Using trigonometric tables - class-XI
Description: using trigonometric tables | |
Number of Questions: 49 | |
Created by: Shankara Prabhu | |
Tags: trigonometric identities trigonometry maths |
The value of ${ cosec }^{ 2 }{ 51 }^{ 0 }-{ cot }^{ 2 }{ 51 }^{ 0 }$ is
Choose the correct option for the following statement.
$\sin { { 30 }^{ o }= } $
The value of $\tan 7\dfrac{1}{2}^{o}$ is equal to
General solution of $cotx+tanx=2cosecx$ is
If $\cos A=\cos $ and $\sin A=\sin B$ then
$\left( 1-\dfrac { \cos { 61^{o} } }{ \cos { 1^{o} } } \right) \left( 1-\dfrac { \cos { 62^{o} } }{ \cos { 2^{o} } } \right) \left( 1-\dfrac { \cos { 63^{o} } }{ \cos { 3^{o} } } \right) .......\left( 1-\dfrac { \cos { 119^{o} } }{ \cos { 59^{o} } } \right) $
If $\tan \theta =\dfrac {\cos 9^{o}+\sin 9^{o}}{\cos 9^{o}-\sin 9^{o}}$, then the value of $\theta$ is
The value of $\tan \theta .\tan (\theta +60^{o})+\tan \theta \tan (\theta -60^{o})+\tan (\theta +60^{o}).\tan (\theta -60^{o})+3$ is
The value of $\sin 75^{o}$ is
If a=cos 2 and b=sin 7, then
$\dfrac{\cos{20}^{o}+8\sin{70}^{o}\sin{50}^{o}\sin{10}^{o}}{{\sin}^{2}{80}^{0}}$ is equal to:
The value of expression $\dfrac { 2\left( \sin{ 1 }^{ o }+\sin{ 2 }^{ o }+\sin{ 3 }^{ o }+.....+\sin{ 89 }^{ o } \right) }{ 2\left( \cos{ 1 }^{ o }+\cos{ 2 }^{ o}+......+\cos{ 44 }^{ o } \right) +1 }$ equals
${\cos}^{2}{73}^{o}+{\cos}^{2}{47}^{o}+\cos{73}^{o}\cos{47}^{o}=.$
$\dfrac { \cos{ 13 }^{ o }-\sin{ 13 }^{ o } }{ \cos{ 13 }^{ o }+\sin{ 13 }^{ o } } +\dfrac { 1 }{ \cot{ 148 }^{ o } }$ is equal to
The value of $\sqrt { 3 } tan{ 10 }^{ 0 }+\sqrt { 3 } tan{ 20 }^{ 0 }+tan{ 10 }^{ 0 }tan{ 20 }^{ 0 }$ is ___________.
If $sin(A-B)=\frac { 1 }{ 2 } ,cos(A+B)=\frac { 1 }{ 2 } ,{ 0 }^{ 0 }<A+B\le { 90 }^{ 0 }$ then A =
The value of $cos^2 10^o 15^o + cos^2 20^o +...... + cos^2 365^O$
$16 \cos^6 10^o - 24 \cos^4 10^o + 9 \cos^2 10^o$ is equal to
If $(1+\tan 1^{o})(1+\tan 2^{o})(1+\tan 3^{o})....(1+\tan 45^{o})=2^{n}$, then $n$ is equal to
Values of : $sin{ 10 }^{ 0 }sin{ 50 }^{ 0 }sin{ 60 }^{ 0 }sin{ 70 }^{ 0 }$ is
$sin^21^0+sin^22^0+sin^23^0+....+sin^290^0$
$\frac { cos{ 70 }^{ \circ } }{ sin{ 20 }^{ \circ } } +\frac { cos{ 59 }^{ \circ } }{ sin{ 31 }^{ \circ } } -8{ sin }^{ 2 }{ 30 }^{ \circ }$
The value of $(4 \, cos^2 9^o - 1) (4 cos^2 27^o - 1) (4 \, cos^2 81^o - 1) (4 \, cos^2 243^o - 1) $ is
$sin{ 40 }^{ \circ }{ 35 }^{ | }cos{ 19 }^{ \circ }{ 25 }^{ | }+cos{ 40 }^{ \circ }{ 35 }^{ | }sin{ 19 }^{ \circ }{ 25 }^{ |= }$
$\sqrt {3}\csc 20^{o}-\sec 20^{o}$ is equal to
$tan{ 40 }^{ \circ }+tan{ 80 }^{ \circ }-\sqrt { 3 } tan{ 40 }^{ \circ }tan{ 80 }^{ \circ }=$
$\sin^{-1}\left(\sin 100\right)+\cos^{-1}\left(\cos 100\right)+\tan^{-1}\left(\tan 100\right)+\cot^{-1}\left(\cot 100\right)$ equals to
$\dfrac{tan225 cot81cot69}{cot261 + tan21} $ =
Find the value of, $\dfrac {4}{3}\cot^{2}30^{o}+\cot^{2}60^{o}-2\csc ^{2}60^{o}-\dfrac {3}{4}\tan^{2}30^{o}$
$ \sqrt { 3 } \ cosec 20 ^ { \circ } - \sec 20 ^ { \circ }$ is equal to :
$Tan \,25^o.Tan \,31^o + Tan \,31^o.Tan \,34^o + Tan \,34^o .Tan \,25^o =$
Let $x=\sin 1^{o}$, then the value of expression
$\dfrac {1}{\cos 0^{o}\cos 1^{o}}+\dfrac {1}{\cos 1^{o}\cos 2^{o}}+\dfrac {1}{\cos 2^{o}\cos 3^{o}}+....+\dfrac {1}{\cos 44^{o}\cos 45^{o}}=$
$\dfrac{\cos (45^0+A)-\cos(45^0-A)}{\sin(120^0+A)-\sin(120^0-A)}=?$
if $A=30$ then the value of $\cos 2A$ is
$(1+\tan 5^{o})(1+\tan 10^{o})(1+\tan 15^{o}).....(1+\tan 45^{o})$ is equal to
$sin 12^o\sin\ 24^o\sin\ 48^o\sin\ 84^o$=
$\tan 5\tan 25\tan 30\tan 65 \tan 85$ is equal to
$\tan 20 ^ { \circ } + \tan 40 ^ { \circ } + \sqrt { 3 } \tan 20 ^ { \circ } \tan 40 ^ { \circ }$ is equal to
If $\alpha =685^o$, then $(\cos\alpha -\sin\alpha)$ is equivalent to?
The distance between $A ( \cos \theta , \sin \theta )$ and $B ( - \sin \theta , \cos \theta )$ is
$\dfrac { 1 tan^{ 1 } 45^{ 2 }}{ 1 tan^{ 1 } 45^{ 0 } }$
$\displaystyle3\tan^2{30^\circ}+\frac{4}{3}\cos^2{30^\circ}-2\sin^2{45^\circ}-\frac{1}{3}\sin^2{60^\circ}$ is equal to__________________.
The angle measuring $\displaystyle \frac{\pi ^{c}}{4}$ when expressed in centesimal system is ___
$\displaystyle 30^{\circ}$ in centesimal measure is _____
When the sun is $30^o$ above the horizon, what is the length of the shadow cast by a building $40$ m high?
From the tower $30$ m above the sea, the angle of depression of a boat is $68^o$. How far is the boat from the tower?
When the sun is $50^o$ above the horizon, how long is the shadow cast by a building $16$ m high?