displaystyle =2\left ( x+5 \right )\left ( 2x-2 \right )\left ( 2x-7 \right )$

Thus $\displaystyle \Delta =0 \ \Rightarrow x=-5,1,3.5$

$\displaystyle \therefore $ the other two roots are $1$ and $3.5$

Given the system of equations
$(b+c)(y+z)-ax=b-c$
$(c+a)(z+x)-by=c-a$
$(a+b)(x+y)-cz=a-b$
(where $a+b+c\neq 0$); then $x:y:z$ is given by

  1. $c-b:a-c:b-a$

  2. $b+c:c+a:a+b$

  3. $a:b:c$

  4. $\displaystyle \frac{a}{b}:\frac{b}{c}:\frac{c}{a}$


Correct Option: A
Explanation:

$(b+c)(y+z)-ax=b-c\$       ..............(1)


$ (c+a)(z+x)-by=c-a\$       ..............(2)

$ (a+b)(x+y)-cz=a-b$             .............(3)

Adding all three equation

$\left( x+y+z \right) \left( a+b+c \right) =0\\$

$ \Rightarrow x+y+z=0\\$

$ \Rightarrow y+z=-x$

Substituting this in the first (1) equation

$(b+c)(-x)-ax=b-c$

$x=\cfrac { c-b }{ a+b+c } $

Similarly, we get

$y=\cfrac {a-c }{ a+b+c } ,z=\cfrac { b-a }{ a+b+c } $

Hence $x:y:z=(c-b):(a-c):(b-a)$

Use matrix to solve the following system of equations
$x+ y +z = 3$

$x +2y+ 3z= 4$
$2x+3y +4z= 7$

  1. $x = 2 + k, :y = -1 - 2k, :z = -k $ where $k \in R$

  2. $x = 2 + k, :y = 1 - 2k, :z = k $ where $k \in R$

  3. $x = -2 - k, :y = 1 - 2k, :z = -k $ where $k \in R$

  4. $x = -2 + k, :y = -1 + 2k, :z = -k $ where $k \in R$


Correct Option: B
Explanation:

Given system of equations can be written as
$AX=B$
where $A=\begin{bmatrix} { 1 } & { 1 } & { 1 } \ { 1 } & { 2 } & 3\ { 2 } & 3 & 4 \end{bmatrix}$ 
$X=\begin{bmatrix} x \ y \ z \end{bmatrix}$ ;$B=\begin{bmatrix} 3 \ 4 \ 7 \end{bmatrix}$

Here, $|A|=0$
Now, we will find $(adj A)B$

$adj A=C^{T}={\begin{bmatrix} { -1 } & { 2 } & { -1 } \ { -1 } & { 2 } & -1 \ { 1 } & -2 & 1 \end{bmatrix}}^T$

$\Rightarrow adj A=\begin{bmatrix} { -1 } & { -1 } & { 1 } \ { 2 } & { 2 } & -2 \ { -1 } & -1 & 1 \end{bmatrix}$

Now, $(adj A)B=\begin{bmatrix} { -1 } & { -1 } & { 1 } \ { 2 } & { 2 } & -2 \ { -1 } & -1 & 1 \end{bmatrix}\begin{bmatrix} 3 \ 4 \ 7 \end{bmatrix}$

$\Rightarrow (adj A)B=\begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$
$\Rightarrow (adj A)B=O$

Hence,the system of equations has infinitely many solutions.
Let $z=k$ where $k\in R$
Then 
$x+y=3-k$
$x+2y=4-3k$
Solving these eqns, we get 
$y=1-2k ; x=2+k$

Investigate for what values of $\lambda, \mu$ the simultaneous equation $x+y+z=6; x+2y+3z=10$ & $x+2y+\lambda z=\mu$ have an infinite number of solutions

  1. $\lambda=4, \mu=11$

  2. $\lambda=3, \mu=10$

  3. $\lambda=2, \mu=8$

  4. $\lambda=1, \mu=11$


Correct Option: B
Explanation:

$\Delta =\begin{vmatrix} 1 & 1 & 1 \ 1 & 2 & 3 \ 1 & 2 & \lambda  \end{vmatrix}=1\left( 2\lambda -6 \right) -1\left( \lambda -3 \right) +1\left( 2-2 \right) =2\lambda -6-\lambda +3+0=\lambda -3\ \Delta _{ 1 }=\begin{vmatrix} 6 & 1 & 1 \ 10 & 2 & 3 \ \mu  & 2 & \lambda  \end{vmatrix}=6\left( 2\lambda -6 \right) -1\left( 10\lambda -3\mu  \right) +1\left( 20-2\mu  \right) \ =12\lambda -36-10\lambda +3\mu +20-2\mu =2\lambda +\mu -16$

For infinite solution $\Delta =0,{ \Delta  } _{ 1 }\Rightarrow \lambda =3\Rightarrow \mu =10$

The equations $x+4y-2z=3$, $3x+y+5z=7$ and $2x+3y+z=5$ have

  1. a unique solution

  2. no solution

  3. two solutions

  4. infinite solutions


Correct Option: B
Explanation:

$\Delta=\begin{vmatrix} 1 &4  &-2  \3  &1  &5  \  2&3  &1  \end{vmatrix}=1(1-15)-4(3-10)-2(9-2)=0$
and $\Delta _1$ is not zero
Therefore, it has no solution

Let $a,\ b,\ c$ be any real numbers. Suppose that there are real numbers $x, y, z$ not all zero such that $x=cy+bz,\ y=az+cx$ and $z=bx+ay$. Then $a^{2}+b^{2}+c^{2}+2abc$ is equal to 

  1. 0

  2. 1

  3. 2

  4. $-1$


Correct Option: B
Explanation:

For $x,y,z$ not to be simultaneously zero

determinant of the coefficients should be zero.
$\left| \begin{matrix}-1 & c & b\ c& -1 & a \ b & a & -1 \end{matrix}\right|=0$
$\Rightarrow a^2+b^2+c^2+2abc = 1$

One of the roots of $\begin{vmatrix} x+a & b & c\  a & x+b & c\  a & b & x+c \end{vmatrix}=0$ is :

  1. $abc$

  2. $a+b+c$

  3. $-(a+b+c)$

  4. $-abc$


Correct Option: C
Explanation:
For the determinant
$ column\ 1=column\ 1+column\ 2+column \ 3\\ \left| \begin{matrix} x+a+b+c & b & c \\ x+a+b+c & \quad x+b & c \\ x+a+b+c & b & x+c \end{matrix} \right| =0\\ \\ row2=row2-row1\\ row3=row3-row1\\ \begin{vmatrix} x+a+b+c & \quad b & \quad c \\ 0 & \quad x & \quad 0 \\ 0 & \quad 0 & \quad x \end{vmatrix}=0$
Expanding the determinant 
$\Rightarrow  (x+a+b+c)(x.x)-b.0+c.0=0$ 
$\Rightarrow { x }^{ 2 }(x+a+b+c)=0$ 
Then, the roots are $x=0$ or $x=-(a+b+c)$

For the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8 and 2x + 3y +$\lambda$z $=\mu$.Under what condition does the above system of equations have infinitely many solutions.

  1. $\lambda = 5$ and $\mu \neq 9$

  2. $\lambda = 5$ and $\mu = 9$

  3. $\lambda = 9$ and $\mu \neq 5$

  4. $\lambda = 9$ and $ \mu = 5$


Correct Option: B
Explanation:

$2x+3y+5z=9$,

$ 7x+3y-2z=8$,
$ 2x+3y+λz=μ$ 
Now, for infinitely many solutions. If $2$ equations out of $3$ are same then we are left with only $2$ equations with $3$ variables, this will give infinite solutions. Now if $\lambda =5$, $\mu =9$, then equation (i) and (iii) will be same and the system will have infinite solutions. 
Hence, B is correct.

The system $2x+3y+z=5, 3x+y+5z=7, x+4y-2z=3$ has:

  1. Unique Solution

  2. Finite number of solutions

  3. Infinite Solutions

  4. No solution


Correct Option: D
Explanation:

${2}x+{3}y+z={5}$

${3}x+y+{5}z={7}$
$x+{4}y-{2}z={3}$
$A=\left[ \begin{matrix} 2 & 3 & 1 \ 3 & 1 & 5 \ 1 & 4 & -2 \end{matrix} \right] \quad \quad D=\left[ \begin{matrix} 5 \ 7 \ 3 \end{matrix} \right] \quad \quad AD=\left[ \begin{matrix}2&3&1&5\3&1&5&7\1&4&-2&3\end{matrix} \right] $

Rank of  $AD=\left[ \begin{matrix}2&3&1&5\3&1&5&7\1&4&-2&3\end{matrix} \right] $

$R _{2}\rightarrow{3}R _{1}-{2}R _{2}$
$R _{3}\rightarrow{2}R _{3}-R _{1}$

$\left[ \begin{matrix} 2 & 3 & 1 & 5 \ 0 & 7 & -7 & 1 \ 0 & 5 & -5 & 1 \end{matrix} \right] $

$R _{3}\rightarrow{7}R _{3}-{5}R _{2}$

$\left[ \begin{matrix} 2 & 3 & 1 & 5 \ 0 & 7 & -7 & 1 \ 0 & 0 & 0 & 2 \end{matrix} \right] $

Rank of $A=\left[ \begin{matrix} 2 & 3 & 1 \ 3 & 1 & 5 \ 1 & 4 & -2 \end{matrix} \right] $

$R _{2}\rightarrow{3}R _{1}-{2}R _{2}$
$R _{3}\rightarrow{2}R _{3}-R _{1}$


$A=\left[ \begin{matrix} 2 & 3 & 1 \ 0 & 7 & -7 \ 0 & 5 & -5 \end{matrix} \right] $

Clearly Rank of A $\neq$ Rank of AD.
Hence, no solution.


If AX = B where A is $3 \times 3$ and X and B are $3\times 1$ matrices then which of the following is correct?

  1. If | A | = 0 then AX = B has infinite solutions

  2. If AX = B has infinite solutions then | A | = 0

  3. If (adj (A)) B = 0 and | A | $\neq$ 0 then AX = B has unique solution

  4. If (adj (A)) B $\neq$ 0 & |A| = 0 then AX = B has no solution


Correct Option: A

The system of equations , $ ax+y+z = a-1 $ , $x+ay+z = a-1 $, $x+y+az = a-1 $has no solution, if a is 

  1. either $-2\ or\ 1$

  2. $-2$

  3. $1$

  4. $not\ -2$


Correct Option: A
Explanation:
Determinant of Coefficient Matrix , $\begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix}=0$
$a(a^2-1)-1(a-1)+1(1-a)=0$
$a^3-a-a+1+1-a=0$
$a^3-3a+2=0\Rightarrow $ If $a=1$
$a=1|\begin{matrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 1 & -2 \end{matrix}$
           |$\ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ $
            $\begin{matrix} 1 & 1 & -2 & 0 \end{matrix}$
$a^2+a-2=0\Rightarrow a^2+2a-a-2=0$
$a(a+2)-1(a+2)=0$
$a=-2,1$
$a$ is either $-2$ (or) $1$ 

The three distinct straight lines $ax+by+c=0$;$bx+cy+a=0$ and $cx+ay+b=0$ are concurrent then

  1. $a+b+c=0$

  2. $a^{3}+b^{3}+c^{3}=3 abc$

  3. $a=b=c$

  4. $a^{2}+b^{2}+c^{2}=ab+bc+ca$


Correct Option: A,B
Explanation:

The lines are concurrent,
$=>\begin{bmatrix}a&b& c\ b &c &a\ c & a& b\end{bmatrix}=0$
Applying,$ C _{1}=C _{1}+C _{2}+C _{3}$,
$=\begin{bmatrix}a+b+c&b& c\ a+b+c &c &a\ a+b+c & a& b\end{bmatrix}$
Applying, $R _{1}=R _{1}-R _{2}$ and $R _{2}=R _{2}-R _{3}$,
$=(a+b+c)\begin{bmatrix}0&b-c& c-a\ 0 &c-a &a-b\ 1 & a& b\end{bmatrix}$
Expanding by $C _{1}$,
$=(a+b+c)(-a^{2}-b^{2}-c^{2}+ab+bc+ac)=0$
$=> (a+b+c)=0$
or,
$(a+b+c)(-a^{2}-b^{2}-c^{2}+ab+bc+ac)=0$
$abc-a^{3}-b^{3}+abc+abc-c^{3}=0$
$a^{3}+b^{3}+c^{3}=3abc$
So options are A and B.

If $\omega$ is a cube root of unity and $x+ y + z = a, x + \omega y + \omega^2 z = b, x + \omega^2 y + \omega z = c$, then $x = $ ............ 

  1. $ \dfrac{a+b+ c}{3}$

  2. $ \dfrac{a + \omega^2 b + \omega c}{3}$

  3. $\dfrac{a + \omega b + \omega^2 c}{3}$

  4. $\dfrac{a+b+ c \omega}{3}$


Correct Option: A
Explanation:

Given $\omega$ is a cube root of unity and $x+ y + z = a, x + \omega y + \omega^2 z = b, x + \omega^2 y + \omega z = c$.

Adding all the given equations gives

$3x+y(1+\omega+\omega^2)+z(1+\omega+\omega^2)=a+b+c$

$\Rightarrow 3x=a+b+c$     $\because 1+\omega+\omega^2=0$

$\therefore x=\displaystyle\frac{a+b+c}{3}$

Hence, option A.

If $f(x) = ax^2 + bx + c, a, b, c \in  R$ and equation $f(x)- x = 0$ has non-real roots $\alpha, \beta$.  Let $\gamma, \delta$ be the roots of $f(f(x)) - x = 0$ ($\gamma, \delta$ are not equal to $\alpha, \beta$). Then $\begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ is

  1. 0

  2. purely real

  3. purely imaginary

  4. none of these


Correct Option: B
Explanation:

$f(x) = ax^2 + bx + c; a, b, c \in  R$ and equation $f(x)- x = 0$ has imaginary roots $\alpha, \beta$ and $\gamma, \delta$ be the roots of $f(f(x)) - x = 0$
since $\alpha,\beta$ are roots of $f(x)- x = 0$
$f(\alpha)-\alpha =0$ $\Rightarrow f(\alpha)=\alpha$
$f(\beta)-\beta=0$ $\Rightarrow f(\beta)=\beta$
$f(f(\alpha))-\alpha = f(\alpha)-\alpha =0$
$f(f(\beta))-\beta = f(\beta)-\beta =0$
$\therefore  \alpha,\beta$ are also roots of $f(f(x)) - x = 0$ ------(*)
$f(x)- x= ax^2+(b-1)x+c=0$
roots are imaginary.
i.e $\alpha,\beta$ are conjugate to each other and $D<0$
$\Rightarrow (b-1)^2-4ac<0$ -------(1)
$f(f(x)) - x = a(ax^2+bx+c)^2+b(ax^2+bx+c)+c-x=0$
$\Rightarrow \left(ax^2+(b-1)x+c\right)\left(a^2x^2+(ab+a)x+ac+b+1\right)=0$
$D=(ab+a)^2-4a^2(ac+b+1) = a^2\left((b-1)^2-4ac\right)-4a^2<0$    ($\because$ from (1))
$\therefore \gamma,\delta$ are also imaginary roots and conjugate to each other.
$\begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ $= -3\alpha\beta+\alpha^2\gamma+\beta^2\delta$ ------ (2)
$\alpha\beta$ is real
$\alpha^2\gamma$ is conjugate to $\beta^2\delta$
$\Rightarrow \alpha^2\gamma+\beta^2\delta$ is real
from (2)
$\therefore \begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ is purely real.
Hence, option B.


If $\displaystyle \omega$ is cube root of unity and $\displaystyle x + y + z = a$, $\displaystyle x + \omega y + \omega^{2} z = b$, $\displaystyle x + \omega^{2} y + \omega z = b$ then which of the following is not correct?

  1. $\displaystyle x = \frac{a + b + c}{3}$

  2. $\displaystyle y = \frac{a + b \omega^{2} + \omega c}{3}$

  3. $\displaystyle x = \frac{a + b \omega + \omega^{2} c}{3}$

  4. None of these


Correct Option: D
Explanation:

Given $x+y+z=a $...(i)

$\displaystyle x+\omega y+\omega ^{2}z= b$ ...(ii)

$\displaystyle x+\omega ^{2}y+\omega z= c$ ...(iii)

By adding (i), (ii) and (iii), we get

$\displaystyle x= \frac{a+b+c}{3}$

Hence option A is correct.

Again $\displaystyle \left ( i \right )+\left ( ii \right )\times \omega ^{2}+\left ( iii \right )\times \omega $, we get

$\displaystyle 3y= a\omega ^{3}+b\omega ^{2}+c\omega$

$\displaystyle y= \frac{a+b\omega ^{2}+c\omega }{3}$

Hence, option B is correct.

Similarly, $\displaystyle \left ( i \right )+\left ( ii \right )\times \omega +\left ( iii \right )\times \omega ^{2}$ we get

$\displaystyle z= \frac{a+b\omega +c\omega ^{2}}{3}$

Hence, option C is correct

Consider the system of equations $x-2y+3z=-1,
-x+y-2z=k , x-3y+4z=1$ 

STATEMENT - 1 : The system of equations has no solutions for $k\neq 3$ and 
STATEMENT - 2 : The determinant $\begin{vmatrix}
1 & 3 & -1\
-1 & -2& k\
1& 4& 1
\end{vmatrix}$ $\neq 0$ for $k\neq 3$ 

  1. Statement-1 is true, statement - 2 is true,

    statement - 2 is a correct explanation for

    statement -

  2. Statement -1 is true, statement - 2 is true,

    statement -2 is a not a correct explanation for

    statement - 1

  3. Statement -1 is true, statement -2 is false

  4. Statement -1 is false, statement - 2 is true


Correct Option: A
Explanation:

For the solution of the system of equations
$x - 2y + 3z = -1$
$-x + y - 2z = 2$
$kx - 3y + 4z = 1$, 
$\begin{bmatrix}
1 &-2  &3 \ 
-1 &1  &-2 \ 
k &-3  &4 
\end{bmatrix} 
$
If determinant of the matrix is zero than the given lines are coplanar and if the determinant is non zero the they are non co-planar.
The solution for the system of equations exist when the lines are coplanar.
Hence, $1(-2 - 4k) - 3(-1 - k) -1(-4 + 2) \neq 0$
$\Rightarrow -2 - 4k + 3 + 3k + 2 \neq 0$
i.e. $k \neq 3$

The values of $\theta $ lying between $\theta =0$ and $\theta =\dfrac {\pi}{2}$ and satisfying the equation
$\begin{vmatrix}
1+\sin ^{2}\theta  & \cos ^{2}\theta  & 4\sin 6\theta \
\sin ^{2}\theta  & 1+\cos ^{2}\theta  & 4\sin 6\theta \
\sin ^{2}\theta  & \cos ^{2}\theta  & 1+4\sin 6\theta
\end{vmatrix}$
are given by

  1. $\dfrac {\pi }{36}, \dfrac{5\pi}{ 36}$

  2. $\dfrac{7\pi}{36}, \dfrac{11\pi}{3}$

  3. $\dfrac{5\pi }{36}, \dfrac{7\pi }{36}$

  4. $\dfrac{11\pi}{36}, \dfrac{\pi }{36}$


Correct Option: B
Explanation:

$\begin{vmatrix} 1+\sin ^{ 2 } \theta  & \cos ^{ 2 } \theta  & 4\sin  6\theta  \ \sin ^{ 2 } \theta  & 1+\cos ^{ 2 } \theta  & 4\sin  6\theta  \ \sin ^{ 2 } \theta  & \cos ^{ 2 } \theta  & 1+4\sin  6\theta  \end{vmatrix}=0$

Applying ${ R } _{ 3 }\rightarrow { R } _{ 3 }-{ R } _{ 1 },{ R } _{ 2 }\rightarrow { R } _{ 2 }-{ R } _{ 1 }$

$\Rightarrow \begin{vmatrix} 1+\sin ^{ 2 } \theta  & \cos ^{ 2 } \theta  & 4\sin  6\theta  \ -1 & 1 & 0 \ -1 & 0 & 1 \end{vmatrix}=0$

Applying ${ C } _{ 1 }\rightarrow { C } _{ 1 }+{ C } _{ 2 }$

$\Rightarrow \begin{vmatrix} 2 & \cos ^{ 2 } \theta  & 4\sin  6\theta  \ 0 & 1 & 0 \ -1 & 0 & 1 \end{vmatrix}=0\ \Rightarrow 2+4\sin  6\theta =0\Rightarrow \sin  6\theta =-\cfrac { 1 }{ 2 } \ \Rightarrow 6\theta =n\pi +{ \left( -1 \right)  }^{ n }\left( -\cfrac { \pi  }{ 6 }  \right) \ \Rightarrow \theta =\cfrac { n\pi  }{ 6 } +{ \left( -1 \right)  }^{ n+1 }\left( \cfrac { \pi  }{ 36 }  \right) \ \Rightarrow \theta =\cfrac { 7\pi  }{ 36 } ,\cfrac { 11\pi  }{ 36 } $

If $ \displaystyle a+b+c=0$ then value of $ \displaystyle (s) $ of $x$ which makes $\displaystyle \begin{vmatrix}
a-x &c  &b \
 c&b-x  &a \
b & a &c-x
\end{vmatrix}$ zero is (are)

  1. $\displaystyle x=0 $

  2. $\displaystyle x=\sqrt{\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )}$

  3. $\displaystyle x=- \sqrt{\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )}$

  4. None of these


Correct Option: A,B,C
Explanation:

Applying $\displaystyle R _{1}\rightarrow R _{1}+R _{2}+R _{3}$ and taking $\displaystyle a+b+c-x $ common from the first row, we obtain
$\displaystyle \Delta =\left ( a+b+c-x \right )\begin{vmatrix}
1 &1  &1 \ 
c &b-x  &a \ 
b &a  &c-x 
\end{vmatrix}$
Applying  $\displaystyle C _{2}\rightarrow C _{2}-C _{1}$ and $\displaystyle C _{3}\rightarrow C _{3}-C _{1}$ we obtain
$\displaystyle \Delta =\begin{vmatrix}
1 &0  &0 \ 
c &b-c-x  &a-c \ 
b &a-b  &c-b-x 
\end{vmatrix}\left [ \because a+b+c=0 \right ]$
Expanding along $\displaystyle R _{1}$ we get
$\displaystyle \Delta =x\left [ \left ( b-c-x \right )\left (c-b-x  \right )-\left ( a-b \right )\left ( a-c \right ) \right ] $
$\displaystyle \Delta =x\left [ \left ( a-b \right )\left (a-c  \right )-\left ( x+b-c\right )\left ( x-b+c \right ) \right ] $
$\displaystyle  =x\left [ a^{2}-ab-ac+bc-x^{2}+b^{2}+c^{2}-2bc \right ]$
$\displaystyle \Delta =x\left [ a^{2}+b^{2}+c^{2}-bc-ab-ac-x^{2} \right ]$
$\displaystyle \Delta =0$ implies $\displaystyle x =0$ or $\displaystyle x^{2}=a^{2}+b^{2}+c^{2}-bc-ab-ac$
Now $\displaystyle x^{2}=a^{2}+b^{2}+c^{2}-bc-ab-ac$
$\displaystyle =a^{2}+b^{2}+c^{2}-\frac{1}{2}\left [ \left ( a+b+c \right )^{2}- a^{2}-b^{2}-c^{2} \right ]$
$\displaystyle =\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )\left [ \because a+b+c=0 \right ]$
$\displaystyle \Rightarrow x= \pm \sqrt{\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )}$

Consider the system of equations:
$x+y+z=0$
$\alpha x+\beta y+\gamma z=0$
$\alpha^2 x+\beta^2 y+\gamma^2 z=0$
Then the system of equations has

  1. A unique solution for all values $\alpha, \beta, \gamma$

  2. Infinite number of solutions if any two of $\alpha,\beta, \gamma$ are equal

  3. A unique solution if $\alpha, \beta, \gamma$ are distinct

  4. More than one, but finite number of solutions depending on values of $\alpha, \beta, \gamma$


Correct Option: B,C
Explanation:
$x+y+z=0$
$\alpha x+\beta y+\gamma z=0$
${ \alpha  }^{ 2 }x+{ \beta  }^{ 2 }y+{ \gamma  }^{ 2 }z=0$
$\triangle =\begin{vmatrix} 1 & 1 & 1 \\ \alpha  & \beta  & \gamma  \\ { \alpha  }^{ 2 } & { \beta  }^{ 2 } & { \gamma  }^{ 2 } \end{vmatrix}$
If any of the two values $\left( \alpha ,\beta  \right) $ or $\left( \alpha ,\gamma  \right) $ or $\left( \beta ,\gamma  \right) $ are equal then $\triangle =0$
Infinite solution
Option B
For all different values of $\alpha ,\beta ,\gamma $
$\triangle \neq 0$
Unique solution
Option C

The following system of equations
$x+y+z=1$
$2x+2y+2z=3$
$3x+3y+3z=4$ has

  1. infinite number of solutions

  2. no solution

  3. unique solution

  4. finitely many solutions

  5. none of these


Correct Option: B
Explanation:

$D=\begin{vmatrix}1 &1  &1 \ 2 & 2 & 2\ 3 & 3 & 3\end{vmatrix}=0$
$D _1=0,$     $D _2=0$,      $D _3=0$
Let $z=t$
$x+y=1-t$
$2x+2y=3-2t$
Since both the lines are parallel hence no value of x and y
Hence there is no solution of the given equations.

Let $S$ be the set of all column matrices $\begin{bmatrix}b _{1}\b _{2} \ b _{3}
\end{bmatrix}$ such that $b _{1}, b _{2}, b _{3} \  \epsilon \  \mathbb {R}$ and the system of equation (in real variables) 
$-x + 2y + 5z = b _{1}$
$2x - 4y + 3z = b _{2}$
$x - 2y + 2z = b _{3}$
has at least one solution. Then, which of the following system(s) (in real variables) has/have at least one solution of each $\begin{bmatrix}b _{1}\ b _{2}\ b _{3}
\end{bmatrix}\epsilon \  S$?

  1. $x + 2y + 3z = b _{1}, 4y + 5z = b _{2}$ and $x + 2y + 6z = b _{3}$

  2. $x + y + 3z = b _{1}, 5x + 2y + 6z = b _{2}$ and $-2x - y - 3z = b _{3}$

  3. $-x + 2y - 5z = b _{1}, 2x - 4y + 10z = b _{2}$ and $x - 2y + 5z = b _{3}$

  4. $x + 2y + 5z = b _{1}, 2x + 3z = b _{2}$ and $x + 4y - 5z = b _{3}$


Correct Option: A,C,D
Explanation:

We find $D = 0$, where $D$ is the determinant formed by the coefficients of $x,\ y,\ z$ in the three equations and since no pair of planes are parallel, so there is an infinite number of solutions.
Let $\alpha P _{1} + \lambda P _{2} = P _{3}$
$\Rightarrow P _{1} + 7P _{2} = 13P _{3}$
$\Rightarrow b _{1} + 7b _{2} = 13b _{3}$
(A) $D\neq 0\Rightarrow$ unique solution for any $b _{1}, b _{2}, b _{3}$
(B) $D = 0$ but $P _{1} + 7P _{2} \neq 13P _{3}$
(C) $D = 0$ Also $b _{2} = -2b _{1}, b _{3} = -b _{1}$
Satisfied $b _{1} + 7b _{2} = 13b _{3}$ (Actually all three planes are co-incident)
(D) $D\neq 0$.

If $a{ e }^{ x }+b{ e }^{ y }=c;\quad p{ e }^{ x }+q{ e }^{ y }=d$ and $\quad { \Delta  } _{ 1 }=\begin{vmatrix} a & b \ p & q \end{vmatrix};{ \Delta  } _{ 2 }=\begin{vmatrix} c & b \ d & q \end{vmatrix};{ \Delta  } _{ 3 }=\begin{vmatrix} a & c \ p & d \end{vmatrix}$ then the value of $(x,y)$ is:

  1. $\left( \cfrac { { \Delta } _{ 2 } }{ { \Delta } _{ 1 } } ,\cfrac { { \Delta } _{ 3 } }{ { \Delta } _{ 1 } } \right) $

  2. $\left( \log { \cfrac { { \Delta } _{ 2 } }{ { \Delta } _{ 1 } } } ,\log { \cfrac { { \Delta } _{ 3 } }{ { \Delta } _{ 1 } } } \right) $

  3. $\left( \log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 3 } } } ,\log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 2 } } } \right) $

  4. $\left( \log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 2 } } } ,\log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 3 } } } \right) $


Correct Option: B

System of equations
$x + 2y + z = 0, 2x + 3y- z = 0 $ and $(tan\theta) x + y -3z = 0$ has non-trivial solution then number of value(s) of $\theta \epsilon (-\pi,\pi)$ is equal to?


  1. 0

  2. 1

  3. 2

  4. 3


Correct Option: C
Explanation:

For non-trivial solutions
$\begin{vmatrix}
1 &2  &1 \ 
2 &3  &-1 \ 
tan\theta &1  &-3 
\end{vmatrix}=0$
$\Rightarrow 6-5\tan\theta =0$
$\Rightarrow\displaystyle \tan \theta=\frac{6}{5}$
Hence, the number of solutions in $(-\pi,\pi)$ is 2
Hence, option 'C' is correct.

The number of values of $\theta \in (0,\pi )$ for which the system of linear equations
x+3y+7z=0
x+4y+7z=0
$(\sin { 3\theta  } )x+(\cos { 2\theta  } )y+2z=0$
has a non trivial solution is :

  1. one

  2. three

  3. four

  4. two


Correct Option: A
- Hide questions