0

Properties of inverses of matrices - class-XII

Description: properties of inverses of matrices
Number of Questions: 56
Created by:
Tags: applications of matrices and determinants maths inverse of a matrix and linear equations matrices
Attempted 0/51 Correct 0 Score 0

Matrices $A$ and $B$ will be inverse of each other only if

  1. $AB=BA$

  2. $AB=0,BA=I$

  3. $AB=BA=0$

  4. $AB=BA=I$


Correct Option: D
Explanation:

We know that if $A$ is a square of order $m$, and if there exists another square matrix $B$ of the same order $m$, such that $AB=I$, then $B$ is said to be the inverse of $A$. 

In this case, it is clear that $A$ is the inverse of $B$.
Thus , matrices $A$ and $B$ will be inverses of each other only if $AB=BA=I.$

If a $3\times 3$ matrix $A$ has its inverse equal to $A$, then ${A}^{2}$ is equal to

  1. $\begin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 0 \end{bmatrix}$

  2. $\begin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 0 \ 1 & 0 & 1 \end{bmatrix}$

  3. $\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$

  4. $\begin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$


Correct Option: C
Explanation:

Given $A^{-1}=A$

$AA^{-1}=I$
$\implies A.A=I$
$\implies A^{2}=I=\begin{bmatrix}1&0&0\0&1&0\0&0&1\end{bmatrix}$

If $A$ is an $3\times 3$ non -singular matrix that $AA'=A'A$ and $B=A^{-1}A'$,then $BB'$ equal ?

  1. $I+B^{-1}$

  2. $(B^{-1})$

  3. $I+B$

  4. $I$


Correct Option: B

 ${( -A )}^{ -1 }$ is always equal to (where $A$ is $nth$ order square matrix)

  1. ${ (-1) }^{ n }{ A }^{ -1 }$

  2. ${ -A }^{ -1 }$

  3. ${( -1) }^{ n-1 }{ A }^{ -1 }$

  4. none of these


Correct Option: B
Explanation:

We know that if $A^{-1}$ exist then $(cA)^{-1}=\dfrac{1}{c}A^{-1}$ where c is  a constant
Hence $(-A)^{-1}=\dfrac{1}{-1}A^{-1}=-A^{-1}$

If $A\left( \alpha ,\beta  \right) =\left[ \begin{matrix} \cos { \alpha  }  & \sin { \alpha  }  & 0 \ -\sin { \alpha  }  & \cos { \alpha  }  & 0 \ 0 & 0 & { e }^{ \beta  } \end{matrix} \right]$, then $A{ \left( \alpha ,\beta  \right)  }^{ -1 }$ is equal to 

  1. $A{ \left( -\alpha ,-\beta \right) }$

  2. $A{ \left( -\alpha ,\beta \right) }$

  3. $A{ \left(\alpha ,-\beta \right) }$

  4. $A{ \left(\alpha ,\beta \right) }$


Correct Option: A

Let $a, b, c$ are non real number satisfying equation $x^{5}=1$ and $S$ be the set of all non-invertible matrices of the from $\begin{bmatrix} 1 & a & b \ w & 1 & c \ { w }^{ 2 } & w & 1 \end{bmatrix}$ where $w={ e }^{ \dfrac { 12\pi  }{ 5 }  }$. The number of distinct matrices in set $S$ is 

  1. $1$

  2. $28$

  3. $32$

  4. $4$


Correct Option: A

If is an invertible matrix, then det $\displaystyle :\left ( A^{-1} \right )$ is equal to

  1. $\displaystyle :det\left ( A \right )$

  2. $\displaystyle :\frac{1}{det\left ( A \right )}$

  3. $1$

  4. none of these


Correct Option: B
Explanation:

We know that $|A^{n}|=|A|^{n}$  n be any integer
$\Rightarrow |A^{-1}|=|A|^{-1}=\displaystyle \frac{1}{|A|}$

If $\displaystyle [A]\neq 0 $ then which of the following is not true?

  1. $\displaystyle (A^{2})^{-1}= (A^{-1})^{2}$

  2. $\displaystyle (A')^{-1}= (A^{-1})^{'}$

  3. $\displaystyle A^{-1}= \left | A \right |^{-1}$

  4. None of these


Correct Option: C
Explanation:

We know, $(A^{n})^{-1}=(A^{-1})^{n}$
So, $(A^{2})^{-1}=(A^{-1})^{2}$
Hence, option A is correct.

We know that inverse of transpose of matrix is equal to transpose of inverse of matrix
$(A^{-1})' =(A')^{-1}$
Hence, option B is correct

For option C,
In the LHS, there is a matrix and in RHS , its a determinant i.e. a single value.
So, option C is incorrect.

Which of the following matrix is inverse of itself

  1. $\begin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$

  2. $\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$

  3. $\begin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 0 \ 1 & 0 & 1 \end{bmatrix}$

  4. $\begin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 0 \end{bmatrix}$


Correct Option: B
Explanation:

Inverse of unit matrix also unit matrix.

Ans: B

For two suitable order matrices $A, B$; correct statement is-

  1. ${(AB)}^{-1}={A}^{-1}{B}^{-1}$

  2. ${(AB)}^{-1}={B}^{-1}{A}^{-1}$

  3. ${(AB)}^{-1}={(BA)}^{-1}$

  4. none of these


Correct Option: B
Explanation:

It is fundamental concept that, $(AB)^{-1}=B^{-1}A^{-1}$

If A is a $3 \times 3$ matrix such that $\left| A \right| = 4\ than\ \left| {{{\left( {adjA} \right)}^{ - 1}}} \right| = $

  1. $16$

  2. $64$

  3. $\dfrac{1}{{16}}$

  4. None


Correct Option: A
Explanation:

We know, $A^{-1}=\dfrac{adjA}{|A|}$

Multiplying above equation with A both sides,
$AA^{-1}=\dfrac{A\times adjA}{|A|}\Rightarrow|A|=A\times adjA$
Multiplying with $(adjA)^{-1}$ both sides ,
$|A|\times(adjA)^{-1}=A\times adjA \times(adjA)^{-1}\Rightarrow|A|\times(adjA)^{-1}=A$
Taking determinant both sides,$||A|\times(adjA)^{-1}|=|A|\Rightarrow ||A||\times |(adjA)^{-1}|=|A|\Rightarrow |A|^n\times |(adjA)^{-1}|=|A|$
Where n is the order of matrix A, i.e. $n=3$ and $|A|=4$
Thus, $|(adjA)^{-1}|=\dfrac{4}{4^3}=\dfrac{1}{16}$

If the matrices $A, B, (A+B)$ are non singular then ${[A{(A+B)}^{-1}B]}^{-1}$ is equal to-

  1. $A+B$

  2. ${A}^{-1}+{B}^{-1}$

  3. $A{(A+B)}^{-1}$

  4. None


Correct Option: B
Explanation:
$ (A(A+B)^{-1}B)^{-1}$

$ = [(A(A^{-1}+B^{-1}))B]^{-1}$

$ = [(AA^{-1}+AB^{-1})B]^{-1}$

$ = ((I+AB^{-1})B)^{-1} = (B+AB^{-1}B)^{-1}$

$ = (B+A)^{-1} = A^{-1}+B^{-1}$

If $A$ is an invertible matrix of order $2$, then $det({A}^{-1})$ is equal to

  1. $det(A)$

  2. $\cfrac{1}{det(A)}$

  3. $1$

  4. $0$


Correct Option: B
Explanation:

We know that 

$AA^{-1}=I$
Taking determinant both sides
$|AA^{-1}|=|I|$
$|A||A^{-1}|=|I|$       $[\because |AB|=|A||B|]$
$|A||A^{-1}|=1$         $[\because |I|=1]$
$|A^{-1}|=\dfrac{1}{|A|}$
Since $|A|\neq0$
Hence, $|A^{-1}|=\dfrac{1}{|A|}$

Let $A,B$ and $C$ be square matrices of order $3\ \times 3$. If $A$ invertible $(A-B)C=BA^{-1}$, then

  1. $C\ (A-B)=A^{-1}B$

  2. $C\ (A-B)=BA^{-1}$

  3. $(A-B)C=A^{-1}B$

  4. $All\ the\ above$


Correct Option: A

A square non-singular matrix A satisfies $\displaystyle A^{2}-A+2I=0$, then $\displaystyle A^{-1}=$

  1. $\displaystyle I-A$

  2. $\displaystyle \frac{1}{2}\left ( I-A \right )$

  3. $\displaystyle I+A$

  4. $\displaystyle \frac{1}{2}\left ( I+A \right )$


Correct Option: B
Explanation:

Given, $\displaystyle A^{2}-A+2I=0$


$\Rightarrow A^{2}A^{-1}-AA^{-1}+2IA^{-1}=0$

$\Rightarrow A-I+2A^{-1}=0$

$\Rightarrow 2A^{-1}=I-A$

$\Rightarrow A^{-1}=\displaystyle \frac{1}{2}(I-A)$

If $A$ satisfies the equation $\displaystyle x^{3}-5x^{2}+4x+\lambda =0$, then $\displaystyle A^{-1}$ exists if

  1. $\displaystyle \lambda \neq 1$

  2. $\displaystyle \lambda \neq 2$

  3. $\displaystyle \lambda \neq -1$

  4. $\displaystyle \lambda \neq 0$


Correct Option: D
Explanation:

Since, A satisfies the equation
$\displaystyle x^{3}-5x^{2}+4x+\lambda =0$
$\Rightarrow A^{3}-5A^{2}+4A+\lambda=O$
$\Rightarrow A^{3}A^{-1}-5A^{2}A^{-1}+4AA^{-1}+\lambda A^{-1}=O$
$\Rightarrow A^{2}-5A+4I+\lambda A^{-1}=O$
So, $A^{-1}$ exists if $\lambda\ne 0$

If $A$ is an invertiable idempotent matrix and $B=7A^{7}+6A^{6}+5A^{5}+......+A$ then $|B|$ is equal to 

  1. $7$

  2. $14$

  3. $28$

  4. $35$


Correct Option: A

If $\begin{bmatrix} 1 & -1 & x \ 1 & x & 1 \ x & -1 & 1 \end{bmatrix}$ has no inverse, then the real value of $x$ is 

  1. $2$

  2. $3$

  3. $0$

  4. $1$


Correct Option: C

Let p be a nonsingular matrix, and $I + p + p^2 + ..... + p^n = 0$, then find $p^{-1}$.

  1. $I$

  2. $p^{n+1}$

  3. $p^n$

  4. $\left( p^{n+1} - I\right) \left( p-I\right)$


Correct Option: C
Explanation:

We have $I + p + p^2 + ..... + p^n = O$  ----------$(1)$
Since p is a nonsingular matrix, p is invertible.
Multiplying both sides of (1) by $p^{-1}$, we get
$p^{-1} + I + Ip + ..... + p^{n - 1} I = O. p^{-1}$
or $ p^{-1} + I (1 + p + ...... + p^{n-1}) = O$
or $ p^{-1} = - I (I + p + p^2 + ..... + p^{n - 1}) = - I(-p^n) = p^n$

Matrices A and B satisfy $AB = B^{-1}$, where $ B\quad =\quad \begin{bmatrix} 2 & -1 \ 2 & 0 \end{bmatrix}$, then find without finding $A^{-1}$, the matrix X satisfying $A^{-1}XA = ?$

  1. $B$

  2. $B^2$

  3. $A$

  4. None of these


Correct Option: A
Explanation:

Given, $A^{-1} XA = B$


$AA^{-1} XA = AB$

$IXA =AB$

$XAB =AB^2$ 

$XAB =I$ since $\left[AB=B^{-1}\Rightarrow AB^2=I\right]$

$XAB^2 = B$

$XI = B$

$\therefore X = B$

Hence option $'A'$ is the answer.

If $A$ satisfies the equation $x^3-5x^2+4x+kI=0,$ then $A^{-1}$ exists if

  1. $k\neq -1$

  2. $k\neq 0$

  3. $k\neq 1$

  4. none of these


Correct Option: B
Explanation:

Since A satisfies the given equation, therefore ${ A }^{ 3 }-5{ A }^{ 2 }+4A+kI=0$

${ A }^{ -1 }$ exits if $k\neq 0$ since if $k=0$ then the above equation gives $A=0$ and in that case ${ A }^{ -1 }$ wont exist.

If $A^3 = O$, then $I + A + A^2$ equals

  1. $I - A$

  2. $(I + A^1)^{-1}$

  3. $(I - A)^{-1}$

  4. none of these


Correct Option: C
Explanation:

Given, $A^{3} = 0$
$\Rightarrow I-A^{3} = I$

Using the identity, we get
$\Rightarrow (I-A)(I+A+A^{2}) = I$
$\therefore I+A+A^{2} = (I-A)^{-1}$

If $A$ and $B$ are symmetric matrices and $AB=BA$, then ${ A }^{ -1 }B$ is a

  1. Symmetric matrix

  2. Skew-symmetric matrix

  3. Identity matrix

  4. None of these


Correct Option: A
Explanation:

We have $AB=BA=B'A'=\left( AB \right) '$

$\Rightarrow AB$ is symmetric.
Also, $AB{ A }^{ -1 }=BA{ A }^{ -1 }=B\quad \quad \left( \because AB=BA \right) $
$\Rightarrow { A }^{ -1 }AB{ A }^{ -1 }={ A }^{ -1 }B\Rightarrow B{ A }^{ -1 }={ A }^{ -1 }B$
Therefore, $\left( { A }^{ -1 }B \right) '=\left( B{ A }^{ -1 } \right) =\left( { A }^{ -1 } \right) 'B'=A'B$   $[\because { A }^{ -1 }$ and $B$ are symmetric $]$
Thus, the matrix ${ A }^{ -1 }B$ is symmetric.

If $A^2 + A - I = 0$, then $A^{-1}$ =

  1. $I + A$

  2. $I - A$

  3. $-I + A$

  4. $-I - A$


Correct Option: A
Explanation:

$A^2 + A - I = 0$


multiplying both sides with $A^{-1}$ gives

$A^{-1}A^2+A^{-1}A-A^{-1}I=0$

$\Rightarrow A+I-A^{-1}=0$

$\Rightarrow A^{-1}=I+A$

Hence, option A.

IF $A,B,C$ are non-singular $n\times n$ matrices, then $(ABC)^{-1}$ = ____________.

  1. $A^{-1}C^{-1}B^{-1}$

  2. $C^{-1}B^{-1}A^{-1}$

  3. $C^{-1}A^{-1}B^{-1}$

  4. $B^{-1}C^{-1}A^{-1}$


Correct Option: B
Explanation:

using the property $(AB)^{-1}=B^{-1}A^{-1}$


$(ABC)^{-1}=(BC)^{-1}A^{-1}=C^{-1}B^{-1}A^{-1}$

Hence, option B.

If $A^{-1}=\begin{bmatrix} 1 & -2 \ -2 & 2 \end{bmatrix}$, then what is $det(A)$ equal to ?

  1. $2$

  2. $-2$

  3. $1/2$

  4. $-1/2$


Correct Option: D
Explanation:

$det{\left( {A}^{-1} \right)} = \left( 1 \times 2 \right) - \left( -2 \right) \times \left( -2 \right) = 2 - 4 = -2$

As we know that,
$det{\left( {A}^{-1} \right)} = \cfrac{1}{det{\left( A \right)}}$
$\Rightarrow det{\left( A \right)} = \cfrac{1}{det{\left( {A}^{-1} \right)}} = \cfrac{1}{-2} = - \cfrac{1}{2}$

A square, non-singular matrix $A$ satifies $A^2 - A + 2I = 0$, then $A^{-1} = $

  1. $I - A$

  2. $\dfrac {(I - A) }{2}$

  3. $I + A$

  4. $\dfrac {(I + A)}{2}$


Correct Option: B
Explanation:

Given, $A^{2}-A+2I = 0$

$\Rightarrow 2I = A-A^{2}$

$\Rightarrow 2A^{-1}I = A^{-1}A-A^{-1}A^{2}$

$\therefore A^{-1} = \displaystyle\frac{I-A}{2}$

If matrix $A=\left| \begin{matrix} sin\theta  & cosec\theta  & 1 \ cosec\theta  & 1 & sin\theta  \ 1 & sin\theta  & cosec\theta  \end{matrix} \right| $ a non invertible matrix. then possible value of $\theta$ is-

  1. $n\pi+(-1)^n\dfrac{\pi}{4}$

  2. $n\pi+(-1)^n\dfrac{\pi}{3}$

  3. $n\pi+(-1)^n\dfrac{\pi}{6}$

  4. $2n\pi+\dfrac{\pi}{2}$


Correct Option: A

If $A$ be a $3\times 3$ matrix and $I$ be the unit matrix of that order such that $\displaystyle A=A^{2}+I$ then $A^{-1}$ is equal to

  1. $A$

  2. $A+I$

  3. $I-A$

  4. $A-I$


Correct Option: C
Explanation:

Given : $\displaystyle A=A^{2}+I$

$\Rightarrow A^{2}-A+I=O$

$\Rightarrow A^{2}A^{-1}-AA^{-1}+IA^{-1}=O$

$\Rightarrow A-I+A^{-1}=O$

$\Rightarrow A^{-1}=I-A$

If $A$ is a square matrix, $B$ is a singular matrix of same order, then for a positive integer $n,(A^{-1}BA)^n$ equals

  1. $A^{-n}B^nA^n$

  2. $A^nB^nA^{-n}$

  3. $A^{-1}B^nA$

  4. $n(A^{-1}BA)$


Correct Option: C
Explanation:

Consider $n=2$


${ \left( { A }^{ -1 }BA \right)  }^{ 2 }=\left( { A }^{ -1 }BA \right) \left( { A }^{ -1 }BA \right) =\left( { A }^{ -1 }B \right) \left( { A }^{ -1 }A \right) \left( BA \right) ={ A }^{ -1 }{ B }^{ 2 }A$

Again for $n=3$ we have ${ \left( { A }^{ -1 }BA \right)  }^{ 3 }=\left( { A }^{ -1 }{ B }^{ 2 }A \right) \left( { A }^{ -1 }BA \right) ={ A }^{ -1 }{ B }^{ 3 }A$

Thus generalizing the case 

${ \left( { A }^{ -1 }BA \right)  }^{ n }={ A }^{ -1 }{ B }^{ n }A$

If $A$ is a scalar matrix with scalar $k \neq 0$, of order $3$, then $kA^{-1}$ is:

  1. $\dfrac{1}{k}I$

  2. $\dfrac{1}{k^2}I$

  3. ${k^2}I$

  4. $\dfrac{1}{k^3}I$


Correct Option: C
Explanation:
It is well-known that if you find an inverse for a matrix, that inverse matrix will be unique.
So what we have to do is to show that $\left(k{A}^{−1}\right)⋅\left(kA\right)=Id=\left(kA\right)⋅\left(k{A}^{−1}\right)$.
We have $\left(k{A}^{−1}\right).\left(kA\right)=\left(kk\right)⋅\left({A}^{−1}.A\right)=Id=Id$ and $\left(kA\right)⋅\left(k{A}^{−1}\right)=\left(kk\right)⋅\left(A{A}^{−1}\right)=Id$.
So by the uniqueness of the inverse matrix we have that $k{A}^{−1}$ is the inverse of the matrix $kA$.

If $A$ and $B$ are two non-zero square matrices of the same order such that the product $AB=0$, then

  1. both A and B must be singular

  2. exactly one of them must be singular

  3. atleast one of them must be non-singular

  4. none of these


Correct Option: A
Explanation:

Assume that $A$ is non-singular, then $A^{-1}$ exists. Thus
$AB =0    \Rightarrow A^{-1}(AB) =(A^{-1}:A)B = 0$
$ \Rightarrow   IB =0$
$\therefore  B =0$. A contradiction.
$\Rightarrow$ A is singular, similarly B is also singular.
Hence, both A and B must be singular.


The inverse of a symmetric matrix (if it exists) is

  1. a symmetric matrix

  2. a skew symmetric matrix

  3. a diagonal matrix

  4. none of these


Correct Option: A
Explanation:

 Let $A$ be an invertible symmetric matrix.
 $\therefore AA^{-1}=A^{-1}:A=I _n$
$\Rightarrow  ( AA^{-1})'=(A^{-1}:A)'=(I _n)'$
$\Rightarrow   ( A^{-1})'A'=A'(A^{-1})'=(I _n)$
$\Rightarrow   ( A^{-1})'A=A(A^{-1})'=(I _n)$
$\Rightarrow   ( A^{-1})'=A^{-1}$    [inverse of a matrix is unique]
i.e $A^{-1}$ is symmetric.
Hence, option A.

Let $A=\begin{bmatrix} 1&0 \1 &1 \end{bmatrix}$ then

  1. $A^{-n}=\begin{bmatrix} 1&0 \-n &1 \end{bmatrix}\forall : n: \in: N$.

  2. $\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n}A^{-n}=\begin{bmatrix} 0&0 \-1 &0 \end{bmatrix}$

  3. $\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n^2}A^{-n}=\begin{bmatrix} 0&0 \0 &0 \end{bmatrix}$

  4. none of these


Correct Option: A,B,C
Explanation:

$A^{-1}=\begin{bmatrix}1 &0 \-1 &1 \end{bmatrix}$
$A^2=\begin{bmatrix}1 &0 \1 &1 \end{bmatrix}\begin{bmatrix}1 &0 \1 &1 \end{bmatrix}=\begin{bmatrix}1 &0 \2 &1 \end{bmatrix}$
$A^{-2}=\begin{bmatrix}1 &0 \-2 &1 \end{bmatrix}$
$\Rightarrow A^{-n}=\begin{bmatrix}1 &0 \-n &1 \end{bmatrix}$
$\displaystyle \frac{1}{n} A^{-n}=\begin{bmatrix}1/n &0 \-1 &1/n \end{bmatrix}$
$\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n}A^{-n}=\begin{bmatrix} 0&0 \-1 &0 \end{bmatrix}$
and $\displaystyle \frac{1}{n^2} A^{-n}=\begin{bmatrix}1/n^2 &0 \-1/n &1/n ^2\end{bmatrix}$
$\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n^2}A^{-n}=\begin{bmatrix} 0&0 \0 &0 \end{bmatrix}$
Hence, options A,B and C.

If $A$ and $B$ are $3\times 3$ matrices and $|A|\neq 0$, then

  1. $|AB|=0\Rightarrow |B|=0$

  2. $|AB|\neq 0\Rightarrow |B|\neq 0$

  3. $|A^{-1}|=|A|^{-1}$

  4. $|2A|=2|A|$


Correct Option: A,B,C
Explanation:

$A$ and $B$ are $3\times 3$ matrices and $|A|\neq 0$
1.$|AB|=|A||B|=0$ $\Rightarrow |B|=0$
2.$|AB|=|A||B|\neq 0$ $\Rightarrow |B|\neq 0$
3.$AA^{-1}=I$ $\Rightarrow |A||A^{-1}|=1$
$\therefore |A^{-1}|=|A|^{-1}$
4.$|2A|= 8|A|$    ($\because  |kA|=k^n|A|$)
Hence, options A,B and C.

If $A =\begin{bmatrix}a &b \c &d \end{bmatrix}$ such that $A$ satisfies the relation $A^2- (a + d)A = 0$, then inverse of $A$ is

  1. $I$

  2. $A$

  3. $(a + d)A$

  4. none of these


Correct Option: D
Explanation:

 $A =\begin{bmatrix}a &b \c &d \end{bmatrix}$ such that $A$ satisfies the relation $A^2- (a + d)A = 0$
$\Rightarrow A^2-(a+d)A=0$
$\Rightarrow \begin{bmatrix}a &b \c &d \end{bmatrix}\begin{bmatrix}a &b \c &d \end{bmatrix}-(a+d)\begin{bmatrix}a &b \c &d \end{bmatrix}=\begin{bmatrix}0 &0 \0 &0 \end{bmatrix}$
$\Rightarrow \begin{bmatrix}a^2+bc &ab+bd \ac+cd &bc+d^2 \end{bmatrix}-(a+d)\begin{bmatrix}a &b \c &d \end{bmatrix}=\begin{bmatrix}0 &0 \0 &0 \end{bmatrix}$
$\Rightarrow a^2+bc-a^2-ad=0$
$\Rightarrow ad-bc=\begin{vmatrix}a &b \c &d \end{vmatrix}=0$
$\therefore$ Inverse of A doesnot exist.
Hence, option D.

Let the matrix A and B be defined as $A =\begin{bmatrix}3 &2 \ 2 &1 \end{bmatrix}$ and $B= \begin{bmatrix}3 &1 \ 7 &3 \end{bmatrix}$ then the value of Det.$(2A^9B^{-1})$, is 

  1. $2$

  2. $1$

  3. $-1$

  4. $-2$


Correct Option: D
Explanation:

$A =\begin{bmatrix}3 &2 \ 2 &1 \end{bmatrix}$ and $B= \begin{bmatrix}3 &1 \ 7 &3 \end{bmatrix}$

$|A| = \begin{vmatrix} 3 & 2 \ 2 & 1 \end{vmatrix} = -1$

$|B| = \begin{vmatrix} 3 & 1 \ 7 & 3 \end{vmatrix} = 2$

$\displaystyle |2A^9 B^{-1}| = 2^2|A|^9\frac{1}{|B|}$

                     $\displaystyle= 4\times (-1)\times \frac{1}{2}$

$\therefore |2A^9 B^{-1}|=-2$

Hence, option D.

If $P$ is a two-rowed matrix satisfying $P^T = P^{-1}$, then $P$ can be

  1. $\begin{bmatrix}cos\, \theta & -sin\, \theta \ -sin\,\theta & cos\, \theta \end{bmatrix}$

  2. $\begin{bmatrix}cos\, \theta & sin\, \theta \ -sin\,\theta & cos\, \theta \end{bmatrix}$

  3. $\begin{bmatrix}-cos\, \theta & sin\, \theta \ sin\,\theta & -cos\, \theta \end{bmatrix}$

  4. none of these


Correct Option: B
Explanation:

$A=\begin{bmatrix} cos\theta  & -sin\theta  \ -sin\theta  & cos\theta  \end{bmatrix},{ A }^{ T }=\begin{bmatrix} cos\theta  & -sin\theta  \ -sin\theta  & cos\theta  \end{bmatrix},$

${ A }^{ -1 }=\cfrac { 1 }{ { cos }^{ 2 }\theta -{ sin }^{ 2 }\theta  } \begin{bmatrix} cos\theta  & sin\theta  \ sin\theta  & cos\theta  \end{bmatrix}\ B=\begin{bmatrix} cos\theta  & sin\theta  \ -sin\theta  & cos\theta  \end{bmatrix},{ B }^{ T }=\begin{bmatrix} cos\theta  & -sin\theta  \ sin\theta  & cos\theta  \end{bmatrix},$
${ B }^{ -1 }=\cfrac { 1 }{ { cos }^{ 2 }\theta +{ sin }^{ 2 }\theta  } \begin{bmatrix} cos\theta  & -sin\theta  \ sin\theta  & cos\theta  \end{bmatrix}=\begin{bmatrix} cos\theta  & -sin\theta  \ sin\theta  & cos\theta  \end{bmatrix}\ C=\begin{bmatrix} -cos\theta  & sin\theta  \ sin\theta  & -cos\theta  \end{bmatrix},{ C }^{ T }=\begin{bmatrix} -cos\theta  & sin\theta  \ sin\theta  & -cos\theta  \end{bmatrix},$
${ C }^{ -1 }=\cfrac { 1 }{ { cos }^{ 2 }\theta -{ sin }^{ 2 }\theta  } \begin{bmatrix} -cos\theta  & sin\theta  \ sin\theta  & -cos\theta  \end{bmatrix}$
hence $P=B=\begin{bmatrix} cos\theta  & sin\theta  \ -sin\theta  & cos\theta  \end{bmatrix}$

Let A be an invertible matrix then which of the following is/are true

  1. $|A^{-1}| = |A|^{-1}$

  2. $(A^2)^{-1} = (A^{-1})^2$

  3. $(A^T)^{-1} = (A^{-1})^T$

  4. none of these


Correct Option: A,B,C
Explanation:
Option A
$\left| { A }^{ -1 } \right| ={ \left| A \right|  }^{ -1 }$
$det\left( A \right) (det\left( B \right) )$
$d\left( A{ A }^{ -1 } \right) =detAdet\left( { A }^{ -1 } \right) $
$det\left( I \right) =1$
$\Rightarrow det\left( A \right) \ast det\left( { A }^{ -1 } \right) =I$
$det\left( { A }^{ -1 } \right) ={ \left( detA \right)  }^{ -1 }$

Option B:
A is invertible $A{ A }^{ -1 }={ A }^{ -1 }A=I$
$\Rightarrow { A }^{ 2 }$ is also invertible
${ \left( A{ A }^{ -1 } \right)  }^{ 2 }={ I }^{ 2 }$
${ A }^{ 2 }{ \left( { A }^{ -1 } \right)  }^{ 2 }=I$
${ \left( { A }^{ -1 } \right)  }^{ 2 }={ ({ A }^{ 2 }) }^{ -1 }$

Option C:
${ \left( { A }^{ T } \right)  }^{ -1 }={ \left( { A }^{ -1 } \right)  }^{ T }$
$\left( { A }^{ T } \right) { \left( { A }^{ -1 } \right)  }^{ T }={ \left( { A }^{ -1 }A \right)  }^{ T }={ I }^{ T }=I$
Also,
${ \left( { A }^{ -1 } \right)  }^{ T }\left( { A }^{ T } \right) ={ \left( A{ A }^{ -1 } \right)  }^{ T }={ I }^{ T }=I$
${ A }^{ 1 }{ \left( { A }^{ -1 } \right)  }^{ T }={ \left( { A }^{ -1 } \right)  }^{ T }\left( { A }^{ T } \right) =I$
$\Rightarrow { \left( { A }^{ -1 } \right)  }^{ T }={ \left( { A }^{ T } \right)  }^{ -1 }$

Option A,B,C are correct

If A and B are invertible matrices, which one of the following statement is/are correct 

  1. $Adj(A) = |A|A^{-1}$

  2. $det(A^{-1}) =|det(A)|^{-1}$

  3. $(A + B)^{-1}= B^{-1 }+ A^{-1}$

  4. $(AB)^{-1} = B^{-1}A^{-1}$


Correct Option: A,B,D
Explanation:
Option A
${ A }^{ -1 }=\cfrac { AdjA }{ \left| A \right|  } $
$\Rightarrow AdjA=\left| A \right| { A }^{ -1 }$
Option A is true

Option B
$det\left( AB \right) =\left( detA \right) \left( detB \right) $
$\Rightarrow A{ A }^{ -1 }=I$
$det\left( A{ A }^{ -1 } \right) =detI$
$\Rightarrow detA\left( det{ A }^{ -1 } \right) =1$
$\Rightarrow det{ A }^{ -1 }={ \left( detA \right)  }^{ -1 }$
Option B is true

Option C
${ \left( A+B \right)  }^{ -1 }={ A }^{ -1 }+{ B }^{ -1 }$
Option C is true

Option D
${ \left( AB \right)  }^{ -1 }=?$
$AB\left( { B }^{ -1 }{ A }^{ -1 } \right) =A\left( B{ B }^{ -1 } \right) { A }^{ -1 }$
$=AI{ A }^{ -1 }=\left( A{ A }^{ -1 } \right) =I$
$\Rightarrow { B }^{ -1 }{ A }^{ -1 }={ \left( AB \right)  }^{ -1 }$
Option D is true

If $A=\begin{bmatrix} 1 & -2 \ 3 & 0 \end{bmatrix}$, $B=\begin{bmatrix} -1 & 4 \ 2 & 3 \end{bmatrix}$, and $ABC=\begin{bmatrix} 4 & 8 \ 3 & 7 \end{bmatrix}$, then $C$ equals

  1. $\cfrac { 1 }{ 66 } \begin{bmatrix} 54 & 110 \ 3 & 11 \end{bmatrix}$

  2. $\cfrac { 1 }{ 66 } \begin{bmatrix} -54 & -110 \ 3 & 11 \end{bmatrix}$

  3. $\cfrac { 1 }{ 66 } \begin{bmatrix} -54 & 110 \ 3 & -11 \end{bmatrix}$

  4. None of these


Correct Option: B

If $A _{3X3}$ and $ det A= 2$ then $det A^{-1}=$ 

  1. $\dfrac {1}{2}$

  2. $-2$

  3. $\dfrac {1}{4}$

  4. $-4$


Correct Option: A
Explanation:

$AA^{-1}=I$
So, $|AA^{-1}=|I|=1$
$|A||A^{-1}=1|$
So, $det A^{-1}=\dfrac{1}{|A|}=\dfrac{1}{2}$

The value of $(\mathrm{A}$dj $\mathrm{A})^{-1}$ is equal to 

  1. $\mathrm{A}$dj $(\mathrm{A}^{-1})$

  2. $\mathrm{A}$dj $[-\mathrm{A}]$

  3. $(\mathrm{A}$dj$\mathrm{A})^{\mathrm{T}}$

  4. $\mathrm{A}$dj $(\mathrm{A}^{\mathrm{T}})$


Correct Option: A

lf the value of a third order determinant is 11, then the value of the determinant of $A^{-1}=$ 

  1. 11

  2. 121

  3. $1/11$

  4. $1/121$


Correct Option: C
Explanation:

$det(A _{3 \times 3})=11$
$AA^{-1}=I$
$\therefore det(A)=\frac{1}{det(A^{-1})}$
$\therefore det(A^{-1})=\frac{1}{11}$

. $\mathrm{If}$ $\mathrm{A}$ is non-singular matrix such that $A^{2}=A^{-1}$ then $adjA=$ 

  1. $\mathrm{A}$

  2. $\mathrm{A}^{-1}$

  3. $\mathrm{A}^{3}$

  4. $(\mathrm{A}^{-1})^{2}$


Correct Option: B
Explanation:

$A^{2}=A^{-1}$

$A.A^{2}=A.A^{-1}$
$A^{3}=I$
$detA.A^{3}=detA.I$
$detA.A^{3}=A.adjA$
$detA.A^{2}=adjA$
Therefore 
$adjA=A^{-1}$.

Let A and B be two non-singular matrices which commute. The $A^{-1}$, $B^{-1}$

  1. do not commute

  2. commute

  3. $AB = A^{-1}B^{-1}$

  4. $(AB)^{-1}=AB$


Correct Option: B
Explanation:

$A^{-1}B^{-1}=(BA)^{-1}=(AB)^{-1}$ since $A,B$ commute
$\Rightarrow A^{-1}B^{-1}=B^{-1}A^{-1}$
Hence $A^{-1}, B^{-1}$ also commute

$\mathrm{A}\mathrm{B}\mathrm{A^{-1}}$ $=\mathrm{X}$ then $\mathrm{B}^{2}=$

  1. $\mathrm{x}^{2}$

  2. $\mathrm{A}\mathrm{x}\mathrm{A}^{-1}$

  3. $\mathrm{A}\mathrm{x}^{2}\mathrm{A}^{-1}$

  4. $\mathrm{A}^{-1}\mathrm{x}^{2}\mathrm{A}$


Correct Option: D
Explanation:

$ABA^{-1}=X$
$\Rightarrow (ABA^{-1})(ABA^{-1})=XX=X^2$
$\Rightarrow ABAA^{-1}BA^{-1} =X^2$
$\Rightarrow ABBA^{-1} =X^2[\because AA^{-1}=I]$
$\Rightarrow AB^2A^{-1} =X^2$
Pre and post multiplying both sides with $A^{-1}$ and $A$ respectively we get,
$\Rightarrow B^2 =A^{-1}X^2A$

If $A = \begin{bmatrix} 2 & 3\ 5 & 1 \end{bmatrix},$ then find $A^{-1}$

  1. $\begin{bmatrix} - \frac {1}{13} & \frac {3}{13}\ - \frac {5}{13} & - \frac {2}{13} \end{bmatrix}$

  2. $\begin{bmatrix} - \frac {1}{13} & \frac {3}{13}\ \frac {5}{13} & \frac {2}{13} \end{bmatrix}$

  3. $\begin{bmatrix} - \frac {1}{13} & \frac {3}{13}\ \frac {5}{13} & - \frac {2}{13} \end{bmatrix}$

  4. $\begin{bmatrix} \frac {1}{13} & \frac {3}{13}\ \frac {5}{13} & - \frac {2}{13} \end{bmatrix}$


Correct Option: C
Explanation:
$A=\begin{bmatrix} 2 & 3\\ 5 & 1\end{bmatrix}$

Cofactor matrix of $A=\begin{bmatrix} 1 & -5\\ -3 & 2\end{bmatrix}$

adj. $A=\begin{bmatrix} 1 & -5\\ -3 & 2\end{bmatrix}'=\begin{bmatrix} 1 & -3\\ -5 & 2\end{bmatrix}$

$|A|=2\times 1-(3\times 5)$

$=2-15=-13$

$A^{-1}=\dfrac{adj. A}{|A|}=\dfrac{-1}{13}\begin{bmatrix} 1 & -3\\ -5 & 2\end{bmatrix}$

$=\begin{bmatrix} \dfrac{-1}{13} & \dfrac{3}{13}\\ \dfrac{5}{13} & \dfrac{-2}{13}\end{bmatrix}$.

If $A$ and $B$ are two non singular matrices of the same order such that ${ B }^{ r }=I$, for some positive integer $r>1$, then ${ A }^{ -1 }{ B }^{ r-1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A=$

  1. $I$

  2. $2I$

  3. $O$

  4. $-I$


Correct Option: C
Explanation:

${ A }^{ -1 }{ B }^{ r-1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A$

$=A^{-1}B^rB^{-1}A - A^{-1}B^{-1}A $
$={ A }^{ -1 }I{ B }^{ -1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A       (\because B^{r}=I)$
$={ A }^{ -1 }{ B }^{ -1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A$
$= O$

Hence, option C.

If $\begin{pmatrix}1 & -tan  \theta\ tan  \theta & 1\end{pmatrix} \begin{pmatrix} 1 & tan  \theta\ - tan  \theta & 1\end{pmatrix}^{-1} = \begin{bmatrix} a& -b\ b & a\end{bmatrix}$, then

  1. $a = cos 2 \theta$

  2. $a = 1$

  3. $b = sin 2 \theta$

  4. $b = -1$


Correct Option: A,C
Explanation:
we have 

$ \begin{pmatrix} 1 & tan  \theta\\ - tan  \theta & 1\end{pmatrix}^{-1} = \dfrac{1}{1+tan^2\theta} \begin{pmatrix}1 & -tan  \theta\\ tan  \theta & 1\end{pmatrix} $

$\therefore \begin{bmatrix} a& -b\\ b & a\end{bmatrix}=cos^2\theta \begin{pmatrix}1 & -tan  \theta\\ tan  \theta & 1\end{pmatrix} \begin{pmatrix}1 & -tan  \theta\\ tan  \theta & 1\end{pmatrix}$

We get 

$\begin{pmatrix}cos2\theta & -sin2\theta\\ sin2\theta & cos2\theta \end{pmatrix}$

$\therefore a=cos2\theta, b=sin2\theta$

$A = \begin{bmatrix} 1& 0 & 0\0 &  1& 1\ 0 & -2 & 4\end{bmatrix}, I = \begin{bmatrix}1 & 0 & 0\ 0& 1 & 0\ 0 & 0 & 1\end{bmatrix}$ and $A^{-1} = \left [ \dfrac{1}{6} (A^2 + cA + dI) \right]$

The value of $(c,d)$ is

  1. $(-6, -11)$

  2. $(6, 11)$

  3. $(-6, 11)$

  4. $(6, -11)$


Correct Option: C
Explanation:

Given $A = \begin{bmatrix} 1& 0 & 0\0 &  1& 1\ 0 & -2 & 4\end{bmatrix}$
The characteristic equation of $A$ is given by 
$|A-\lambda I|=0$
$\begin{vmatrix} 1-\lambda  & 0 & 0 \ 0 & 1-\lambda  & 1 \ 0 & -2 & 4-\lambda  \end{vmatrix}=0$

$\Rightarrow {\lambda}^{3}-6{\lambda}^{2}+11\lambda-6=0$
$\Rightarrow A^{3}-6A^{2}+11A-6=0$    ($\because$ Every square matrix satisfies its characteristic equation )
$\Rightarrow A^{2}-6A+11I-6A^{-1}=0$
$\Rightarrow A^{-1}=\displaystyle \frac{1}{6}(A^{2}-6A+11I)$

Comparing this with $A^{-1} = \left [ \frac{1}{6} (A^2 + cA + dI) \right]$, we get $c=-6, d=11$
$\therefore (c,d) = (-6,11)$

Hence, option C.

- Hide questions