Finding the square of a number - class-VIII
Description: finding the square of a number | |
Number of Questions: 55 | |
Created by: Avatara Chahal | |
Tags: square and square roots maths squares and square roots squares, square roots, cubes, cube roots square roots and cube roots |
Write down the values of:
$(5+\sqrt3)^2$
Write down the values of:
$(\sqrt5+\sqrt6)^2$
Expand $(5-6\sqrt3)^2$
Write down the values of:
$4(\sqrt6-3)^2$
Write down the values of:
$(3+2\sqrt5)^2$
Evaluate: ${(5^2+12^2)^{\frac{1}{2}}}3$
Find the square of $2a+b$
Find the square of $3a + 7b$
$\sqrt{3\,+\,2\,\sqrt{2}}\,-\,\sqrt{3\,-\,2\,\sqrt{2}}$ is equal to
Use identities to evaluate $\displaystyle \left ( 998 \right )^{2}$
Use identities to evaluate $\displaystyle \left ( 97 \right )^{2}$
Use identities to evaluate $\displaystyle \left ( 101 \right )^{2}$
Use identities to evaluate :$\displaystyle \left ( 502 \right )^{2}$
The simplified value of $\displaystyle \left ( \sqrt{3}+1 \right )^{2}-2\left ( 2+\sqrt{3} \right )$ is
If $3x - \dfrac {1}{2x} = 6$, then the value of $9x^{2} + \dfrac {1}{4x^{2}}$
If $x - \dfrac {1}{x} = \sqrt {6}$, then $x^{2} + \dfrac {1}{x^{2}}$ is ________.
If $2l - 3m = -1$ and $lm = 20$, then the value of $4l^{2} + 9m^{2}$ is ________.
On simplification the product of given expression $\left (x - \dfrac {1}{x}\right )\left (x + \dfrac {1}{x}\right )\left (x^{2} + \dfrac {1}{x^{2}}\right )$ is ________.
Find the missing term in the following problem.
$\left (\dfrac {3x}{4} - \dfrac {4y}{3}\right )^{2} = \dfrac {9x^{2}}{16} + \dfrac {16y^{2}}{9} + ?$.
$(9p - 5q)^{2} + 180 pq$ is equivalent to _______.
If $\sqrt{\left(12+\sqrt{12+\sqrt{12+....}}\right)}=x$, then the value of x is ____________.
$\sqrt { 3+2\sqrt { 2 } } +\sqrt { 3-2\sqrt { 2 } } =...$ ?
if $y = 500{e^{7x}} + 600{e^{-7x}}$ . Then $\dfrac{{d^2y}}{dx^2} = 49y$
Evaluate each of the following using identities :
i) $(399)^2$
ii) $(0.98)^2$
iii) $991 \times 1009$
If $a + b + c = 9$ and $ab + bc + ca = 26$, then the value of $a^2 + b^2 + c^2$ is
If $x^{2}+2(a-1)x+a+5=0$ has real roots to the interval $(1,3)$, then complete set of value of $'a'$ is
Find the square of $83$ without actual multiplication.
If $x^{2}+\dfrac{1}{^{x^2}}=18$, then the value of $\left(x+\dfrac{1}{x}\right)$ is ?
If $5a\sqrt{b}-\dfrac{3}{2b\sqrt{a}}=12$ and $a=8b$, then the value of $25a^{2}b+\dfrac{9}{4ab^{2}}$ is ?
If $x+\cfrac{1}{x}=5$, then ${x}^{2}+\cfrac{1}{{x}^{2}}$ is equal to
If ${x}^{2}+\cfrac{1}{{x}^{2}}=102$, then $x-\cfrac{1}{x}$ is equal to
If ${x}^{3}+\cfrac{1}{{x}^{3}}=110$, then $x+\cfrac{1}{x}$ is equal to
If $x+\cfrac{1}{x}=4$, then ${x}^{4}+\cfrac{1}{{x}^{4}}$ is equal to
Evaluate $\displaystyle \left ( \frac{2x}{7} - \frac{7y}{4} \right )^{2}$
Evaluate $\displaystyle \left ( \frac{7}{8}x + \frac{4}{5}y \right ) ^{2}$
Find square of the following expression
Find square of the following expression
Find the square of $\displaystyle a + 2b + c$
Find the square of $\displaystyle 2a - b - 3c$
Evaluate :
Find the squares of the following numbers without actual multiplication:
$49$
$52$
Find the square of $43$ without multiplication.
Find the square of $125$.
Without doing multiplication, find the square of $29.$
Without actual finding the square of the numbers, find the value of $120^2 - 119^2$.
Without actual finding the square of the numbers, find the value of $36^2 - 35^2$.
A factor of $(3x^{4} - 12y^{4})$ is _________.
Find the square of the following number without multiplication.
If sin$\theta -cosec \theta =\sqrt{5},$ then the value of sin $\theta + cosec \theta$ is:
Evaluating the following :
$(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$
Evaluating the following :
$(1+2\sqrt{x})^{5}+(1-2\sqrt{x})^{5}$