Properties of inverses of matrices - class-XII
Description: properties of inverses of matrices | |
Number of Questions: 56 | |
Created by: Palash Sundaram | |
Tags: applications of matrices and determinants maths inverse of a matrix and linear equations matrices |
Matrices $A$ and $B$ will be inverse of each other only if
If a $3\times 3$ matrix $A$ has its inverse equal to $A$, then ${A}^{2}$ is equal to
If $A$ is an $3\times 3$ non -singular matrix that $AA'=A'A$ and $B=A^{-1}A'$,then $BB'$ equal ?
${( -A )}^{ -1 }$ is always equal to (where $A$ is $nth$ order square matrix)
If $A\left( \alpha ,\beta \right) =\left[ \begin{matrix} \cos { \alpha } & \sin { \alpha } & 0 \ -\sin { \alpha } & \cos { \alpha } & 0 \ 0 & 0 & { e }^{ \beta } \end{matrix} \right]$, then $A{ \left( \alpha ,\beta \right) }^{ -1 }$ is equal to
Let $a, b, c$ are non real number satisfying equation $x^{5}=1$ and $S$ be the set of all non-invertible matrices of the from $\begin{bmatrix} 1 & a & b \ w & 1 & c \ { w }^{ 2 } & w & 1 \end{bmatrix}$ where $w={ e }^{ \dfrac { 12\pi }{ 5 } }$. The number of distinct matrices in set $S$ is
If A is an invertible matrix, then det $\displaystyle :\left ( A^{-1} \right )$ is equal to
If $\displaystyle [A]\neq 0 $ then which of the following is not true?
Which of the following matrix is inverse of itself
For two suitable order matrices $A, B$; correct statement is-
If A is a $3 \times 3$ matrix such that $\left| A \right| = 4\ than\ \left| {{{\left( {adjA} \right)}^{ - 1}}} \right| = $
If the matrices $A, B, (A+B)$ are non singular then ${[A{(A+B)}^{-1}B]}^{-1}$ is equal to-
If $A$ is an invertible matrix of order $2$, then $det({A}^{-1})$ is equal to
Let $A,B$ and $C$ be square matrices of order $3\ \times 3$. If $A$ invertible $(A-B)C=BA^{-1}$, then
A square non-singular matrix A satisfies $\displaystyle A^{2}-A+2I=0$, then $\displaystyle A^{-1}=$
If $A$ satisfies the equation $\displaystyle x^{3}-5x^{2}+4x+\lambda =0$, then $\displaystyle A^{-1}$ exists if
If $A$ is an invertiable idempotent matrix and $B=7A^{7}+6A^{6}+5A^{5}+......+A$ then $|B|$ is equal to
If $\begin{bmatrix} 1 & -1 & x \ 1 & x & 1 \ x & -1 & 1 \end{bmatrix}$ has no inverse, then the real value of $x$ is
Let p be a nonsingular matrix, and $I + p + p^2 + ..... + p^n = 0$, then find $p^{-1}$.
Matrices A and B satisfy $AB = B^{-1}$, where $ B\quad =\quad \begin{bmatrix} 2 & -1 \ 2 & 0 \end{bmatrix}$, then find without finding $A^{-1}$, the matrix X satisfying $A^{-1}XA = ?$
If $A$ satisfies the equation $x^3-5x^2+4x+kI=0,$ then $A^{-1}$ exists if
If $A^3 = O$, then $I + A + A^2$ equals
If $A$ and $B$ are symmetric matrices and $AB=BA$, then ${ A }^{ -1 }B$ is a
If $A^2 + A - I = 0$, then $A^{-1}$ =
IF $A,B,C$ are non-singular $n\times n$ matrices, then $(ABC)^{-1}$ = ____________.
If $A^{-1}=\begin{bmatrix} 1 & -2 \ -2 & 2 \end{bmatrix}$, then what is $det(A)$ equal to ?
A square, non-singular matrix $A$ satifies $A^2 - A + 2I = 0$, then $A^{-1} = $
If matrix $A=\left| \begin{matrix} sin\theta & cosec\theta & 1 \ cosec\theta & 1 & sin\theta \ 1 & sin\theta & cosec\theta \end{matrix} \right| $ a non invertible matrix. then possible value of $\theta$ is-
If $A$ be a $3\times 3$ matrix and $I$ be the unit matrix of that order such that $\displaystyle A=A^{2}+I$ then $A^{-1}$ is equal to
If $A$ is a square matrix, $B$ is a singular matrix of same order, then for a positive integer $n,(A^{-1}BA)^n$ equals
If $A$ is a scalar matrix with scalar $k \neq 0$, of order $3$, then $kA^{-1}$ is:
If $A$ and $B$ are two non-zero square matrices of the same order such that the product $AB=0$, then
The inverse of a symmetric matrix (if it exists) is
Let $A=\begin{bmatrix} 1&0 \1 &1 \end{bmatrix}$ then
If $A$ and $B$ are $3\times 3$ matrices and $|A|\neq 0$, then
If $A =\begin{bmatrix}a &b \c &d \end{bmatrix}$ such that $A$ satisfies the relation $A^2- (a + d)A = 0$, then inverse of $A$ is
Let the matrix A and B be defined as $A =\begin{bmatrix}3 &2 \ 2 &1 \end{bmatrix}$ and $B= \begin{bmatrix}3 &1 \ 7 &3 \end{bmatrix}$ then the value of Det.$(2A^9B^{-1})$, is
If $P$ is a two-rowed matrix satisfying $P^T = P^{-1}$, then $P$ can be
Let A be an invertible matrix then which of the following is/are true
If A and B are invertible matrices, which one of the following statement is/are correct
If $A=\begin{bmatrix} 1 & -2 \ 3 & 0 \end{bmatrix}$, $B=\begin{bmatrix} -1 & 4 \ 2 & 3 \end{bmatrix}$, and $ABC=\begin{bmatrix} 4 & 8 \ 3 & 7 \end{bmatrix}$, then $C$ equals
If $A _{3X3}$ and $ det A= 2$ then $det A^{-1}=$
The value of $(\mathrm{A}$dj $\mathrm{A})^{-1}$ is equal to
lf the value of a third order determinant is 11, then the value of the determinant of $A^{-1}=$
. $\mathrm{If}$ $\mathrm{A}$ is non-singular matrix such that $A^{2}=A^{-1}$ then $adjA=$
Let A and B be two non-singular matrices which commute. The $A^{-1}$, $B^{-1}$
$\mathrm{A}\mathrm{B}\mathrm{A^{-1}}$ $=\mathrm{X}$ then $\mathrm{B}^{2}=$
If $A = \begin{bmatrix} 2 & 3\ 5 & 1 \end{bmatrix},$ then find $A^{-1}$
If $A$ and $B$ are two non singular matrices of the same order such that ${ B }^{ r }=I$, for some positive integer $r>1$, then ${ A }^{ -1 }{ B }^{ r-1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A=$
If $\begin{pmatrix}1 & -tan \theta\ tan \theta & 1\end{pmatrix} \begin{pmatrix} 1 & tan \theta\ - tan \theta & 1\end{pmatrix}^{-1} = \begin{bmatrix} a& -b\ b & a\end{bmatrix}$, then
$A = \begin{bmatrix} 1& 0 & 0\0 & 1& 1\ 0 & -2 & 4\end{bmatrix}, I = \begin{bmatrix}1 & 0 & 0\ 0& 1 & 0\ 0 & 0 & 1\end{bmatrix}$ and $A^{-1} = \left [ \dfrac{1}{6} (A^2 + cA + dI) \right]$