0

Kinetic study of some first order reactions - class-X

Description: kinetic study of some first order reactions
Number of Questions: 55
Created by:
Tags: chemistry chemical reactions and equations chemical kinetics
Attempted 0/55 Correct 0 Score 0

The time required to complete $\dfrac{3}{4}th$ of first order reaction is $32 min.$ then find $t _{\frac{1}{2}} = ?$

  1. $16$

  2. $160$

  3. $1600$

  4. $32$


Correct Option: A
Explanation:

$t _{\dfrac{3}{4}} = 2t _{\dfrac{1}{2}} = 32min.$
$t _{\dfrac{1}{2}} = 16min.$

The first order rate constant for dissociation of $N _2O _5$ is $6.2\times 10^{-4}s^{-1}$. The half-life period (in $s$) of this dissociation will be.

  1. $1117.7$

  2. $111.7$

  3. $223.4$

  4. $160.9$


Correct Option: A
Explanation:
$t _{1/2}=\displaystyle\frac{0.693}{k}$
$=\displaystyle\frac{0.693}{6.2\times 10^{-4}}=1117.7s$

For a first order reaction with half-life of $150$ second , the time taken for the concentration of the reactant to fall from $M/10$ to $M/100$ will be approximately 

  1. $1500\ s$

  2. $500\ s$

  3. $900\ s$

  4. $600\ s$


Correct Option: A

How many minutes will it take to plate out $5.0g$ of $Cr$ form a $Cr _2(SO _4) _3$ solution using a current of $1.50A$?

  1. $254$

  2. $309$

  3. $152$

  4. $103$


Correct Option: B

Which of the following is first order ?
i) Decomposition of $NH _{4}NO _{3}$ in aqueous solution.
ii) Inversion of cane sugar in the presence of an acid
iii) Base hydrolysis of ethyl acetate.
iv) All radioactive decays.
The correct combination is:

  1. i, ii, iv

  2. All are correct

  3. ii, iv

  4. ii, iii, iv


Correct Option: A
Explanation:

Base hydrolysis of ethyl acetate is a second order reaction.
The other reactions are first order reactions.

The acid hydrolysis of the ester is:
(i) first order reaction
(ii) bimolecular reaction
(iii) unimolecular reaction
(iv) second order reaction

The true statements are:

  1. i, ii

  2. All are correct

  3. ii, iv

  4. ii, iii, iv


Correct Option: A
Explanation:

$CH _{3}COOC _{2}H _{5}+H _{2}O\rightarrow CH _{3}COOH+C _{2}H _{5}OH$
$ rate=K[CH _{3}COO\ C _{2}H _{5}]^{1}[H _{2}O]^{0}$
thus, it is first order & bi molecular reaction.

Thus, statement i and ii are correct.

The hydrolysis of acetic anhydride$(CH _3CO) _2O+ H _2O\rightarrow2CH _3COOH$ is an example of :

  1. Pseudo first order reaction

  2. Pseudo second order reaction

  3. Zero order reaction

  4. Third order reaction


Correct Option: A
Explanation:

It is an example of pseudo first order reaction because here $H _{2}O$ is in excess. Thus, rate of reaction depends on only concentration of acetic anhydride.
So, rate is given by
$=k[(CH _{3}CO) _{2}O]$

The rate constant for the reaction $2{N} _{2}{O} _{5}\rightarrow 4{N}{O} _{2}+{O} _{2}$, is $3.0\times 10^{-5}\sec^{-1}$. lf the rate is $2.40\times 10^{-5}$ mol litre $sec^{-1}$ then, the concentration of ${N} _{2}{O} _{5} ($in mol $litre^{-1})$ is:

  1. 1.4

  2. 1.2

  3. 0.04

  4. 0.8


Correct Option: D
Explanation:

Rate constant $= 3 \times 10^{-5} sec^{-1}$


So, from it's unit it is clear that, it is a first order reaction.


For first order reaction the expression will be:
Rate $= K [N _{2}O _{5}]$
$[N _{2}O _{5}] = \dfrac{2.40 \times 10^{-5}}{3 \times 10^{-5}}$$=\dfrac{2.40}{3} = 0.8$

For which of the following reactions the molecularity and orders of the reaction are two and two respectively:

  1. ester hydrolysis in acid medium.

  2. inversion of cane sugar in acid aqueous solution.

  3. hydrolysis of ethyl acetate in caustic soda aqueous solution.

  4. decomposition hydrogen peroxide in acid solution.


Correct Option: C
Explanation:

The hydrolysis of ethyl acetate in caustic soda aqueous solution is represented by the following reaction.
$CH _{3}COOC _{2}H _{5}+NaOH\rightarrow  CH _{3}COONa+C _{2}H _{5}OH$
The expression for the rate of the reaction is $r=k[CH _{3}COOC _{2}H _{5}][NaOH].$
The overall order of the reaction is 2 and it is a bimolecular reaction.

The rate constant, $\mathrm{k}$ for the reaction $\displaystyle \mathrm{N} _{2}\mathrm{O} _{5}(\mathrm{g})\rightarrow 2\mathrm{N}\mathrm{O} _{2}(\mathrm{g})+\frac{1}{2}\mathrm{O} _{2}(\mathrm{g})$ ls $2.3\times 10^{-2}\mathrm{s}^{-1}$. Which equation given below describes the change of $[\mathrm{N} _{2}\mathrm{O} _{5}]$ with time?

$[\mathrm{N} _{2}\mathrm{O} _{5}] _{0}$ and $[\mathrm{N} _{2}\mathrm{O} _{5}] _{\mathrm{t}}$ correspond to concentration of $\mathrm{N} _{2}\mathrm{O} _{5}$ initially and at time $\mathrm{t}$.

  1. $[N _{2}O _{5}] _{t}=[N _{2}O _{5}] _{0}+kt$

  2. $[N _{2}O _{5}] _{0}=[N _{2}O _{5}] _{t}e^{kt}$

  3. $log _{10}[N _{2}O _{5}] _{t}=log _{10}[N _{2}O _{5}] _{0}-kt$

  4. $ln\dfrac{[N _{2}O _{5}] _{0}}{[N _{2}O _{5}] _{t}}=kt$


Correct Option: D
Explanation:

The decomposition of  $\mathrm{N} _{2}\mathrm{O} _{5}$ follows first order kinetics.


The integrated rate law expression is $ln\dfrac{[N _{2}O _{5}] _{0}}{[N _{2}O _{5}] _{t}}=kt$.

It can also be represented as $log _{10}[N _{2}O _{5}] _{t}=log _{10}[N _{2}O _{5}] _{0}-\dfrac {kt} {2.303}.$


It can also be represented as $[N _{2}O _{5}] _{t}=[N _{2}O _{5}] _{0}e^{-kt}.$

For the reaction ; $2H _2O _2(aq)\rightarrow 2H _2O(l)+O _2(g)$, rate of decomposition for $H _2O _2=k[H _2O _2]^2$
  1. True

  2. False


Correct Option: B
Explanation:

For $2H _2O _2(aq)\rightarrow 2H _2O(l)+O _2(g)$ rate of decomposition for $H _2O _2=k[H _2O _2]$. It is a first order reaction.  It proceeds through following mechanism.

$\displaystyle H _2O _2 \xrightarrow {slow} H _2O + O $

$\displaystyle  O + O \xrightarrow {fast} O _2$

For the reaction; $2N _2O _5\rightarrow 4NO _2+O _2$, rate and rate constant are $1.02\times 10^{-4} M sec^{-1}$ and $3.4\times 10^{-5}  sec^{-1}$ respectively, then concentration of $N _2O _5$, at that time will be:

  1. $1.732\ M$

  2. $3\ M$

  3. $1.02\times 10^{-4} M$

  4. $3.5\times 10^{5} M$


Correct Option: B
Explanation:
From the unit of rate constant we can identify the reaction as first order.

As we know,
$r=K[N _2O _5]$

$\therefore [N _2O _5]=\frac {r}{K}=\frac {1.02\times 10^{-4}}{3.4\times 10^{-5}}=3M$.

For the first order reaction:-
$2N _2O _5(g)\rightarrow 4NO _2(g)+O _2(g)$

  1. the concentration of the reactant decreases exponentially with time

  2. the half-life of the reaction decreases with increasing temperature

  3. the half-life of the reaction depends on the initial concentration of the reactant

  4. the reaction proceeds to 99.6% completion in eight half-life duration


Correct Option: A,B,D
Explanation:

Option (A),(B),(D) are correct.
(C) : The half-life of the reaction is independent of the initial concentration of the reactant. Half-life for first order reaction is :$t _{1/2} = 0.693/k$
A first-order reaction has a rate proportional to the concentration of one reactant.
First-order rate constants have units of $sec^{-1}$. In other words, a first-order reaction has a rate law in which the sum of the exponents is equal to 1. 

Among the following unimolecular reaction is

  1. $C _{12}H _{22}O _{11}+H _2O \rightarrow C _6H _{12}O _6+C _6H _{12}O _6$

  2. $2NO+O _2 \rightarrow 2NO _2$

  3. $2H _2O _2 \rightarrow 2H _2O+O _2$

  4. $2NO _2+F _2 \rightarrow 2NO _2F$


Correct Option: A

The reaction; $N _2O _5(g) \longrightarrow 2NO _2(g)+\frac {1}{2}O _2(g)$ is of first order for $N _2O _5$ with rate constant $6.2\times 10^{-4}s^{-1}$. What is the value of rate of reaction when $[N _2O _5]=1.25 \ mol L^{-1}$?

  1. $5.15\times 10^{-5}mol L^{-1}s^{-1}$

  2. $6.35\times 10^{-3}mol L^{-1}s^{-1}$

  3. $7.75\times 10^{-4}mol L^{-1}s^{-1}$

  4. $3.85\times 10^{-4}mol L^{-1}s^{-1}$


Correct Option: C
Explanation:

As we know,
$r=K[N _2O _5]=6.2\times 10^{-4}\times 1.25=7.75\times 10^{-4} mol L^{-1} s^{-1}$.

The concentration of acetate ions in $1 M$ acetic acid $(K _{a} = 2 \times 10^{-5})$ solution containing $0.1 M - HCl$ is

  1. $2 \times 10^{-1}$

  2. $2 \times 10^{-3}$

  3. $2 \times 10^{-4}$

  4. $4.4 \times 10^{-3}$


Correct Option: C

The hydrolysis of an ester was carried out with 0.1 M $H _2SO _4$ and 0.1 M HCl separately. Which of the following expressions between the rate consists is expected? The rate expression being rate = $k[H^{\oplus}][ester]$ 

  1. $k _{HCl}\, =\, k _{H _2SO _4}$

  2. $k _{HCl}\, >\, k _{H _2SO _4}$

  3. $k _{HCl}\, <\, k _{H _2SO _4}$

  4. $k _{ H _2SO _4}\, =\, k _{HCl}$


Correct Option: B
Explanation:

$[H _2SO _4]\, =\, 0.1\, M\, =\, 0.1\, \times\, 2\, =\, 0.2 N$

$[HCl]$ = $0.1 N$

In case of $[H _2SO _4]$ 

$r _1\, =\, k[H^{\oplus}][Ester]$ 

$\displaystyle k _{H _2SO _4}\, = \frac{r _1}{2\, N\, \times\, [Ester]}$ 

In case of HCl, $r _1\, =\, k[H^{\oplus}]\, [Ester]$ 

$\displaystyle k _{HCl}\, =\, \frac{r _2}{1\, N\, [Ester]}$ 

Hence $K _{HCl}\, >\, K _{H _2SO _4}$

$2N _2O _5\, \rightarrow\, 4NO _2\, +\, O _2$

If $\displaystyle -\, \frac{d[N _2O _5]}{dt}\, =\, k _1[N _2O _5]$

$\displaystyle \frac{d[NO _2]}{dt}\, =\, k _2[N _2O _5]$

$\displaystyle \frac{d[O _2]}{dt}\, =\, k _3[N _2O _5]$
What is the relation between $k _1, k _2\, and\, k _3$ ?

  1. $k _1\, =\, k _2\, =\, k _3$

  2. $2k _1\, =\, k _2\, =\, 4k _3$

  3. $2k _1\ =\, 4k _2\, =\, k _3$

  4. None


Correct Option: B
Explanation:

As we know,
for a reaction:
$2N _2O _5\, \rightarrow\, 4NO _2\, +\, O _2$
$\displaystyle -\, \frac{1}{2}\, \frac{d[N _2O _5]}{dt}\, =\, \frac{1}{4}\, \frac{d[NO _2]}{dt}\, =\, \frac{d[O _2]}{dt}$
So
$2k _1\, =\, k _2\, =\, 4k _3$

The inversion of cane sugar proceeds with the half-life of 500 min at pH 5 for any concentration of sugar. However, if pH = 6, the half life changes to 50 min. The rate law expression for the sugar inversion can be written as:

  1. $r\, =\, k[sugar]^2[H]^6$

  2. $r\, =\, k[sugar]^1[H]^0$

  3. $r\, =\, k[sugar]^0[H^{\oplus}]^6$

  4. $r\, =\, k[sugar]^0[H^{\oplus}]^1$


Correct Option: B
Explanation:

Given,
Since $t _{1/2}$ does not depends upon the sugar concentration means it is first order w.r.t [sugar]
$\therefore t _{1/2}\, \propto\, [sugar]^{1}$
$t _{1/2}\, \times\, a^{n\, -\, 1}\, =\, k$
$\displaystyle \frac{(t _1/2) _1}{(t _{1/2) _2}}\, =\, \frac{[H^{\oplus}] _1^{1-n}}{[H^{\oplus}] _2^{1-n}}$

$\displaystyle \frac{500}{50}\, =\, \left ( \frac{10^{-5}}{10^{-6}}\right )^{1-n}$

10 = $(10)^{1-n}\, \Rightarrow\, n\, =\, 0$

The hydrolysis of ethyl acetate in an acidic medium is a:

  1. zero order reaction

  2. first order reaction

  3. pseudo first order reaction

  4. second order reaction


Correct Option: B
Explanation:
$1.$ Decomposition of $H _2O _2$ in aqueous solution.
$H _2O _2\rightarrow H _2O+1/2O _2$
$2.$ Hydrolysis of methyl acetate in the presence of mineral acids.
$CH _3COOCH _3 +H _2O\rightarrow CH _3COOH+CH _3OH$
$3.$ Inversion of cane sugar in the presence of mineral acids.
$C _{12}H _{22}O _{11}+H _2O\xrightarrow {[H^+]}C _6H _{12}O _6+C _6H _{12}O _6$
$4.$ Decomposition of ammonium nitrate in aqueous solution.
$NH _4NO _2\rightarrow N _2+2H _2O$
$5.$ Hydrolysis of diazo derivatives.
$C _5H _5N+NCl + H _2O\rightarrow C _6H _5OH+N _2+HCl$
FIRST ORDER REACTION : When the rate of reaction depends only on one concentration term of reactant. A first order reaction is one whose rate varies as first power of the concentration of the reactant, i.e. the rate increases as number of times as the concentration of reactant is increased.
Examples are given above:

The reaction $2N _2O _5(g)\, \rightarrow\, 4NO _2(g)\, +\, O _2(g)$ is first order w.r.t. $N _2O _5$. Which of the following graphs would yield a straight line ?

  1. $log\, p _{N _2O _5}$ vs time with -ve slope

  2. $(p _{N _2O _5})^{-1}$ vs time

  3. $p _{N _2O _5}$ vs time

  4. $log\, p _{N _2O _5}$ vs time with +ve slope


Correct Option: A
Explanation:

For a first order reaction, the graph of logarithm of the partial pressure of reactant to the time is a straight line with negative slope. 


Hence, $\displaystyle log\, p _{N _2O _5}$ vs time t will give a straight line.

When ethyl acetate was hydrolyzed in the presence of $0.1 M$ $HCl$, the constant was found to be $5.40\, \times\, 10^{-5}\, s^{-1}$. But when $0.1$ $M\, H _2SO _4$ was used for hydrolysis, the rate constant was found to be $6.20\, \times\,10^{-5}\, s^{-1}$. From these we can say that:

  1. $H _2SO _4$ is stronger than $HCl.$

  2. $H _2SO _4$ and $HCl$ are both of the same strength.

  3. $H _2SO _4$ is weaker than $HCl.$

  4. The data is insufficient to compare the strength of $HCl$ ad $H _2SO _4$.


Correct Option: A
Explanation:

Since $k _{H _2SO _4}\, >\, k _{HCl},$ hence $H _2SO _4$ is stronger acid than HCl.

For the reaction $2N _2O _5\, \rightarrow\, 4NO _2\, +\, O _2$, if $\displaystyle -\, \frac{d[N _2O _5]}{dt}\, =\, k _1[N _2O _5]$, $\displaystyle \frac{d[NO _2]}{dt}\, =\, k _2[N _2O _5]$, $\displaystyle \frac{d[O _2]}{dt}\, =\, k _3[N _2O _5]$.
What is the relation between $k _1, k _2$ and $k _3$?

  1. $k _1\, =\, k _2\, =\, k _3$

  2. $2k _1\, =\, k _2\, =\, 4k _3$

  3. $2k _1\ =\, 4k _2\, =\, k _3$

  4. None of the above


Correct Option: B
Explanation:

As we know, for a reaction: $2N _2O _5\, \rightarrow\, 4NO _2\, +\, O _2$

$\displaystyle -\, \frac{1}{2}\, \frac{d[N _2O _5]}{dt}\, =\, \frac{1}{4}\, \frac{d[NO _2]}{dt}\, =\, \frac{d[O _2]}{dt}$

So, $2k _1\, =\, k _2\, =\, 4k _3.$

The rate law for the reaction : $:Ester+H^+\rightarrow Acid+Alcohol\,$ is
$V\,=\,k\;\left[ester \right]\;\left[H _3O^+ \right]^0$
What would be the new rate if
(a)$\;$conc. of ester is doubled
(b)$\;$conc. of $:H^{+}$ is doubled

  1.  (a)$\;v\;$ (b)$\;2v$

  2.  (a)$\;2v\;$ (b)$\;v$

  3.  (a)$\;2v\;$ (b)$\;2v$

  4. None of the above 


Correct Option: B
Explanation:

$\upsilon=k[ester][H _3O^+]$


(a) Conc. of ester is doubled rate also double that is $2\upsilon$ because rate of the reaction depends upon ester concentration.

(b) Conc. of $H^+$ is doubled rate does not change that is $\upsilon$ because rate of the reaction does not depends on $H _3O^+$ concentration.

So answer is B.

In the presence of acid, the initial concentration of cane-sugar was reduced from 0.2 M to 0.1 in 5 hr and to 0.05 M in 10 hr. The reaction must be of :

  1. Zero order

  2. First order

  3. Second order

  4. Fractional order


Correct Option: B
Explanation:

$\displaystyle 0.2\, M \underset{t _{1/2}\, =\, 5hr}{\rightarrow} 0.1\, M \underset{t _{1/2}\, =\, 5hr}{\rightarrow} 0.05\, M$

$From\, 0.2\, M \underset{t\, =\, 10hr}{\rightarrow}\, 0.05\, M$
So $t _{1/2}$ is constant which is characteristic of first order reaction.
Hence, $t _{1/2}\, \propto\, (a)^0$.

The decomposition of $H _2O _2$ can be followed by titration with $KMnO _4$ and is found to be a first order reaction. The rate constant is $4.5\, \times\, 10^{-2}$. In an experiment, the initial titrate value was 25 mL. The titrate value will be 5 mL after a lapse of :

  1. $4.5\, \times\, 10^{-2}\, \times\, 5\, min$

  2. $\displaystyle \frac{log _{e}5}{4.5\, \times\, 10^{-2}}\, min$

  3. $\displaystyle \frac{log _{e}5/4}{4.5\, \times\, 10^{-2}}\, min$

  4. None of the above


Correct Option: B
Explanation:

As we know,
$\displaystyle t\, =\, \frac{2.303}{k}\, log\, \frac{V _0}{V _1}$

$\displaystyle =\, \frac{1}{k}\, ln\, \frac{V _0)}{V _1}$

$\displaystyle =\, \frac{1}{4.5\, \times\, 10^{-2}\, min^{-1}}\, In\, \frac{25mL}{5mL}$

$\displaystyle =\, \frac{log _{e}5}{4.5\, \times\, 10^{-2}}min$ 

The half-life of decomposition of $N _2O _5$ is a first order reaction represented by:


$N _2O _5\rightarrow N _2O _4+1/2O _2$

After 15 minutes, the volume of $O _2$ produced is 9 $mL$ and at the end of the reaction is 35 $mL$. The rate constant is equal to:

  1. $\;\displaystyle\frac{1}{15}log _e\displaystyle\frac{35}{26}$

  2. $\;\displaystyle\frac{1}{15}log _e\displaystyle\frac{44}{26}$

  3. $\;\displaystyle\frac{1}{15}log _e\displaystyle\frac{35}{36}$

  4. None of the above 


Correct Option: A
Explanation:

For a first order reaction,

$KT= ln (a/a-x)$

So, for the following reaction:

$N _2O _5\rightarrow N _2O _4+1/2O _2$

$K\times15\,=\,ln\begin{pmatrix}\displaystyle\frac{35-0}{35-9}\end{pmatrix}$


$N _2O _5\rightarrow N _2O _4+1/2O _2$

$K= \dfrac{1}{15} \,ln\begin{pmatrix}\displaystyle\frac{35}{26}\end{pmatrix}$

The reaction $N _{2}O _{5}$ (in $CCl _{4}$) $\rightarrow 2NO _{2}+1/2O _{2}(g)$ is the first order in $N _{2}O _{5}$ with rate constant $6.2\times 10^{-4}S^{-1}$. 


What is the value of the rate of reaction when $N _2O _5=1.25:mole:L^{-1}$ ?

  1. $7.75\times 10^{-4}mol:L^{-1}S^{-1}$

  2. $6.35\times 10^{-3}mol:L^{-1}S^{-1}$

  3. $5.15\times 10^{-5}mol:L^{-1}S^{-1}$

  4. $3.85\times 10^{-4}mol:L^{-1}S^{-1}$


Correct Option: A
Explanation:
For the first-order reaction, the rate of the reaction is given by the expression

Rate $\displaystyle  = k [N _2O _5]$ where k is the rate constant.

Substitute values in the above expression

Rate $\displaystyle  = 6.2\times 10^{-4}S^{-1} \times 1.25\:mole\:L^{-1} = 7.75\times 10^{-4}mol\:L^{-1}S^{-1}$

So, the correct option is $A$

The half life of decomposition of $N _2O _5$ is a first order reaction represented by
$N _2O _5\, \rightarrow\, N _2O _4\, =\, 1/2O _2$
After 15 min the volume of $O _2$ produced is $9mL$ and at the end of the reaction $35 mL$. The rate constant is equal to :

  1. $\displaystyle \frac{1}{15}\, log\frac{35}{26}$

  2. $\displaystyle \frac{1}{15}\log\frac{44}{26}$

  3. $\displaystyle \frac{1}{15}\, log\frac{35}{36}$

  4. None of the above 


Correct Option: A
Explanation:

$\displaystyle k\, =\, \frac{2.303}{t}\, log\, \frac{V _{\infty}}{V _{\infty}\, -\, V _t}$

$\displaystyle =\, \frac{1}{t}\, log _e\, \frac{V _{\infty}}{V _{\infty}\, -\, V _t}$

$\displaystyle \frac{1}{15}\, log _e\, \frac{35mL}{(35\, -\, 9)\, mL}\, =\, \frac{1}{15}\, log _e\, \frac{35}{26}$

The rate constant $k$, for the reaction
${N} _{2}{O} _{5}(g) \longrightarrow 2{NO} _{2}(g)+\cfrac{1}{2}{O} _{2}(g)$
is $1.3\times {10}^{-2}{s}^{-1}$. Which equation given below describes the change of $[{N} _{2}{O} _{5}]$ with time?
${[{N} _{2}{O} _{5}]} _{0}$ and ${[{N} _{2}{O} _{5}]} _{t}$ correspond to concentration of ${N} _{2}{O} _{5}$ initially and at time $t$.

  1. ${[{N} _{2}{O} _{5}]} _{t}={[{N} _{2}{O} _{5}]} _{0}+kt$

  2. ${[{N} _{2}{O} _{5}]} _{0}={[{N} _{2}{O} _{5}]} _{t}{e}^{kt}$

  3. $\log{{[{N} _{2}{O} _{5}]} _{t}}=\log{{[{N} _{2}{O} _{5}]} _{0}}+kt$

  4. $\ln{\cfrac{{[{N} _{2}{O} _{5}]} _{0}}{{[{N} _{2}{O} _{5}]} _{t}}}=kt$


Correct Option: D
Explanation:

As the unit of rate constant is ${sec}^{-1}$, the reaction is first order reaction. 

${N} _{2}{O} _{5}(g) \longrightarrow 2{NO} _{2}(g)+\cfrac{1}{2}{O} _{2}(g)$
$k{t}=\ln{\cfrac{a}{(a-x)}}$ 
$kt=\ln{\cfrac { { [{ N } _{ 2 }{ O } _{ 5 }] } _{ 0 } }{ { [{ N } _{ 2 }{ O } _{ 5 }] } _{ t } } }$

Inversion of cane sugar in dilute acid is:

  1. bimolecular reaction

  2. pseudo-unimolecular reaction

  3. unimolecular reaction

  4. trimolecular reaction


Correct Option: B
Explanation:

${ C } _{ 12 }{ H } _{ 22 }{ O } _{ 11 }+{ H } _{ 2 }O\xrightarrow [  ]{ \quad { H }^{ + }\quad  } { C } _{ 6 }{ H } _{ 12 }{ O } _{ 6 }+{ C } _{ 6 }{ H } _{ 12 }{ O } _{ 6 }$
Rate $=k\left[ { C } _{ 12 }{ H } _{ 22 }{ O } _{ 11 } \right] \left[ { H } _{ 2 }O \right] $
When water is in excess, its concentration will be constant.
$\therefore $ Rate $={ k }^{ ' }\left[ { C } _{ 12 }{ H } _{ 22 }{ O } _{ 11 } \right] $
The reaction is, therefore, pseudo first order or pseudo unimolecular reaction.

For the reaction, $2{N} _{2}{O} _{5}\longrightarrow 4{NO} _{2}+{O} _{2}$ the rate of reaction is:

  1. $\cfrac{1}{2}\cfrac{d}{dt}[{N} _{2}{O} _{5}]$

  2. $2\cfrac{d}{dt}[{N} _{2}{O} _{5}]$

  3. $\cfrac{1}{2}\cfrac{d}{dt}[{NO} _{2}]$

  4. $4\cfrac{d}{dt}[{NO} _{2}]$


Correct Option: C
Explanation:

For the reaction,  $\displaystyle 2{N} _{2}{O} _{5}\longrightarrow 4{NO} _{2}+{O} _{2} $  the rate of reaction is  $\displaystyle \cfrac{1}{2}\cfrac{d}{dt}[{NO} _{2}]$


 Rate of reaction $\displaystyle -\cfrac{1}{2}\cfrac{d[{N} _{2}{O} _{5}]}{dt}=\cfrac{1}{4}\cfrac{d[{NO} _{2}]}{dt}$

The rate constant for the reaction,

$2{N} _{2}{O} _{5}\longrightarrow 4{NO} _{2}+{O} _{2}$ is $3.0\times {10}^{-4}{s}^{-1}$.

 If start made with $1.0$ $mol$ ${L}^{-1}$ of ${N} _{2}{O} _{5}$, calculate the rate of formation of ${NO} _{2}$ at the moment of the reaction when concentration of ${O} _{2}$ is $0.1mol$ ${L}^{-1}$ :

  1. $2.7\times {10}^{-4}mol$ ${L}^{-1}{s}^{-1}$

  2. $2.4\times {10}^{-4}mol$ ${L}^{-1}{s}^{-1}$

  3. $4.8\times {10}^{-4}mol$ ${L}^{-1}{s}^{-1}$

  4. $9.6\times {10}^{-4}mol$ ${L}^{-1}{s}^{-1}$


Correct Option: D
Explanation:

$Mol$ ${L}^{-1}$ of ${N} _{2}{O} _{5}$ reacted $=2\times 0.1=0.2$

$[{N} _{2}{O} _{5}]$ left $=1.0-0.2=0.8mol$ ${L}^{-1}$

Rate of reaction $=k\times [{N} _{2}{O} _{5}]$

$=3.0\times {10}^{-4}\times 0.8$

$=2.4\times {10}^{-4}mol$ ${L}^{-1}{s}^{-1}$

Rate of formation of ${NO} _{2}$

$=4\times 2.4\times {10}^{-4}=9.6\times {10}^{-4}mol$ ${L}^{-1}{s}^{-1}$

$H _2O _2$ decomposes with first order kinetics in a 3 lit. container. If the pressure developed in 10 min. is 380 mm, the average rate at $27^oC$ is:

  1. $0.01M.min^{-1}$

  2. $0.002M.min^{-1}$

  3. $0.05M.min^{-1}$

  4. $0.06M.min^{-1}$


Correct Option: A
Explanation:

$t=A.{ e }^{ -kt }\ So,\quad (A-{ A } _{ o })=A.({ e }^{ -kt }-1)\ \therefore 380=A.({ e }^{ -kt }-1)\ { A } _{ o }=\cfrac { 380 }{ { e }^{ -10k }-1 } $
 Otherewise,
$ { P } _{ o }=[{ A } _{ o }]RT\ { P } _{ o }={ [{ A }] } _{ 10 }RT\ \cfrac { { P } _{ 10 }-{ P } _{ o } }{ 7 } =\cfrac { ({ A } _{ 10 }-{ A } _{ o })RT }{ 7 } \ \cfrac { \cfrac { 760 }{ 380 }  }{ 10 } =\vartheta .RT\ \cfrac { 2 }{ 10RT } =\vartheta $
$ \vartheta \sim 0.01{ M. }{ min }^{ -1 }\longrightarrow$ Option (A)

The rate constant of the reaction, $2{ H } _{ 2 }{ O } _{ 2 }\left( aq. \right) \rightarrow 2{ H } _{ 2 }O\left( l \right) +{ O } _{ 2 }\left( g \right) $, is $3\times { 10 }^{ -3 }{ min }^{ -1 }$.
At what concentration of ${ H } _{ 2 }{ O } _{ 2 }$, the rate of the reaction will be $2\times { 10 }^{ -4 }M{ s }^{ -1 }$?

  1. $6.67\times { 10 }^{ -3 }\ M$

  2. $2\ M$

  3. $4\ M$

  4. $0.08\ M$


Correct Option: C
Explanation:

Rate $=k{ \left[ { H } _{ 2 }{ O } _{ 2 } \right]  }^{ 1 }$
$2\times { 10 }^{ -4 }=\dfrac { 3\times { 10 }^{ -3 } }{ 60 } \times \left[ { H } _{ 2 }{ O } _{ 2 } \right] $
$\left[ { H } _{ 2 }{ O } _{ 2 } \right] =4 M$

Inversion of a sugar follows first order rate equation which can be followed by noting the change in rotation of the plane of polarisation of light in a polarimeter. If ${ r } _{ \infty  },{ r } _{ t }$ and ${ r } _{ 0 }$ are the rotations at $t=\infty , t=t$ and $t=0$, then first order reaction can be written as:

  1. $k=\dfrac { 1 }{ t } \log _{ e }{ \dfrac { { r } _{ t }-{ r } _{ \infty } }{ { r } _{ 0 }-{ r } _{ \infty } } } $

  2. $k=\dfrac { 1 }{ t } \log _{ e }{ \dfrac { { r } _{ 0 }-{ r } _{ \infty } }{ { r } _{ t }-{ r } _{ 0 } } } $

  3. $k=\dfrac { 1 }{ t } \log _{ e }{ \dfrac { { r } _{ \infty }-{ r } _{ 0 } }{ { r } _{ \infty }-{ r } _{ t } } } $

  4. $k=\dfrac { 1 }{ t } \log _{ e }{ \dfrac { { r } _{ \infty }-{ r } _{ t } }{ { r } _{ \infty }-{ r } _{ 0 } } } $


Correct Option: B
Explanation:

$({ r } _{ t }-{ r } _{ 0 })=({ r } _{ 0 }-{ r } _{ \infty  }){ e }^{ -kt }\ \ln { \left( \cfrac { { r } _{ t }-{ r } _{ 0 } }{ { r } _{ 0 }-{ r } _{ \infty  } }  \right)  } =-kt\ k=\cfrac { 1 }{ t } \ln { \left( \cfrac { { r } _{ t }-{ r } _{ 0 } }{ { r } _{ 0 }-{ r } _{ \infty  } }  \right)  } $

The inversion of cane sugar into glucose and fructose is:

  1. $I$ order

  2. $II$ order

  3. $III$ order

  4. zero order


Correct Option: A
Explanation:

Inversion of cane sugar follow Ist order reaction while its molecularity is 2 and reaction is given by
$ \implies C _{12}H _{22}O _{11} +H _2O \rightarrow C _6 H _{12}O _6 + C _6H _{12}O _6$

Here the rate of reaction is dependent on only $C _{12}H _{22}O _{11}$.

The rate constant for the hydrolysis reaction of an ester by dilute acid is $0.6931\times { 10 }^{ -3 }\ { s }^{ -1 }$. The time required to change the concentration of ester from $0.04$ $M$ to $0.01$ $M$ is:

  1. $6931$ sec

  2. $4000$ sec

  3. $2000$ sec

  4. $1000$ sec


Correct Option: C
Explanation:

$k=0.06931{ s }^{ -1 }$

 So,
$ t=\cfrac { \ln { \left( \cfrac { 0.04 }{ 0.01 }  \right)  }  }{ 0.06931 } \ =2000{ s }^{ -1 }$

Benzene diazonium chloride (A) decomposes into chloro-benzene (B) and ${{\text{N}} _{\text{2}}}\left( {\text{g}} \right)$ in first order reaction volume of ${{\text{N}} _2}$ collected after 5 min and at the complete decomposition of A are 10 ml and 50 ml respectively. The rate constant for the reaction is:

  1. 0.446 ${\min ^{ - 1}}$

  2. 0.0446 ${\min ^{ - 1}}$

  3. 0.223 ${\min ^{ - 1}}$

  4. 0.112 ${\min ^{ - 1}}$


Correct Option: B
Explanation:

t = 0

                              $\mathop {\text{A}}\limits _{50}  \to \mathop {\text{B}}\limits _0  + \mathop {{{\text{N}} _2}}\limits _0 $
At t = 5 min.    50 - 10          10 ml
t = complete                          50 ml
          $\ln  = \left( {\dfrac{{50}}{{40}}} \right) = {\kappa _1} \times 5$
  $\dfrac{{0.223}}{5} = {\kappa _1} \Rightarrow 0.0446\,{\min ^{ - 1}}$
Hence, option (B) is correct.

For the reaction of first order, $2{ N } _{ 2 }{ O } _{ 5 }\left( g \right) \rightleftharpoons 4N{ O } _{ 2 }\left( g \right) +{ O } _{ 2 }\left( g \right) $, which of the following statements are correct?

  1. The concentration of the reactant decreases exponentially with time.

  2. The half-life of the reaction decreases with increasing temperature.

  3. The half-life of the reaction depends on the initial concentration of the reactant.

  4. The reaction proceeds to $99.6$% completion in eight half-life duration.


Correct Option: A,B,D
Explanation:
For 1st order reaction,
$a _t=a _0e^{-kt}$
Also, $t _{1/2}=\frac{In2}{k}$ or $t _{1/2}\alpha \frac{1}{k}$
As the temperature increases, value of k also increases due to which $t _{1/2}$ decreases.
For 99.6% completion, $a _t=(\frac{100-99.6}{100})a _0=\frac{4a _0}{1000}$
$t=\frac{1}{k}In\frac{a _0}{4a-0/1000}=\frac{1}{k}In\frac{1000}{4}$
$=(\frac{t _{1/4}}{In2}).In250$
$t=8t _{1/2}$

For the reaction, ${\text{2}}{{\text{N}} _{\text{2}}}{{\text{O}} _{\text{5}}} \to {\text{4N}}{{\text{O}} _{\text{2}}} + {{\text{O}} _{\text{2}}}$, the value of rate and rate constant are $1.02\times 10^{-4} M/s$ and $3.4 \times {10^{ - 3}}{\sec ^{ - 1}}$ respectively. The concentration of ${{\text{N}} _{\text{2}}}{{\text{O}} _{\text{5}}}$ at that time will be: (in terms of molarity)

  1. $1.732$

  2. $3$

  3. ${\text{1}}{\text{.02}} \times {\text{1}}{{\text{0}}^{ - 4}}$

  4. $3.4 \times {10^4}$


Correct Option: A

The hydrolysis of ethyl acetate,
$CH _{3}COOC _{2}H _{5} + H _{2}O\xrightarrow {H^{+}} CH _{3}COOH + C _{2}H _{5}OH$ is a reaction of:

  1. zero order

  2. pseudo first order

  3. second order

  4. third order


Correct Option: B
Explanation:

A reaction which is not the first-order reaction naturally but made the first order by increasing or decreasing the concentration of one or the other reactant is known as Pseudo first-order reaction. 


Hydrolysis of ethyl acetate in presence of an excess of water:

$CH _3COOC _2H _5+H _2O(\text{excess}) \xrightarrow{H+} CH _3COOH+C _2H _5OH$

$r = k[CH _3COOC _2H _5]^2[H _2O]^0$

Excess $[H _2O]$ can cause the independency of reaction on $H _2O$.


Hence, it is a pseudo-first-order reaction.

Hence, the correct answer is option $\text{B}$.

In the following reaction $2H _{2}O _{2}\rightarrow 2H _{2}O+O _{2}$ rate of formation of $O _{2}$ is 3.6 M $ min^{-1}.$ The rate of formation of $H _{2}O$ is:

  1. $7.2 \, mol litre^{-1}min^{-1}$

  2. $7.8 \, mol litre^{-1}min^{-1}$

  3. $7.9 \, mol litre^{-1}min^{-1}$

  4. $7.5 \, mol litre^{-1}min^{-1}$


Correct Option: A
Explanation:

The rate of formation of water is twice the rate of formation of oxygen.
$\frac {d[H _2O]} {dt}=2\frac {d[H _2O]} {dt}=2 \times 3.6  M  min^{-1} = 7.2 \, mol litre^{-1}min^{-1}$

At ${ 380 }^{ 0 }C$, the half life period for the first order decomposition of ${ H } _{ 2 }{ O } _{ 2 }$ is 360 minutes. The energy of activation of the reaction is 200 kJ ${ mol }^{ -1 }$. Calculate the time required for 75% decomposition at $450^{0}C$?

  1. 60 min

  2. 40 min

  3. 20.34 min

  4. 10 min


Correct Option: C
Explanation:

$k _1 = \ \cfrac { 0.693 }{ 360 }= 1.92\times{ 10 }^{ -3 }{ min }^{ -1 }$

$\ log\cfrac { k _2 }{ k _1 } =\left( \cfrac { Ea }{ 2.303R }  \right) \left[ \left( \cfrac { { T } _{ 2 }-{ T } _{ 1 } }{ { T } _{ 1 }{ T } _{ 2 } }  \right)  \right]=  \cfrac { \left( 200\times { 10 }^{ 3 } \right)  }{ \left( 2.303\times 8.314 \right) \left[ \left( \cfrac { 723-653 }{ 653\times 723 }  \right)  \right]  } =  \cfrac { \left( 200\times { 10 }^{ 3 }\times 70 \right)  }{ \left( 2.303\times 8.314\times 653\times 723 \right)  } = 1.5487$

$\cfrac { k _2 }{ k _1 }  = Antilog (1.5487)= 35.38$, $k _2 = 35.38 \times 1.92 \times$ ${ 10 }^{ -3 } = 6.792 \times { 10 }^{ -2 }{ min }^{ -1 }$

Rate at $450^oC$, t = $\ \left( \cfrac { 2.303 }{ k _2 }  \right) log\left( \cfrac { 100 }{ 100-75 }  \right) $= $\ \left( \cfrac { 2.303 }{ 6.792\times { 10 }^{ -3 } }  \right) log\left( \cfrac { 100 }{ 25 }  \right) = \left( \cfrac { 2.303\times 0.6021 }{ 6.792\times { 10 }^{ 2 } }  \right)= 20.34$ minutes.

For the decomposition of $H _2O _2(aq.)$, it was found that $V _{O _2} (t=15 min.)$ was 100 mL (at 0$^oC$ and 1 atm) while $V _{O _2}$ (maximum) was 200 mL (at 0$^oC$ and 2 atm). If the same reaction had been followed by the titration method and if $V _{KMnO _4}^{cM} (t = 0)$ had been 40 mL, what would $V _{KMnO _4}^{cM}(t = 15 min)$ have been?

  1. 30 mL

  2. 25 mL

  3. 20 mL

  4. 15 mL


Correct Option: A
Explanation:

200 ml at 2 atm corresponds to 400 ml at 1 atm. This is the maximum value
In 15 minutes, the volume is 100 ml.
Thus one fourth of the reaction is complete in 15 minutes.
Hence, the volume of $KMnO _4$ will be $\displaystyle \frac{3}{4} \times 40 = 30 mL$

Which of the following are example of pseudo unimolecular reactions?
1. Inversion of cane sugar
2. Decomposition of ozone
3. Decomposition of $N _{2} O _{5}$
4. Acid catalysed by hydrolysis of ester

  1. 2 and 4

  2. 1 and 4

  3. 1, 2 and 4

  4. 1, 2, 3 and 4


Correct Option: B
Explanation:

Inversion of cane sugar and Acid catalyzed by hydrolysis of ester are examples of pseudo unimolecular reactions.
Decomposition of ozone is a bimolecular reaction.
Decomposition of dintirogen pentoxide is also a bimolecular reaction.

Which of the following statement is/are correct ?

  1. The rate of the reaction involving the conversion of ortho-hydrogen to parahydrogen is $\displaystyle -\, \frac{d[H _2]}{dt}\, =\, k[H _2]^{3/2}$

  2. The rate of the reaction involving the thermal decomposition of acetaldehyde is $k[CH _3CHO]^{3/2}$

  3. In the formation of phosgene gas from CO and $Cl _2$, the rate of the reaction is $k[CO][Cl _2]^{1/2}$

  4. In the decomposition of $H _2O _2$, the rate of the reaction is $k[H _2O _2]$.


Correct Option: A,B,C,D
Explanation:

(A) The rate of the reaction involving the conversion of ortho-hydrogen to parahydrogen is $\displaystyle -\, \frac{d[H _2]}{dt}\, =\, k[H _2]^{3/2}$
The order of the reaction is 1.5.
(B) The rate of the reaction involving the thermal decomposition of acetaldehyde is $k[CH _3CHO]^{3/2}$
The order of the reaction is1.5.
(C) In the formation of phosgene gas from CO and $Cl _2$, the rate of the reaction is $k[CO][Cl _2]^{1/2}$
The order of the reaction is 1.5.
(D) In the decomposition of $H _2O _2$, the rate of the reaction is $k[H _2O _2]$.
The order of the reaction is 1.

The inversion of a sugar follows first-order rate equation which can be followed by noting the change in the rotation of the plane of polarization of light in the polarimeter. If $r _{\propto},\, r _{\zeta}$ and $r _0$ are the rotations at $t\, =\, \propto$, t = t, and t = 0, then the first order reaction can be written as:

  1. $\displaystyle k\, =\, \frac{1}{t}\, log\, \frac{r _{1}\, -\, r _{\propto}}{r _{0}\, -\, r _{\propto}}$

  2. $\displaystyle k\, =\, \frac{1}{t}\, ln\, \frac{r _{0}\, -\, r _{\propto}}{r _{1}\, -\, r _{\propto}}$

  3. $\displaystyle k\, =\, \frac{1}{t}\, ln\, \frac{r _{\propto}\, -\, r _{0}}{r _{\propto}\, -\, r _{1}}$

  4. $\displaystyle k\, =\, \frac{1}{t}\, ln\, \frac{r _{\propto}\, -\, r _{1}}{r _{\propto}\, -\, r _{0}}$


Correct Option: B
Explanation:

For a first order reaction $\displaystyle A \rightarrow P$, the expression for the rate constant is
$\displaystyle \displaystyle k\, =\, \frac{1}{t}\, ln\, \frac{ a}{a-x}$
Here, A is reactant, P is product, a is the initial concentration of A and $a-x$ is the concentration of A at time t.

The inversion of a sugar follows first order rate equation which is given below.
$\displaystyle \displaystyle k\, =\, \frac{1}{t}\, ln\, \frac{r _{0}\, -\, r _{\infty}}{r _{t}\, -\, r _{\infty}}$
Here, $\displaystyle a = r _{0}\, -\, r _{\infty}$ and $\displaystyle a-x = r _{t}\, -\, r _{\infty}$

The reaction, $Sucrose\xrightarrow [  ]{ { H }^{ + } } Glucose+Fructose$, takes  place at certain temperature while the volume of solution is maintained at $1$ litre. At time zero the initial rotation of the mixture is ${ 34 }^{ o }C$.After $30$ minutes the total rotation of solution is ${ 19 }^{ o }C$ and after a very long time, the total rotation is ${ -11 }^{ o }C$. Find the time when solution was optically inactive?

  1. $135$ min

  2. $103.7$ min

  3. $38.7$ min

  4. $45$ min


Correct Option: B
Explanation:

rate constant $k = \dfrac{2.303}{t}log\dfrac{(r _0 - r _\infty) }{(r _t-r _\infty)} = 0.0135$
At the point of optical inactiveness, rotation is zero. 

So, time taken is $ t =\dfrac{ 2.303}{k}log(45/11) = 103.7$ min.

Inversion of a sugar folllows first order rate equation which can be followed by nothing the change in rotation of the plane of polarization of light in the polarimeter. If $r _{\infty,}:r _t:and:r _0$ are the rotations at
 $t\,=\,\infty,t\,=\,t:and:t\,=\,0,$ then, first order reaction can be written as:

  1. $\;k\,=\,\displaystyle\frac{1}{t}log\displaystyle\frac{r _t-r _{\infty}}{r _0-r _{\infty}}$

  2. $\;k\,=\,\displaystyle\frac{1}{t}\,ln\displaystyle\frac{r _0-r _{\infty}}{r _t-r _0}$

  3. $\;k\,=\,\displaystyle\frac{1}{t}\,ln\displaystyle\frac{r _{\infty}-r _0}{r _{\infty}-r _t}$

  4. None of these


Correct Option: C
Explanation:

$\underset{d-Sucrose}{C _{12}H _{22}O _{11}}+H _2O\xrightarrow{H+}\underset{d-Glucose}{C _6H _{12}O _6}+\underset{l-Fructose}{C _6H _{12}O _6}$


Initially               a                Excess                  0                0 
After time t        a-x            Constant                x                x
At infinity           0               Constant               a                 a
If $r _0,r _t$ and $r _{\infty}$ be the observed angle of rotations of the sample at zero times, times $t$ and infinity respectively, and $k _1,k _2$ and $k _3$ proportionate in terms of sucrose,glucose and fructose, respectively.
Then,
$r _0=k _1a$
$r _t=k _1(a-x)+k _2x+k _3x$
$r _{\infty}=k _2a+k _3a$
From these equations it can be shown that
$\dfrac{a}{a-x}=\dfrac{r _0-r _{\infty}}{r _t-r _{\infty}}$
So, the expression for the rate constant rate of this reaction in terms of the optical rotational data may be 
put as $k=\dfrac{2.303}{t}\log \dfrac{r _0-r _{\infty}}{r _t-r _{\infty}}$

In the following reaction $2H _2O _2\rightarrow2H _2O+O _2$ rate of formation of $O _2$ is 3.6 M min$^{-1}$.


(a) What is rate of formation of $H _2O\ ?$        
(b) What is rate of disappearance of $H _2O _2$?

  1. (i) $7.2$ mol litre$^{-1}$ min$^{-1},$ (ii) $7.2$ mol litre$^{-1}$ min$^{-1}$

  2. (i) $3.6$ mol litre$^{-1}$ min$^{-1},$ (ii) $3.6$ mol litre$^{-1}$ min$^{-1}$

  3. (i) $14.4$ mol litre$^{-1}$ min$^{-1},$ (ii) $14.4$ mol litre$^{-1}$ min$^{-1}$

  4. None of these


Correct Option: A
Explanation:

$ (a)2H _{2}O _{2}\rightarrow 2H _{2}O+O _{2} $

We know, $ \dfrac{-1}{2}\dfrac{d[H _{2}O _{2}]}{dt} = \dfrac{-1}{2}\dfrac{d[H _{2}O]}{dt} = \dfrac{d[O _{2}]}{dt} $

$ \dfrac{d[H _{2}O]}{dt} = 2\dfrac{d[O _{2}]}{dt} = 2\times 3.6\,M\,min^{-1} $

$ \dfrac{d[H _{2}O]}{dt} = 7.2\,M\,min^{-1} $

$(b) \dfrac{-d[H _{2}O _{2}]}{dt} = \dfrac{2}{2}\dfrac{d[H _{2}O]}{dt} = \dfrac{-d[H _{2}O _{2}]}{dt} = 7.2\,M\,min^{-1} $ 

Option A is correct.

Dinitropentaoxide decomposes as follows :
    $N _2O _5:(g)\rightarrow2:NO _2(g)+\frac{1}{2}O _2:(g)$
Given that         

$ _d:[N _2O _5]:/:dt=k _1[N _2O _5]$
$d:[NO _2]:/:dt=k _2[N _2O _5]$
$d:[O _2]:/:dt=k _3[N _2O _5]$
What is the relation between $k _1,:k _2:and:k _3$?

  1. $2k _1=k _2=4k _3$

  2. $2k _2=k _1=4k _3$

  3. $2k _3=k _2=4k _1$

  4. $2k _1=k _2=4k _2$


Correct Option: A
Explanation:

$\displaystyle N _{2}O _{5}:(g)\rightarrow2:NO _{2}:(g)+\frac{1}{2}O _{2}:(g)$
$\displaystyle -d:[N _{2}O _{5}]/\mathrm{d} t=k _{1}[N _{2}O _{5}]$
$\displaystyle d:[NO _{2}]/\mathrm{d} t=k _{2}[N _{2}O _{5}]$
$\displaystyle d[O _{2}]/\mathrm{d} t=k _3[N _{2}O _{5}]$
$-\displaystyle \frac{\mathrm{d} N _{2}O _{5}}{\mathrm{d} t}=\frac{1}{2}\frac{\mathrm{d} NO _{2}}{\mathrm{d} t}
=2\frac{\mathrm{d} O _{2}}{\mathrm{d} t}$
$\displaystyle k _{1}=\frac{k _{2}}{2}=2k _{3}$
$\displaystyle 2k _{1}=k _{2}=4k _{3}$

The following data were obtained in experiment on inversion of cane sugar.
Time (minutes)         0        60        120      180      360     $\infty $
Angle of rotation  +13.1   +11.6   +10.2   +9.0   +5.87  -3.8
   (degree)
Determine total time ?

  1. 966 min

  2. 483 min

  3. 1932 min

  4. None of these


Correct Option: A
Explanation:

The integrated rate law expression for the inversion of can sugar (assuming first order kinetics) is as shown.
$\displaystyle k = \frac {2.303}{t} log \frac {r _0 - r _{\infty}}{r _t - r _{\infty}} $
For 60 minutes
$\displaystyle k = \frac {2.303}{60} log \frac {13.1 - (-3.8)}{11.6 - (3.8)} = 0.001549 $
For 120 minutes
$\displaystyle k = \frac {2.303}{120} log \frac {13.1 - (-3.8)}{10.2 - (3.8)} = 0.001569 $
For 180 minutes
$\displaystyle k = \frac {2.303}{180} log \frac {13.1 - (-3.8)}{9.0 - (3.8)} = 0.001544 $
For 360 minutes
$\displaystyle k = \frac {2.303}{360} log \frac {13.1 - (-3.8)}{5.87 - (3.8)} = 0.001551 $
Since, the value of k is constant, the reaction follows first order reaction.
The average value of k is $\displaystyle  \frac {0.001549+0.001569+0.001544+0.001551}{4} = \frac {0.0062135}{4} = 0.001553 : min^{-1}$
To determine the total time, substitute $\displaystyle r _t = 0 $ in the above expression.
$\displaystyle t = \frac {2.303}{k} log \frac {r _0 - r _{\infty}}{r _t - r _{\infty}} $
$\displaystyle t = \frac {2.303}{0.001553} log \frac {13.1 - (-3.8)}{0 - (-3.8)} = 966 : min $

Derive an expression for the Rate (k) of reaction :
$2N _{2}O _{5}(g)\rightarrow 4NO _{2}(g)+O _{2}(g)$


With the help of following mechanism:

$N _{2}O _{5}\overset{K _a}{\rightarrow}NO _{2}+NO _{3}$
$NO _{3}+NO _{2}\overset{K _{-a}}{\rightarrow}N _{2}O _{5}$
$NO _{2}+NO _{3}\overset{K _b}{\rightarrow}NO _{2}+O _{2}+NO$
$NO+NO _{3}\overset{K _c}{\rightarrow}2NO _{2}$

  1. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}+2k _{b}}[N _{2}O _{5}]$

  2. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}-2k _{b}}[N _{2}O _{5}]$

  3. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}+k _{b}}[N _{2}O _{5}]$

  4. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{2k _{-a}-2k _{b}}[N _{2}O _{5}]$


Correct Option: A
Explanation:

Rate $\displaystyle = k _b[NO _2][NO _3] $ .....(1)

But $\displaystyle \dfrac {[NO _2][NO _3]}{[N _2O _5]}=  \dfrac {K _a}{K _{-a} + 2k _b}$

Hence $\displaystyle [NO _2][NO _3]  =\dfrac {K _a}{K _{-a}+2k _b} [N _2O _5]$......(2)

Substitute equation (2) in equation (1):

$\displaystyle \displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}+2k _{b}}[N _{2}O _{5}]$

The rate constant for the reaction, ${ N } _{ 2 }{ O } _{ 5 }\left( g \right) \longrightarrow 2N{ O } _{ 2 }\left( g \right) +\dfrac { 1 }{ 2 } { O } _{ 2 }\left( g \right) $, is $2.3\times { 10 }^{ -2 }\ { sec }^{ -1 }$. Which equation given below describes the change of $\left[ { N } _{ 2 }{ O } _{ 5 } \right] $ with time, ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 }$ and ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t }$ corresponds to concentration of ${ N } _{ 2 }{ O } _{ 5 }$ initially and time $t$ respectively?

  1. ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t }{ e }^{ kt }$

  2. $\log _{ e }{ \dfrac { { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 } }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t } } } =kt$

  3. $\log _{ 10 }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t } } =\log _{ 10 }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 } } -kt$

  4. ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 }+kt$


Correct Option: A,B,C
Explanation:

${ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 }{ e }^{ -kt }\ { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t }{ e }^{ kt }\ \ln { \left( \cfrac { { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 } }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t } }  \right)  } ={ e }^{ kt }\ \ln { { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t } } =\ln { { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 } } -kt$

- Hide questions