0

Second derivative test - class-XI

Attempted 0/52 Correct 0 Score 0

The value of $a$ for which the function $f(x)=a\ \sin x+\dfrac{1}{3}\sin 3x$ has an extremum at $x=\dfrac{\pi}{3}$ is

  1. $1$

  2. $-1$

  3. $0$

  4. $2$


Correct Option: D
Explanation:
$f\left( x \right) = a\sin x + \dfrac{1}{3}\sin 3x$
$ \Rightarrow f'\left( x \right) = a\cos x + \dfrac{1}{3}\cos 3x \times 3$
$ \Rightarrow f'\left( x \right) = a\cos x + \cos 3x$
For extremum at ${\dfrac{\pi }{3}}$
$f'\left( {\dfrac{\pi }{3}} \right) = 0$
$ \Rightarrow a\cos \left( {\dfrac{\pi }{3}} \right) + \cos 3\left( {\dfrac{\pi }{3}} \right) = 0$
$ \Rightarrow \dfrac{a}{2} - 1 = 0$
$\Rightarrow a = 2$

The function $f\left( x \right)\, = \,\dfrac{x}{2}\, + \,\dfrac{2}{x}\,$ has a local minimum at

  1. $ x = -2$

  2. $x= 0$

  3. $x = 1$

  4. $x = 2$


Correct Option: A,D
Explanation:

first find the first derivative of function

$=\dfrac{d}{dx}(\dfrac{x}{2}+\dfrac{2}{x})$
$=\dfrac{1}{2}-\dfrac{2}{x^2}$
now equate the $f^1(x)$ to zero we get the local minimum values
$\dfrac{1}{2}-\dfrac{2}{x^2}=0$
$\dfrac{x^2-4}{2x^2}=0$
$x^2=4$
$x=2,-2$

If $p$ and $q$ are positive real numbers such that ${p}^{2}+{q}^{2}=1$, then the maximum value of $(p+q)$ is

  1. $2$

  2. $\cfrac{1}{2}$

  3. $\cfrac{1}{\sqrt{2}}$

  4. $\sqrt{2}$


Correct Option: D
Explanation:

$AM\geq GM\implies \dfrac{p+q}{2}\geq \sqrt{pq}$

squaring on both sides 
$(p+q)^{2}\geq {4}p{q}$
$p^{2}+q^{2}+2{p}{q}\geq 4{p}{q}$
$1\geq 2{p}{q}\implies  {p}{q}\leq \dfrac{1}{2}$
$(p+q)^{2}=1+2{p}{q}\leq 1+1$
$(p+q)^{2}\leq 2\implies p+q\in[-\sqrt{2},\sqrt{2}]$
The maximum value of $p+q$ is $\sqrt{2}$

Let $A = (3,-4), B = (1,2)$ .Let $P = (2k-1,2k+1)$ be  a variable point  such that PA+PB is the minimum. then $k$ is

  1. $\dfrac 79$

  2. $0$

  3. $\dfrac 78$

  4. none of these


Correct Option: C

Let f(x) = tan $(\pi /4-x)/cot 2x(x\neq \pi /4)$. The value which should be assigned to f at $x=\pi /4$. So that it is continuous every where, is

  1. 1/2

  2. 1

  3. 2

  4. none of these


Correct Option: B

Let x and y be two varibles such that $\displaystyle x> 0$ and $xy=1$. Find the minimum value of $x+y$.

  1. $ 2 $

  2. $ \dfrac {1}{2}$

  3. $ \dfrac {2}{3}$

  4. $ 1$


Correct Option: A
Explanation:

Let,  $\displaystyle z= x+y= x+\dfrac{1}{x}$
for minimum value of $z$
$\cfrac{dz}{dx}=0\Rightarrow 1-\cfrac{1}{x^2}=0\Rightarrow x=\pm 1$
but given $x>0, \Rightarrow x=1$
Hence minimum value of $z$ is 2.

In a GP, first term is $1$. If $4T _2 + 5T _3$ is minimum,then its common ratio is.

  1. $\dfrac {2}{5}$

  2. $-\dfrac {2}{5}$

  3. $\dfrac {3}{5}$

  4. $-\dfrac {3}{5}$


Correct Option: B
Explanation:

Given first term of the G.P is $1.$


Let the G.P be, $1,r,r^2,r^3,.....$

Thus $4T _2+5T _3= 4r+5r^2 = y$ (say)

For minimum value of $y$

$\cfrac{dy}{dr}=0\Rightarrow 4+10r=0\Rightarrow r=-\cfrac{2}{5}$

Hence, option 'B' is correct.

Let $<\,a _n\,>$ be an $A.P.$ whose first term is $1\;and\;<\,b _n\,>$ is any $G.P.$ whose first term is $2$. If common difference of $A.P.$ is twice of common ratio of $G.P.$ then minimum value of $(a _1b _1+a _2b _2+1)$ is

  1. $3$

  2. $\displaystyle\frac{11}{3}$

  3. $0$

  4. $\displaystyle\frac{11}{4}$


Correct Option: D
Explanation:

Let common ratio of $G.P.$ be $r$ & common difference of $A.P.$ be $2r$
$\Rightarrow a _1b _1+a _2b _2+1=1\times2+(1+2r)2r+1$
$=4r^2+2r+3=z$ (say)
Now for minimum value of $z$
$\cfrac{dz}{dr}=0\Rightarrow 8r+2=0\Rightarrow r=-\cfrac{1}{4}$
$\therefore z _{min}=4(\dfrac 1{16})-2(\dfrac 14)+3=\cfrac{11}{4}$

If 'x' is real, then maximum value of $\dfrac{3x^2+9x+17}{3x^2+9x+7}$ is - 

  1. $41$

  2. $1$

  3. $\dfrac{17}{7}$

  4. $-1$


Correct Option: A
Explanation:

Maximise: $\cfrac{3{ x }^{ 2 }+9x+17}{3{ x }^{ 2 }+9x+7}$

Now we can see that coefficient of ${x}^{2}$ and $x$ are same in ${N}^{x}$ and ${D}^{x}$ so
$\Rightarrow$ $\cfrac{3{ x }^{ 2 }+9x+10+7}{3{ x }^{ 2 }+9x+7}$
$y=1+\cfrac{10}{3{ x }^{ 2 }+9x+7}$
We want to maximise $y$ so we need to minimize $3{ x }^{ 2 }+3x+7$
$y=1+\cfrac{10}{min(3{ x }^{ 2 }+9x+7)}$
$y=1+40=41$ ($\because$ we know min value of quadratic is $\cfrac{-D}{ya}$)

Let $f\left( x \right) = {x^2} + ax + b.$ If the maximum and the minimum values of $f(x)$ are $3$ and $2$ respectively for $0 \le x \le 2$, then the possible ordered pair(s) of $(a,b)$ is/are-

  1. $(-2,3)$

  2. $\left( { - \frac{3}{2},2} \right)$

  3. $\left( { - \frac{5}{2},3} \right)$

  4. $\left( { - \frac{5}{2},2} \right)$


Correct Option: C

If $f(x)=A\sin \left(\dfrac{\pi x}{2}\right)+B, f'\left(\dfrac{1}{2}\right)=\sqrt{2}$ and $\displaystyle\int^1 _0f(x)dx=\dfrac{2A}{\pi}$, then the constant A and B are, respectively.

  1. $\pi/2$ and $\pi/2$

  2. $4/\pi$ and $3/\pi$

  3. $4/\pi$ and $-4/\pi$

  4. $4/\pi$ and $0$


Correct Option: A

If $F(x)=2x^3-21\,x^2+36x-20$, then 

  1. f has maxima at x=1

  2. f has minima at x=1

  3. f has maximum value -128

  4. f has minimum value -3


Correct Option: A
Explanation:

Consider given the function,

$F\left( x \right)=2{{x}^{3}}-21{{x}^{2}}+36x-20$      ……(1)

Differentiate with respect to x,

${{F}^{'}}\left( x \right)=6{{x}^{2}}-42x+36$          ……..(2)


For maxima and minima,

$ F\left( x \right)=0 $

$ 6{{x}^{2}}-42x+36=0 $

$ {{x}^{2}}-7x+6=0 $

$ {{x}^{2}}-6x-x+6=0 $

$ x\left( x-6 \right)-1\left( x-6 \right)=0 $

$ \left( x-6 \right)\left( x-1 \right)=0 $

$ x=1,6 $


Differentiate equation 2nd with respect to x,

${{F}^{''}}\left( x \right)=12x-42$

At $x=1\Rightarrow {{F}^{''}}\left( x \right)<0$

Hence, F(x) Is maximum.


At $x=6\Rightarrow F\left( x \right)>0$

Hence, function F(x) is minimum.

 

Hence, this is the answer.

Find out the largest term of the sequence  $\displaystyle \frac{1}{503},\displaystyle \frac{4}{524}, \displaystyle \frac{9}{581}, \displaystyle \frac{16} {692},....$

  1. $\displaystyle \frac{25}{875}$

  2. $\displaystyle \frac{36}{1148}$

  3. $\displaystyle \frac{49}{1529}$

  4. $\displaystyle \frac{64}{2036}$


Correct Option: C
Explanation:

General term can be written as
$T _{n}=\displaystyle \frac{n^{2}}{500+3n^{3}}$
then, $\displaystyle \frac{dT _{n}}{dn}=\displaystyle \frac{n(1000-3n^{3})}{(500+3n^{3})^{2}}$
For max or min of $T _{n}$,
$\displaystyle \frac{dT _{n}}{dn}=0$
$\therefore n=\left ( \displaystyle \frac{1000}{3} \right )^{1/3}=6.933\approx7$

Hence, $T _{7}$ is the largest term. So largest term in the given sequence is $\displaystyle \frac{49}{1529}$

Let $f(x)=\begin{cases} \left| x-1 \right| +a\ if\ x\le 1 \ 2x+3 \ \ \ \ if \ x>1 \end{cases}$ 
If $f(x)$ has a local minimum at $x=1$ then 

  1. $a>5$

  2. $0$

  3. $a\le 5$

  4. $a=5$


Correct Option: C

If $\displaystyle xy=a^{2}$ and $\displaystyle S=b^{2}x+c^{2}y$ where a,b and c are constants then the minimum value of S is 

  1. $abc$

  2. $\displaystyle bc\sqrt{a}$

  3. $2abc$

  4. none of these


Correct Option: C
Explanation:

Given $x y = a^2$ and $S = b^2x + c^2y$
$\Rightarrow S = b^2 x + c^2a^2/x$
$\Rightarrow \dfrac{dS}{dx} = b^2 - c^2a^2/x^2$
For maximum or minimum value of $S$
$ \dfrac{dS}{dx} = 0 = b^2 - c^2a^2/x^2 \Rightarrow x =\pm  ac/b$
Now $\dfrac{dS}{dx} = 2 c^2a^2/x^3$
Clearly at $x =  ac/b$,  $\dfrac{dS}{dx} = 2 b^3/ac > 0 $ (Assuming that $ b^3/ac>0$)
Hence minimum value of $S$ is $= b^2(ac/b)+c^2(b/ac)= 2abc$

If $\displaystyle \theta +\phi =\frac{\pi }{3}$ then $\displaystyle  \sin \theta \cdot\sin \phi$ has a maximum value at $\displaystyle \theta$ =

  1. $\displaystyle \dfrac{\pi }{6}$

  2. $\displaystyle \dfrac{2\pi }{3}$

  3. $\displaystyle \dfrac{\pi }{4}$

  4. none of these


Correct Option: A
Explanation:

Let $y = \sin\theta.\sin\phi = \sin\theta.\sin(\dfrac{\pi}{3}-\theta)$
For maximum value of $y$ 
$\dfrac{dy}{dx} = 0 = \cos\theta.\sin(\dfrac{\pi}{3}-\theta) - \sin\theta.\cos(\dfrac{\pi}{3}-\theta) = \sin(2\theta -\dfrac{\pi}{3})$
$\Rightarrow \theta = \dfrac{\pi}{6}$

The sum of two nonzero numbers is $8$. The minimum value of the sum of their reciprocals is

  1. $\displaystyle \frac{1}{4}$

  2. $\displaystyle \frac{1}{2}$

  3. $\displaystyle \frac{1}{8}$

  4. none of these


Correct Option: B
Explanation:

Let $x$ and $y$ be two numbers 
$\Rightarrow x+y = 8$
Assume $z$ be be sum of their inverse
$z = 1/x+1/y =\dfrac{x+y}{xy} = \dfrac{8}{xy} = \dfrac{8}{x(8-x)}$
For minimum value of $z $
$\dfrac{dz}{dx} = 0 =\dfrac{16(4-x)}{(x(8-x))^2}\Rightarrow x = 4$
Hence minimum value of $z$ is $=1/4+1/4 = \dfrac{1}{2}$ 

$\displaystyle \log _{10}x + \log _{10}y \geq 2$, then the smallest possible value of $\displaystyle x + y$ is

  1. $\displaystyle 10$

  2. $\displaystyle 30$

  3. $\displaystyle 20$

  4. None of these


Correct Option: C
Explanation:

${log} _{10}x+{log} _{10} y=$ $log _{10}(xy)\geq2$, 
Thus, $xy\geq100$
 Given the product of two numbers ,addition of two number is smallest when they are equal.
$ x^2\geq100$
Therefore, smallest value of $x+y =20$
Hence, option 'C' is correct.

Let $f(x)$ be a non-zero polynomial of degree $4$. Extreme points of $f(x)$ are $0, -1, 1$. If $f(k)=f(0)$ then?

  1. k has one rational & two irrational roots

  2. k has four rational roots

  3. k has four irrational roots

  4. k has three irrational roots


Correct Option: A
Explanation:

Let $f'(x)=\lambda x(x^2-1)\Rightarrow f(x)=\lambda\left(\dfrac{x^4}{4}-\dfrac{x^2}{2}\right)+C$
Now $f(0)=f(k)\Rightarrow \dfrac{k^4}{4}-\dfrac{k^2}{2}=0\Rightarrow k=0$ or $\pm \sqrt{2}$
Hence $(1)$.

Divide 10 into two parts such that the sum of twice of one part and square of the other is a minimum.

  1. 6,4

  2. 7,3

  3. 8,2

  4. 9, 1


Correct Option: D
Explanation:

Let one part be $x$

Therefore another part will be $10-x$.
Hence application of the condition gives us 
$f(x)=x^{2}+2(10-x)$
$f'(x)=2x-2$
$=0$
$x=1$
Hence the parts are $1,9$

Divide 64 into two parts such that the sum of the cubes of two parts is minimum.

  1. 30, 34

  2. 31, 33

  3. 32, 32.

  4. 35, 29


Correct Option: C
Explanation:

Let one part be x.
Hence another part will be 64-x.
Let 
$f(x)=x^{3}+(64-x)^{3}$.
$f'(x)$
$=3x^{2}-3(64-x)^{2}$
$=0$
Or 
$x^{2}=(64-x)^{2}$
Or 
$x=64-x$ or $x=-64+x$
Considering equation $x=64-x$, we get 
$x=32$.
Hence another part will also be 32.

Divide 20 into two parts such that the product of one part and the cube of the other is maximum.

  1. 13 and 7

  2. 14 and 6

  3. 15 and 5

  4. 16 and 4


Correct Option: C
Explanation:

Let the two parts be $x$ and $20-x$
Let $y=(20-x)x^3$
$\Rightarrow y=20x^3-x^4$

For maximum or minimum,
$\dfrac{dy}{dx}=0$
$\Rightarrow 60x^2-4x^3=0$
$\Rightarrow 4x^2(15-x)=0$
$\Rightarrow x=0, x=15$

$\dfrac{d^2y}{dx^2}=120x-12x^2$
At $x=15$, $\dfrac{d^2y}{dx^2}<0$
Hence, $y$ has a maximum at $x=15$

So, the two numbers are 15, 5

Let x and y be two real numbers such that x > 0 and xy$=1.$ The minimum value of x+y is

  1. 1

  2. 1/2

  3. 2

  4. 1/4


Correct Option: C
Explanation:

Let $ z= x+y = x+1/x$,   since $(xy=1)$
$\dfrac{dz}{dx} = 1-1/x^2$
For minimum value of $z$
$\dfrac{dz}{dx} =0= 1-1/x^2\Rightarrow x=1$, $since (x>0)$
Therefore minimum value of $z=2$

Find the two positive numbers $x$ & $y$ such that their sum is $60$ and $\displaystyle xy^{3}$ is maximum

  1. $15$ & $45$

  2. $30$ & $30$

  3. $20$ & $40$

  4. $10$ & $50$


Correct Option: A
Explanation:

Let one number be $x$
Hence the other number will be $(60-x)$.
Let 
$K=x^{3}.(60-x)$
Differentiating $K$ with respect to $x$, we get 
$\dfrac{dK}{dx}$
$=3x^{2}(60-x)-x^{3}=0$
Or 
$x^{2}[180-3x-x]=0$
Or 
$x=0$ and $x=\dfrac{180}{4}=45$.
Now its given that the numbers are positive.
Hence $x=0$ is ruled out.
Thus we get $x=45$.
Hence
$y=15$.
Therefore the numbers are $45,15$.

If $xy={c}^{2}$ then the minimum value of $ax+by(a> 0, b> 0)$ is :

  1. $c\sqrt {ab}$

  2. $-c\sqrt {ab}$

  3. $2c \sqrt {ab}$

  4. $-2c \sqrt {ab}$


Correct Option: C
Explanation:

$xy={ c }^{ 2 }$
$y={ c }^{ 2 }$
Put the value of $y={ c }^{ 2 }$ in $ ax+by$
$f(x)=a{ c }^{ 2\quad \quad  }y+by=0$
${ f }^{ ' }(x)=-a{ c }^{ 2\quad  }{ y }^{ 2\quad  }+b=0$
$-a{ c }^{ 2\quad  }+b{ y }^{ 2\quad  }=0$
$b{ y }^{ 2\quad  }=a{ c }^{ 2 }$
$y=+,-c\sqrt { (b/a)\quad  } $
${ f }^{ ''\quad  }(x)=2b{ c }^{ 2\quad  }/{ x }^{ 2 }$
$x=c\sqrt { b/a } $
${ f }^{ ''\quad  }(c\sqrt { (b/a } )=2b{ c }^{ 2\quad  }/{ c }^{ 2 }(b/a)=2a>0$
While $x=-c\sqrt { b/a } $will give maxima.
Put $x=c\sqrt { b/a }$ 
$a(c\sqrt { (b/a) } )+b({ c }^{ 2\quad  }\sqrt { a) } /c\sqrt { b } =2c\sqrt { ab } $

If $xy=4$ and $x<0$ then maximum value of $x+16y$ is-

  1. $8$

  2. $-8$

  3. $16$

  4. $-16$


Correct Option: D
Explanation:

$f(x)=x+16y$         (1)
$xy=4 $                         (2)
Substituting $y=\dfrac { 4 }{ x } $ in (1).
$f(x)=x+\dfrac{ 16.4 }{ x } $


${ f }^{ ' }(x)=1-\dfrac { 64 }{ { x }^{ 2 } } $

${ f }^{ ' }(x)=\dfrac { { x }^{ 2 }-64 }{ { x }^{ 2 } } $
$x=\pm 8$
Given $x<0, x=-8,y=-\dfrac 12$
Substitute this value in $f(x)$
$f(x)=-8+(\dfrac { 1(-16) }{ 2 } )$
$f(x)=-16$

The difference between two numbers is $a$. If their product is minimum, then numbers are-

  1. $-a/2, a/2$

  2. $-a, 2a$

  3. $-a/3, 2a/3$

  4. $-a/3, 4a/3$


Correct Option: A
Explanation:

x-y=a                (1)
$f(x)=xy=x(x-a)$
${ f }^{ ' }(x)=2x-a $     (2)
2x-a=0
$x=a/2$
Substitute value of $x=a/2$ in (1) to get $y=-a/2$

Two parts of $64$ such that the sum of their cubes is minimum will be-

  1. $44, 20$

  2. $16, 48$

  3. $32, 32 $

  4. $50, 14$


Correct Option: C
Explanation:

Let one part be $x$.
Hence another part be $(64-x)$
Thus 
Their cubes will be 
$x^{3}+(64-x)^{3}=y$
Thus 
$y'=3x^{2}-3(64-x)^{2}=0$
Or 
$x^{2}=(64-x)^{2}$
Or 
$x=64-x$ and $x=-64+x$
Hence
$x=32$.
Hence both the parts are 
$32,32$.

Consider a function $f(x) = \displaystyle \frac{sin x}{2}$. Let $g(x) = \int  f(x)dx$, where constant of integration is zero.
On the basis of above information, answer the following questions The number of local minima of $g(x)$ in (2$\pi$,12$\pi$) are

  1. $4$

  2. $5$

  3. $6$

  4. $7$


Correct Option: B
Explanation:
Given,
$f\left( x \right) =\cfrac { \sin { x }  }{ 2 } $
$g\left( x \right) =\int { f\left( x \right) dx } $
$=\int { \cfrac { \sin { x }  }{ 2 } dx } $
$=-\cfrac { 1 }{ 2 } \cos { x } +c$
$c=0$ (given in question
Now for critical points,
$g'\left( x \right) =0$
$-\cfrac { 1 }{ 2 } \times \left( -\sin { x }  \right) =0$
$\sin { x } =0$
$x=n\pi \quad \left( n=0,1,2... \right) $
For maxima/minima
$g''\left( x \right) =\cos { x } $ [ positive for $\left( 0,\cfrac { \pi  }{ 2 }  \right) ,\left( x,\cfrac { 3\pi  }{ 2 }  \right) ...$]
We have to consider positive values for minima
Between $\left( 2\pi ,12\pi  \right) $ there will be total $10$ critical points out of which $5$ points will give minima.
$(5)$ is the correct answer.

The sum of two numbers is 6. The minimum value of the sum of their reciprocals is

  1. $\displaystyle \frac{3}{4}$

  2. $\displaystyle \frac{6}{5}$

  3. $\displaystyle \frac{2}{3}$

  4. $\displaystyle \frac{2}{5}$


Correct Option: C
Explanation:

$x+y=6$
$Sum =\dfrac {1}{x}+\cfrac {1}{y}$
$\dfrac {d(sum)}{dx}=\dfrac {-1}{x^2}+\dfrac {1}{(6-x)^2}=0$
$x^2=(6-x)^2$
$x=\pm (6-x)$
$x=3$,  $y=3$
$Sum =\dfrac {2}{3}$

If the sum of two +ve numbers is 18, then the maximum value of their product is

  1. 81

  2. 85

  3. 72

  4. 80


Correct Option: A
Explanation:

$x+y=18$
$Product =xy$
$\dfrac {d(Product)}{dx}=(18-x)-x$
$0=18-2x$
$x=9$
$y=9$
$Product = 81$

Observe the following lists

List-I List-II
(A) Maximum value of  $xy$ subject to  ${x}+{y}=7$ is 1) $72$
(B) If  $l^{2} + m^{2} = 1$ , then the maximum value of $l + m$ is 2) $1$
(C) If $x +y = 12$, then the minimum Value of $x^{2}  +y^{2}$   is 3) $\sqrt{2}$
(D) Minimum value $x^{2} - 8x +17$ is  4) $\displaystyle \frac{49}{4}$
5) $0$
  1. A - 4, B -3, C -1, D -2.

  2. A - 4, B -3, C -2, D -1.

  3. A - 2, B -3, C -5, D -4.

  4. A - 2, B -3, C -1, D -4.


Correct Option: A
Explanation:

(A) use A.M. & G.M.
$\displaystyle \frac {x+y}{2}\geq (xy)^{\frac {1}{2}}$
$\displaystyle (\dfrac {7}{2})\geq (xy)^{\frac {1}{2}}$
$(xy)\leq(\dfrac {7}{2})^2$
(B) $y=l+\sqrt {1-l^2}$

$\displaystyle \frac {dy}{dl}=1-\frac {l}{\sqrt {1-l^2}}$

$\displaystyle \frac {dy}{dl}=0$ when $\displaystyle l=\frac {1}{\sqrt 2}$
So $\displaystyle m=\frac {1}{\sqrt 2}$
$\Rightarrow l=\displaystyle \frac{1}{\sqrt{2}}$

$\Rightarrow l+m=\sqrt{2}$

(C) $s=x^2+(12-x)^2$
$\displaystyle \frac {ds}{dx}=2x-2(12-x)$
$\displaystyle \frac {ds}{dx}=0$ when $x=6$ $y=6$
$s=36+36=72$
(D) $f'(x)=2x-8$
$f'(x)=0$ at $x=y$
$f(y)=1$

lf $\mathrm{x}+\mathrm{y}=28$ then the maximum value of $\mathrm{x}^{3}\mathrm{y}^{4}$ is

  1. $4^{3}. 24^{4}$

  2. $12^{3}.16^{4}$

  3. $4321$

  4. $1234$


Correct Option: B
Explanation:

If $x+y=k$ then maximum value of $x^{m}y^{n}$ is at $\displaystyle x=\frac{km}{m+n}, y=\frac{km}{m+n}$ where $x,y>0$ and $m,n \ge{1} $
Here $k=28, m=3,n=4$
So,$x=12, y=16$
Hence maximum value is $12^3.16^4$

lf $2\mathrm{x}+\mathrm{y}=5$ then the maximum value of $\mathrm{x}^{2}+3\mathrm{x}\mathrm{y}+\mathrm{y}^{2}$ is

  1. $\displaystyle \frac{125}{4}$

  2. $\displaystyle \frac{4}{125}$

  3. $\displaystyle \frac{625}{4}$

  4. $\displaystyle \frac{4}{625}$


Correct Option: A
Explanation:

$2x+y=5$
$\Rightarrow y=5-2x$
$f(x)=x^2+3x(5-2x)+(5-2x)^2$
$f(x)=-x^2-5x+25$
$f'(x)=-2x-5$
For maxima or minima,
$f'(x)=0$
$\Rightarrow x=-\frac{5}{2}$
$f''(x)=-2$
$f''(-\frac{5}{2})=-2<0$
So, f(x) has a maximum at $x=-\frac{5}{2}$
$\displaystyle f(-\frac{5}{2})=\frac{125}{4}$

lf x, y are two real numbers such that $x^{2}+y^{2}=1$, then the maximum value of x+y is

  1. $\sqrt{2}$

  2. $\sqrt{5}$

  3. 2

  4. 6


Correct Option: A
Explanation:

Let $x=cos{\theta}$ and $y=sin{\theta}$
Then, $f(\theta)= cos{\theta}+sin{\theta}$
$f'(\theta)=-sin{\theta}+cos{\theta}$
For maxima or minima,
$f'(\theta)=0$
$\Rightarrow \theta =\frac{\pi}{4}$
$f''(\theta)=-(cos{\theta}+sin{\theta})$
$\Rightarrow f''(\frac{\pi}{4})<0$
Hence, f has a maximum value at $\theta =\frac{\pi}{4}$
$\displaystyle f(\frac{\pi}{4})=\sqrt{2}$


if xy(y-x) = 16 then y has a minimum value when x=

  1. 1

  2. 3

  3. 2

  4. 4


Correct Option: D
Explanation:

$xy(y-x)=16$
$xy^2-x^2y=16$
$y^2-xy-\dfrac {16}{x}=0$
$(y-\dfrac {x}{2})^2-\dfrac {x^2}{4}-\dfrac {16}{x}=0$
$y=\dfrac {x}{2}\pm \sqrt{\dfrac {x^2}{4}+\dfrac {16}{x}}$
$y'=\dfrac {1}{2}\pm \dfrac {1}{2}(\dfrac {\dfrac {2x}{4}-\dfrac {16}{x^2}}{\sqrt {\dfrac {x^2}{4}+\dfrac {16}{x}}})$
$-1=\pm (\dfrac {\dfrac {x}{2}-\dfrac {16}{x^2}}{\sqrt {\dfrac {x^2}{4}+\dfrac {16}{x}}})$
$\dfrac {16}{x}=\dfrac {256}{x^4}-\dfrac {16}{x}$
$x^3=8$
$x=2$
& $y=4$

The sum of two +ve numbers is 100. If the product of the square of one number and the cube of the other is maximum then the numbers are

  1. 60, 40

  2. 20, 80

  3. 80, 20

  4. 40, 60


Correct Option: D
Explanation:

$x+y=100$
$f(x)=x^2(100-x)^3$
$f'(x)=2x(100-x)^3-3(100-x)^2x^2$
$3x=2(100-x)$
$x=40$  $y=60$

The positive number x that exceeds its square by largest amount is

  1. $\displaystyle \frac{1}{2}$

  2. $\displaystyle \frac{1}{3}$

  3. $\displaystyle \frac{1}{4}$

  4. 1


Correct Option: A
Explanation:

$f(x)=x-x^2$
$f'(x)=1-2x$
$x=\dfrac {1}{2}$ when $f'(x)=0$

$f(x)=2{x}^{3}-9{x}^{2}+12x+4$ is decreasing when

  1. $-\infty< x<1$ and $2< \infty< \infty$

  2. $-1< x< 2$

  3. $1< x< 2$

  4. $0< x< 2$


Correct Option: C
Explanation:

$f'(x)=6{x}^{2}-15x+12$
$=6({x}^{2}-3x+2)$
$=6(x-1)(x-2)$
$f'(x)< 0$ when $x$ lies between $1$ and $2$
$\therefore$ $1< x< 2$
$\therefore$ (3) is correct

According to a certain estimate, the depth N(t), in centimeters, of the water in a certain tank at $t$ hours past $2:00$ in the morning is given by $\displaystyle N\left( t \right) =-20{ \left( t-5 \right)  }^{ 2 }+500for\quad 0\le t\le 10$ . According to this estimate, at what time in the morning does the depth of the water in the tank reach its maximum?

  1. $5:30$

  2. $7:00$

  3. $7:30$

  4. $8:00$

  5. $9:00$


Correct Option: B
Explanation:
Given
$N(t)=-20{ (t-5) }^{ 2 }+500\quad 0\le t\le 10$
where $N(t)$ is the depth in cm in time t for maximum depth,
$\cfrac { dN }{ dt } =-20\times 2\left( t-5 \right) =0$
$t=5$
$\cfrac { { d }^{ 2 }N }{ d{ t }^{ 2 } } =-40$ (negative)
Thus at $t=5$ hours , depth will be maximum.
The water tank starts filling at $2:00$ in morning.
Therefore maximum depth$=2:00+5$ hours
$=7:00$am (hours)

The function $\displaystyle f\left( x \right) ={ e }^{ ax }+{ e }^{ -ax },a>0$ is monotonically increasing for

  1. $x = -1$

  2. $\displaystyle x<-1$

  3. $\displaystyle x>-1$

  4. $\displaystyle x>0$


Correct Option: D
Explanation:

Since, $\displaystyle f\left( x \right) ={ e }^{ ax }+{ e }^{ -ax }$
$\displaystyle \Rightarrow \quad f'\left( x \right) =a\left( { e }^{ ax }-{ e }^{ -ax } \right) $
$\displaystyle f\left( x \right) $ is monotonically increasing, if
$\displaystyle f'\left( x \right) >0$
$\displaystyle \Rightarrow \quad { e }^{ ax }-{ e }^{ -ax }>0$
$\displaystyle \Rightarrow \quad { e }^{ 2ax }>1$
$\displaystyle \Rightarrow \quad x>0$

The largest term in the sequence ${ a } { n }=\cfrac { { n }^{  } }{ { n }^{ 2 }+100 } $ is ______

  1. ${a} _{5}$

  2. ${a} _{7}$ or ${a} _{8}$

  3. ${a} _{4}$

  4. ${a} _{10}$


Correct Option: D
Explanation:

Let $f(x)=\cfrac { { x }^ { } } { { x }^{ 2 }+100}$


For the largest term, we may calculate the maximum value of $f(x)$


$f'(x)=\cfrac { ( { x }^{ 2 }+100).1-{ x }^{ }.( 2x ) } { { ( { x }^{ 2 }+100 ) }^{ 2 } }=0$


$\Rightarrow \cfrac {100-{ x }^{ 2 } } { { ({ x }^{ 2 }+100) }^{ 2 }}=0$


$\Rightarrow { x }^{ 2 }=100$


$\Rightarrow x=10$ Since $x \neq -10$


To check for maxima or minima, we could evaluate $f''(x)$ at $x=10$

Alternatively, we could just check value of $f(x)$ at any other $x$ and compare its value with at $x=10$


$f(10)=\cfrac { 10 } { { 10 }^{ 2 }+100 }=\cfrac { 1 } { 20 }$


Checking at $x=1$,   $f(1)=\cfrac{ 1 } { { 1 }^{ 2 }+100 }=\cfrac { 1 } { 101 }$


f(10)$>$f(1),     $\therefore x=10$ is point of maxima


$\Rightarrow a _n(max)=\cfrac { 1 } { 20 } $


$\therefore$ Correct option is D

Let $g(x) =||x + 2| - 3|$. If a denotes the number of relative minima, $b$ denotes the number of relative maxima and $c$ denotes the product of the zeros. Then the value of $(a + 2b - c)$ is

  1. $-1$

  2. $-2$

  3. $8$

  4. $9$


Correct Option: D
Explanation:

This function has $a = 2$ relative minima at the x-intercepts, $(-5, 0)$ and $(1, 0), b = 1$ relative minima at $(-2, 3)$ and the product of the zeros is $c = (-5)(1) = - 5$. Thus $a + 2b - c = 9$.

Let p, q $\epsilon$ R be such that the function $f(x) = ln |x| + qx^2 + px, x \,\neq \,0$ has extreme values at x = - 1 and x = 2.
Statement-1 : f has local maximum at x = -1 and x = 2.
Statement-2 : $\displaystyle p =\frac{1}{2}$ and $\displaystyle q =\frac{-1}{4}.$

  1. Statement-1 is true, statement-2 is false.

  2. Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

  3. Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

  4. Statement-1 is false. statement-2 is true.


Correct Option: C
Explanation:
On differentiating f(x) w.r.t x
We get
$f'(x) = \dfrac{1}{x} +2q\times  x^{} + p$

On putting x as -1
$f'(x) = -{1} -2q^{} + p$ ------(i)

On putting x as 2
$f'(x) = \dfrac{1}{2} +4q + p=0$ ------(ii)

On solving equation i and ii
We get :
$ p=\dfrac{1}{2}$
$ q=-\dfrac{1}{4}$

For what value of $x,x^{2} \ln (1/x)$ is maximum-

  1. $e^{-1/2}$

  2. $e^{1/2}$

  3. $e$

  4. $e^{-1}$


Correct Option: A
Explanation:

Let $y=x^2\ln \dfrac{1}{x}$

$=x^2\ln (x^-)$
$=-x^2\ln (x)$
$\Rightarrow \dfrac{dy}{dx}=-2x\ln x-x^2.\dfrac{1}{x}$
$=-2x\ln x-x$
$=-x[2\ln x+1]=0$
$\Rightarrow x=0$ or $x=e^{-1/2}$
None $\dfrac{d^2y}{dx^2}=-2\ln x-2x\dfrac{1}{x}-1$
$=-2\ln x-3$
at $x=e^{-1/2}$     $\dfrac{d^2y}{dx^2}=-2<0$
$\Rightarrow $ maximum value is at $e^{-1/2}$

If $P = {x^3} - \frac{1}{{{x^3}}}$ and $Q = x - \frac{1}{x},$ $x \in \left( {0,x} \right)$ then minimum value of $P/{Q^2}$ is 

  1. $2\sqrt 3 $

  2. $-2\sqrt 3 $

  3. does not exist

  4. none of these


Correct Option: B

The sixth term of an A.P is equal to 2. The value of the common difference of the A.P which makes the product $a _{1} a _{4} a _{5}$ least is given by 

  1. $\displaystyle \frac {8}{5}$

  2. $\displaystyle \frac {5}{4}$

  3. $\displaystyle \frac {2}{3}$

  4. None of these


Correct Option: C
Explanation:
Given that sixth term of an A.P is 2.
$\Rightarrow { a } _{ 1 }+5d=2$
Consider, $p={ a } _{ 1 }{ a } _{ 4 }{ a } _{ 5 }$
$\Rightarrow p={ a } _{ 1 }({ a } _{ 1 }+3d)({ a } _{ 1 }+4d)$
Now substitute ${ a } _{ 1 }=2-5d$ in the above equation, we get;
$ p=(2-5d)(2-2d)(2-d)$
Now, solving the parentheses, we get;
$p=2[4-16d+17{ d }^{ 2 }-5{ d }^{ 3 }]$
Let, $S=-5{ d }^{ 3 }+17{ d }^{ 2 }-16d+4$
Now, taking the derivative of S w.r.t $d$, we get;
$S\prime =-15{ d }^{ 2 }+34{ d }-16$
Notice that, for $S\prime=0$, we get;
$d=\dfrac { 2 }{ 3 } ,\dfrac { 8 }{ 5 } $
Now, taking the derivative of $S\prime$ w.r.t $d$, we get;
$S\prime \prime =-30d+34$
At $d=\dfrac { 2 }{ 3 }$, we get;
$S\prime \prime =-20+34$
So, $S\prime \prime=14$ which is positive.
Therefore, $d=\dfrac { 2 }{ 3 }$ gives minimum value.

Let '$a$' and '$b$' are positive number. If $(x, y)$ is a point on the curve $\displaystyle ax^2 + by^2 = ab$ then the largest possible value of $xy$ is

  1. $\displaystyle \frac {\sqrt {ab}}{2}$

  2. $\displaystyle \sqrt {ab}$

  3. $\displaystyle \frac {ab}{a + b}$

  4. $\displaystyle \frac {2ab}{a + b}$


Correct Option: A
Explanation:
The point (x,y) on the curve can be written in polar coordinates as 
$x=\sqrt{b} $cos$\theta$ and $y=\sqrt{a} $sin$\theta$

Thus, 
$(xy) _{max}= (\sqrt{ab}$sin$\theta $cos$\theta) _{max}$

$ = (\sqrt{ab}\dfrac{sin2\theta}{2}) _{max}$
$ = \dfrac{\sqrt{ab}}{2}        \because ($sin$2\theta) _{max}= 1 $

$\therefore$ Ans. is option A.

Let $g(x)=a _{0}+a _{1}x+a _{2}x^{2}+a _{3}x^{3}$ and $ f(x)=\sqrt{g(x)}$.
$f(x)$ has its non-zero local minimum and maximum values at $-3$ and $3$ respectively. If $a _{3}\in $ the domain of the function $ \displaystyle h(x)=\sin ^{-1}\left(\dfrac{1+x^{2}}{2x}\right)$. The value of $a _{0}$ is

  1. equal to $50$

  2. greater than $54$

  3. less than $54$

  4. less than $50$


Correct Option: B
Explanation:


$\displaystyle D _{h}=\left { -1, 1 \right }$, as only possible values in the domain of $h(x)$ is $1$ and $-1$
$\therefore  a _{3}=-1$
Now, $ g(x)=a _{0}+a _{1}x+a _{2}x^{2}-x^{3}$
$ {g}'(x)=a _{1}+2a _{2}x-3x^{2}$
$=-3(x-3)(x+3)$
$=-3x^{2}+27$
$\therefore  a _{1}=27, a _{2}=0$
$\therefore a _{1}+a _{2}=27$
Also, $g(-3)> 0$ and $g(3)> 0$
$\Rightarrow  a _{0}> 54$ and $a _{0}< -54$
$\therefore   a _{0}> 54$

Let $f(x) = ax^2+bx+c, a, b, c \in R.$ It is given $|f(x)| \le 1, \, |x| \le 1$ then the possible value of $|a+b|$, if $\dfrac{8}{3}a^2+2b^2$ is maximum, is given by

  1. $1$

  2. $0$

  3. $2$

  4. $3$


Correct Option: A

Let $f(x) = ax^2+bx+c, a, b, c \in R.$ It is given $|f(x)| \le 1, \, |x| \le 1$ then the possible value of $\dfrac{8}{3}a^2+2b^2$ is given by

  1. $32$

  2. $\dfrac{32}{3}$

  3. $\dfrac{2}{3}$

  4. $\dfrac{16}{3}$


Correct Option: A

Let $x$ and $y$ be two positive real numbers such that $xy = 1.$ The minimum value of $x + y$ is

  1. $1$

  2. $1/2$

  3. $2$

  4. $1/4$


Correct Option: C
Explanation:

Given $xy=1$ and $f(x,y)=x+y$
$\Rightarrow f(x)=x+\dfrac{1}{x}$
$f'(x)=1-\dfrac{1}{x^2}$
For maxima or minima,
$f'(x)=0$
$\Rightarrow x=\pm1$
$f''(x)=\dfrac{2}{x^3}$
$f''(x)>0$ at $x=1$
Hence f(x) has minimum at $x=1$
$f(1)=2$
So, minimum value of $x+y  \ is  \  2$.

- Hide questions