0

Rational numbers on number line - class-VII

Description: rational numbers on number line
Number of Questions: 47
Created by:
Tags: basic algebra real numbers operations on rational numbers number systems maths real numbers (rational and irrational numbers) rational numbers number system
Attempted 0/47 Correct 0 Score 0

Milk is sold at $Rs\ 10\dfrac {3}{4}$ per liter, Find the cost of $6\dfrac {2}{5}$ liters of milk.

  1. $Rs \,107 \dfrac {1}{5}$

  2. $Rs \, 65 \dfrac {2}{5}$

  3. $Rs \, 103 \dfrac {1}{5}$

  4. $Rs \, 68 \dfrac {4}{5}$


Correct Option: D
Explanation:

Price$=Rs\ 10\dfrac {3}{4}=Rs.\cfrac{43}{4}$ per liter


Price of $6\dfrac {2}{5} l=\cfrac{32}{5}l=Rs.\cfrac{43}{4}\times \cfrac{32}{5}=Rs.\cfrac{344}{5}=Rs.68\cfrac{4}{5}$


A rational number between $\dfrac {-2}{3}$ and $\dfrac {1}{2}$ is

  1. $-\dfrac {3}{6}$

  2. $\dfrac {-1}{12}$

  3. $\dfrac {-5}{6}$

  4. $\dfrac {5}{6}$


Correct Option: A

Write a rational number between $\sqrt{2}$ and $\sqrt{3}$ .

  1. $\cfrac{3}{2}$

  2. $\cfrac{4}{2}$

  3. $\cfrac{5}{2}$

  4. $5$


Correct Option: A
Explanation:

$\sqrt{2} = 1.414 ... $ and $\sqrt{3} = 1.732 ... $.

Clearly, $1.5 =\dfrac{15}{10} =\dfrac{3}{2}$ is the required number.

The three rational number between $5$ and $6$ are $ [\displaystyle\frac{21}{4},\frac{22}{4},\frac{23}{4}]$.

  1. True

  2. False


Correct Option: A
Explanation:

$5=\frac { 20 }{ 4 } \quad and\quad 6=\frac { 24 }{ 4 } ,\ \frac { 21 }{ 4 } ,\frac { 22 }{ 4 } and\frac { 23 }{ 4 } \quad are\quad three\quad rational\quad numbers\quad lying\quad between\quad 5\quad and\quad 6.\quad \quad \ $

The rational number lying between $\displaystyle \frac{5}{6}$ and $\displaystyle \frac{6}{7}$ is :

  1. $\displaystyle \frac{1}{2}$

  2. $\displaystyle \frac{15}{21}$

  3. $\displaystyle \frac{35}{42}$

  4. $\displaystyle \frac{71}{84}$


Correct Option: D
Explanation:

The rational number lying between $\displaystyle \frac{5}{6}$ and $\displaystyle \frac{6}{7}$ is
 $\displaystyle \frac{1}{2}\left ( \frac{5}{6}+\frac{6}{7} \right )=\frac{1}{2}\left ( \frac{35+36}{42} \right )=\frac{71}{84}$

The pair of rational numbers lying between $\displaystyle \frac{1}{4}$ and $\displaystyle -\frac{3}{4}$ is ?

  1. $\displaystyle \frac{262}{1000}$, $\displaystyle \frac{752}{1000}$

  2. $\displaystyle \frac{63}{250}$, $\displaystyle \frac{187}{250}$

  3. $\displaystyle \frac{13}{50}$, $\displaystyle \frac{264}{350}$

  4. $\displaystyle \frac{9}{50}$, $\displaystyle \frac{31}{40}$


Correct Option: B
Explanation:

The rational numbers $\displaystyle \frac{1}{4}$ and $\displaystyle \frac{3}{4}$ can be written
as $\displaystyle \frac{250}{1000}$ and $\displaystyle \frac{750}{1000}$ Therefore $\displaystyle \frac{63}{250}=\frac{252}{1000}$

and $\displaystyle \frac{187}{250}=\frac{748}{1000}$ satisfy this condition

Find $9$ rational numbers between $-\displaystyle\frac{1}{9}\;and\;\displaystyle\frac{1}{5}$.

  1. $\displaystyle\frac{-7}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$

  2. $\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{16}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$

  3. $\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{83}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$

  4. $\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$


Correct Option: D
Explanation:

Convert the rational numbers into equivalent rational numbers with the same denominator.


LCM of $9\;and\;5$ is $45$.

$-\displaystyle\frac{1}{9}=\displaystyle\frac{-1\times5}{9\times5}=\displaystyle\frac{-5}{45}\;and\;\displaystyle\frac{1}{5}=\displaystyle\frac{1\times9}{5\times9}=\displaystyle\frac{9}{45}$

The integers between $-5\;and\;9$ are
$-4,\,-3,\,-2,\,-1,\,0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8$.

The corresponding rational numbers are $\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{0}{45},\,\displaystyle\frac{1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{6}{45},\,\displaystyle\frac{7}{45},\,\displaystyle\frac{8}{45}$

On selecting any $9$ of them, we get $9$ rational numbers between $-\displaystyle\frac{1}{9}\;and\;\displaystyle\frac{1}{5}$

$\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$

$\displaystyle \frac{11}{4}$ is a number between

  1. $1 \ and \ 2$

  2. $2 \ and\ 3$

  3. $3 \ and \ 4$

  4. $11 \ and\ 12$


Correct Option: B
Explanation:

$\displaystyle \frac{11}{4} = 2\frac{3}{4}$
So $\displaystyle \frac{11}{4}$ lies between 2 and 3.

State TRUE or FALSE
The three rational number between $\dfrac{1}{3}$ and $\dfrac{1}{2}$ are $\displaystyle\frac{9}{24},\frac{10}{24},\frac{11}{24}$.

  1. True

  2. False


Correct Option: A
Explanation:

$x=\frac { 1 }{ 3 } =\frac { 8 }{ 24 } \quad and\quad y=\frac { 1 }{ 2 } =\frac { 12 }{ 24 } ,\ $

$ \frac { 9 }{ 24 } ,\frac { 10 }{ 24 } \ and\ \frac { 11 }{ 24 } are\quad three\quad rational\quad numbers\quad lying\quad between\quad x\quad and\quad y.\quad \quad \ $

A rational number between $\displaystyle \frac{1}{4}$ and $\displaystyle \frac{1}{3}$ is

  1. $\displaystyle \frac{7}{24}$

  2. $0.29$

  3. $\displaystyle \frac{13}{48}$

  4. All the above


Correct Option: D
Explanation:

$\dfrac{1}{4} = \dfrac{6}{24} = \dfrac{12}{48} = 0.25$


$\dfrac{1}{3} = \dfrac{8}{24} = \dfrac{16}{48} = 0.33$

From this, we can see $\dfrac{7}{24} , \dfrac{13}{48}, 0.29$ all lie between $\dfrac{1}{4}$ and $\dfrac{1}{3}$

Find $3$ rational numbers between $0$ and $1$.

  1. $\displaystyle\frac{3}{2},\,\displaystyle\frac{1}{4}$ and $\displaystyle\frac{3}{4}$

  2. $\displaystyle\frac{1}{2},\,\displaystyle\frac{1}{4}$ and $\displaystyle\frac{3}{4}$

  3. $\displaystyle\frac{1}{2},\,\displaystyle\frac{5}{4}$ and $\displaystyle\frac{3}{4}$

  4. $\displaystyle\frac{1}{2},\,\displaystyle\frac{1}{4}$ and $\displaystyle\frac{7}{4}$


Correct Option: B
Explanation:
The mean of $0 $ and $ 1$ is $\cfrac{0+1}{2}=\cfrac{1}{2}$.

The mean of $0 $ and $ \cfrac{1}{2}$ is $\begin{pmatrix}0+\cfrac{1}{2}\end{pmatrix}\div2=\cfrac{1}{2}\div2=\cfrac{1}{2}\times\cfrac{1}{2}=\cfrac{1}{4}$

The mean of $\cfrac{1}{2} $ and $ 1$ is $\begin{pmatrix}\cfrac{1}{2}+1\end{pmatrix}\div2$

$=\begin{pmatrix}\cfrac{1+2}{2}\end{pmatrix}\div2=\cfrac{3}{2}\div2=\cfrac{3}{2}\times\cfrac{1}{2}=\cfrac{3}{4}$.

So, the $3$ rational numbers between $0 $ and $ 1$ are $\cfrac{1}{2},\,\cfrac{1}{4} $ and $ \cfrac{3}{4}$.

The rational number $\displaystyle -\frac{18}{5}$ lies between the consecutive integers

  1. $- 2\  and\  - 3$

  2. $- 3 \ and\  - 4$

  3. $- 4 \ and\  - 5$

  4. $- 5\  and \ - 6$


Correct Option: B
Explanation:

$\displaystyle -\frac{18}{5}= - 3.6 $ which lies between - 3 and - 4

Write five rational numbers greater than $-2$.

  1. $-\displaystyle\frac{3}{2},\,\displaystyle\frac{-1}{2},\,-1,\,\sqrt5,\,\displaystyle\frac{1}{2}$

  2. $-\displaystyle\frac{3}{2},\,\displaystyle\frac{-1}{2},\,-1,\,0,\,\displaystyle\frac{1}{2}$

  3. $-\displaystyle\frac{3}{2},\,\displaystyle\frac{-1}{2},\,-\sqrt3,\,0,\,\displaystyle\frac{1}{2}$

  4. $-\displaystyle\frac{5}{2},\,\displaystyle\frac{-1}{2},\,-1,\,0,\,\displaystyle\frac{1}{2}$


Correct Option: B
Explanation:

Five rational numbers greater than $-2$ may be taken as: 
$-\displaystyle\frac{3}{2},\,-1,\,\displaystyle\frac{-1}{2},\,0,\,\displaystyle\frac{1}{2}$
There can be many more such rational numbers.

There are ..........  rational numbers between two rational numbers. 

  1. infinite

  2. two

  3. one

  4. none of these


Correct Option: A
Explanation:

There are infinite rational numbers between two rational numbers.


For example take two fractions  $\dfrac{3}{5},\dfrac{4}{5}$


we can have infinite rationals like $\dfrac{3.1}{5},\dfrac{3.2}{5},\dfrac{3.3}{5}......$  betwen these two given rationals.

Which of the following rational numbers lies between $\dfrac {3}{2}$ and $4$ ?

  1. $\dfrac {1}{2}$

  2. $3$

  3. $\dfrac {8}{2}$

  4. $\dfrac {9}{2}$


Correct Option: B
Explanation:

We have to find a rational number between $\dfrac {3}{2}$ and $4$. The L.C.M. of the denominators of both numbers is $2$.
$\therefore \dfrac {3}{2} = \dfrac {3}{2}$ and $4\times \dfrac {2}{2} = \dfrac {8}{2}$.
$\therefore$ From the above given options, only $\dfrac {6}{2}$
i.e. $=3$ lies between $\dfrac {3}{2}$ and $4$.

The rational number between $\cfrac{1}{2}$ and $0.6$ is

  1. $\cfrac{1}{4}$

  2. $\cfrac{3}{4}$

  3. $\cfrac{21}{40}$

  4. $\cfrac{33}{100}$


Correct Option: C
Explanation:

$\dfrac{1}{2}=0.5$

$\therefore 0.5$ and $0.6$ can be written as 
$\dfrac{5}{10}$ and $\dfrac{6}{10}$
Multiplying the denominator and numerator by $4$ we get,
$\dfrac{5}{10}\times 4=\dfrac{20}{40}$ and
$\dfrac{6}{10}\times 4=\dfrac{24}{40}$
Number between $\dfrac{20}{40}$ and $\dfrac{24}{40}$ is $\dfrac{21}{40}$

If $\frac {4+3\sqrt 5}{\sqrt 5}=a+b\sqrt 5$ then, the value of b is

  1. $\frac {3}{5}$

  2. $\frac {4}{5}$

  3. $\frac {3\sqrt 5}{5}$

  4. $\frac {2}{5}$


Correct Option: B
Explanation:

$\frac {4+3\sqrt 5}{\sqrt 5}=a+b\sqrt 5$
$\frac {(4+3\sqrt 5)\sqrt 5}{\sqrt 5\times \sqrt 5}=\frac {4\sqrt 5+15}{5}=\frac {4\sqrt 5}{5}+\frac {15}{5}$
$=3+\frac {4\sqrt 5}{5}$
Clearly, $a=3$
$b=\frac {4}{5}$.

There are ......... rational numbers between two given rational numbers.

  1. $2$

  2. $5$

  3. none

  4. infinite


Correct Option: D
Explanation:

There can be infinite number of rational numbers between two given rational numbers.

There exists ....... number of rational numbers between $\dfrac {2}{5}$ and $\dfrac {4}{5}.$

  1. $0$

  2. $1$

  3. $5$

  4. infinite


Correct Option: D
Explanation:

There exists infinite number of rational numbers between any two rational numbers. i.e. in this case between $\dfrac {2}{5}$ and $\dfrac {4}{5}$.

Which of the following numbers lies between $2\dfrac {1}{7}$ and $3\dfrac {1}{7}$?

  1. $\dfrac {37}{7}$

  2. $\dfrac {14}{7}$

  3. $\dfrac {37}{14}$

  4. $2$


Correct Option: C
Explanation:

$Mean = \dfrac{\left (\dfrac {15}{7} + \dfrac {22}{7}\right )}{2} = \left (\dfrac {15 + 22}{7}\right ) \times \dfrac {1}{2} = \dfrac {37}{7}\times \dfrac {1}{2}$
$= \dfrac {37}{14}$

Mean of two numbers always lies between the two numbers.
So, answer is option $C.$ 

Which of the following numbers lies between $\dfrac {-5}{2}$ and $\dfrac {3}{4}$?

  1. $1$

  2. $0$

  3. $-3$

  4. $3$


Correct Option: B
Explanation:

From the options, only $0$ can lie between $\dfrac {-5}{2}$ and $\dfrac {3}{4}.$

$-3=\dfrac{-6}{2}$
$-3$ is less than $\dfrac {-5}{2}.$ 
$1=\dfrac{4}{4}$

$3=\dfrac{12}{4}$
$1$ and $3$ are greater than $\dfrac {3}{4}$.

Which of the following rational numbers lies between $0$ and $-1$?

  1. $0$

  2. $-1$

  3. $\dfrac {-1}{4}$

  4. $\dfrac {1}{4}$


Correct Option: C
Explanation:

Clearly, $0$ and $-1$ cannot lie between $0$ and $-1$. 

Also, 
$0=\dfrac{0}{4}$ and $-1=\dfrac{-4}{4}$
We can clearly see that $\dfrac {-1}{4}$ lies between $0$ and $-1$.

If we divide a positive integer by another positive integer, what is the resulting number?

  1. It is always a natural number

  2. It is always an integer

  3. It is a rational number

  4. It is an irrational number


Correct Option: C
Explanation:

When a positive integer is divided by another positive integer will yield a rational number

The rational number lying exactly in between the numbers $\displaystyle \frac { 1 }{ 5 } $ and $\displaystyle \frac { 1 }{ 3 } $ is

  1. $\displaystyle \frac { 1 }{ 2 } $

  2. $\displaystyle \frac { 1 }{ 4 } $

  3. $\displaystyle \frac { 2 }{ 15 } $

  4. $\displaystyle \frac { 4 }{ 15 } $

  5. $\displaystyle \frac { 8 }{ 15 } $


Correct Option: D
Explanation:

Required number $=$ $\dfrac{1}{2}\left(\dfrac{1}{5}+\dfrac{1}{3}\right)$

$\Rightarrow \dfrac{1}{2}\left(\dfrac{3+5}{15}\right)$
$\Rightarrow \dfrac{1}{2}\times \dfrac{8}{15}=\dfrac{4}{15}$
Hence, $\dfrac{4}{15}$ is a rational number lying between $\dfrac{1}{5}$ and $\dfrac{1}{3}$.

Identify a rational number between $\dfrac {1}{3}$ and $\dfrac {4}{5}$

  1. $\dfrac {1}{4}$

  2. $\dfrac {9}{10}$

  3. $\dfrac {17}{30}$

  4. $\dfrac {7}{10}$


Correct Option: C,D
Explanation:

Converting the given fraction in decimal format we get $\frac { 1 }{ 3 } =0.33\quad and\quad \frac { 4 }{ 5 } =0.8$

Now converting all option in decimal we get
A.  $\frac{1}{4}$=0.25
B. $\frac{9}{10}$=0.9
C. $\frac{17}{30}$=0.567
D.  $\frac{7}{10}$ =0.7
So it is clear that option C and D lies between 0.33 and 0.8 and both are rational numbers so correct answer will be option C and D

State true or false:

Five rational numbers between.
$\dfrac{2}{3}$ and $\dfrac{4}{5}$ are $\dfrac{41}{60},\dfrac{42}{60},\dfrac{43}{60},\dfrac{44}{60},\dfrac{45}{60}$
  1. True

  2. False


Correct Option: A
Explanation:

To get the rational numbers between $\displaystyle\frac{2}{3}$ and $\displaystyle\frac{4}{5}$

Take an LCM of these two numbers: $\displaystyle\frac{10}{15}$ and $\displaystyle\frac{12}{15}$

Multiply numerator and denominator by 4: $\displaystyle\frac{40}{60}$ and $\displaystyle\frac{48}{60}$

All the numbers between $\displaystyle\frac{40}{60}$ and $\displaystyle\frac{48}{60}$ form the answer

Some of these numbers are $\displaystyle\frac{41}{60}$, $\displaystyle\frac{42}{60}$, $\displaystyle\frac{43}{60}$, $\displaystyle\frac{44}{60}$, $\displaystyle\frac{45}{60}$


Hence the statement is true

Three rational numbers between $\frac{2}{5}$ and $\frac{3}{5}$ is  $\frac{9}{20},\frac{10}{20},\frac{11}{20}$
If true then enter $1$ and if false then enter $0$

  1. True

  2. False


Correct Option: A

The rational number between $\displaystyle \frac{1}{3}$ and $\displaystyle \frac{1}{2}$ is _________.

  1. $\displaystyle \frac{2}{5}$

  2. $\displaystyle \frac{1}{5}$

  3. $\displaystyle \frac{3}{5}$

  4. $\displaystyle \frac{4}{5}$


Correct Option: A
Explanation:

$\dfrac{1}{3} = 0.3333.....$


$\dfrac{1}{2} = 0.5$

Option A :
$\dfrac{2}{5} = 0.4$

Option B :
$\dfrac{1}{5} = 0.2$

Option C :
$\dfrac{3}{5} = 0.6$

Option D :
$\dfrac{4}{5} = 0.8$

$\therefore$ Option A lies in between $\dfrac{1}{3}$ and $\dfrac{1}{2}$

Choose the rational number, which does not lie, between the rational numbers, $\frac{-2}{3}$ and $\frac{-1}{5}$

  1. $\frac{-3}{10}$

  2. $\frac{3}{10}$

  3. $\frac{-1}{4}$

  4. $\frac{-7}{20}$


Correct Option: B
Explanation:

Both given rational numbers are negative rational number. So, a rational number between both these rational numbers will be negative. But option B is a positive. So, option B will not lie between the given rational numbers. So, correct answer is option B.

State true or false:

Five rational numbers between.
$\dfrac{1}{4}$ and $\dfrac{1}{2}$ are $\displaystyle\frac{9}{32},\frac{10}{32},\frac{11}{32},\frac{12}{32},\frac{13}{32}$
  1. True

  2. False


Correct Option: A
Explanation:

To get the rational numbers between $\displaystyle\frac{1}{4}$ and $\displaystyle\frac{1}{2}$

Take an LCM of these two numbers: $\displaystyle\frac{1}{4}$ and $\displaystyle\frac{2}{4}$

Multiply numerator and denominator by 8: $\displaystyle\frac{8}{32}$ and $\displaystyle\frac{16}{32}$

All the numbers between $\displaystyle\frac{8}{32}$ and $\displaystyle\frac{16}{32}$ form the answer

Some of these numbers are $\displaystyle\frac{9}{32}$, $\displaystyle\frac{10}{32}$, $\displaystyle\frac{11}{32}$, $\displaystyle\frac{12}{32}$, $\displaystyle\frac{13}{32}$

State true or false:

Five rational numbers between.
$\dfrac{-3}{2}$ and $\dfrac{5}{3}$ are $\dfrac{-8}{6},\dfrac{-7}{6},0,\dfrac{1}{6},\dfrac{2}{6}$
  1. True

  2. False


Correct Option: A
Explanation:

To get the rational numbers between $\displaystyle\frac{-3}{2}$ and $\displaystyle\frac{5}{3}$

Take an LCM of these two numbers: $\displaystyle\frac{-9}{6}$ and $\displaystyle\frac{10}{6}$

All the numbers between $\displaystyle\frac{-9}{6}$ and $\displaystyle\frac{10}{6}$ form the answer

Some of these numbers are $\displaystyle\frac{-8}{6}$, $\displaystyle\frac{-7}{6}$, $\displaystyle{0}$, $\displaystyle\frac{1}{6}$, $\displaystyle\frac{2}{6}$


Hence the statement is true

State true or false:

Ten rational numbers between $\dfrac{3}{5}$ and $\dfrac {3}{4}$ are 

$\displaystyle\frac{97}{160},\frac{98}{160},\frac{99}{160},\frac{100}{160},\frac{101}{160},\frac{102}{160},\frac{103}{160},\frac{104}{160},\frac{105}{160},\frac{106}{160}$
  1. True

  2. False


Correct Option: A
Explanation:

To get the rational numbers between $\displaystyle\frac{3}{5}$ and $\displaystyle\frac{3}{4}$

Take an LCM of these two numbers: $\displaystyle\frac{12}{20}$ and $\displaystyle\frac{15}{20}$


So now to make the denominator $(160)$ as per the question we need to
multiply numerator and denominator by $8$: $\displaystyle\frac{96}{160}$ and $\displaystyle\frac{120}{160}$

All the numbers between $\displaystyle\frac{96}{160}$ and $\displaystyle\frac{120}{160}$ form the answer

Some of these numbers are $\displaystyle\frac{97}{160}$, $\displaystyle\frac{98}{160}$, $\displaystyle\frac{99}{160}$, $\displaystyle\frac{100}{160}$, $\displaystyle\frac{101}{160}$, $\displaystyle\frac{102}{160}$, $\displaystyle\frac{103}{160}$, $\displaystyle\frac{104}{160}$, $\displaystyle\frac{105}{160}$, $\displaystyle\frac{106}{160}$

Two rational numbers between $\dfrac{1}{5}$ and $\dfrac{4}{5}$ are :

  1. 1 and $\dfrac{3}{5}$

  2. $\dfrac{2}{5}$ and $\dfrac{3}{5}$

  3. $\dfrac{1}{2}$ and $\dfrac{2}{1}$

  4. $\dfrac{3}{5}$ and $\dfrac{6}{5}$


Correct Option: B
Explanation:

Since the denominator of both rational numbers are same. So, for getting the rational numbers between the given rational numbers, we only have to consider the numerators of the rational numbers.

Two numbers between 1 & 4 are 2 and 3.
So, two rational numbers between the given rational numbers will be $\dfrac { 2 }{ 5 }$ and $ \dfrac { 3 }{ 5 } $
So, correct answer is option B.

A rational number lying between $\sqrt{2}$ and $\sqrt{3}$ is :

  1. $\dfrac{\sqrt{2}+\sqrt{3}}{2}$

  2. $\sqrt{6}$

  3. 1.6

  4. 1.9


Correct Option: C
Explanation:

$\sqrt {2  } \cong $ 1.41....and $\sqrt {3  } \cong $ 1.73..

Now we see that option A is irrational number so it is incorrect , Option B is also irrational number so it is also incorrect ,Option C is rational number and lie between the given number so it is correct , Option D is rational number but it does not lie between the given number so it is incorrect.

The Rational Number $\dfrac { -18 }{ 5 } $ lies between the consecutive integers

  1. $-2$ and$-2$

  2. $-3$ and $-4$

  3. $-4$ and $-5$

  4. $-5$ and$-6$


Correct Option: B
Explanation:

$-\cfrac { 18 }{ 5 } =-3.6\Rightarrow $ lies between $-4$ and $-3$

Find the real numbers between the following

  1. $8$ and $9$

  2. $\dfrac{1}{9}$ and $\dfrac{2}{9}$

  3. $-4$ and $-3$

  4. $0.75$ and $1.2$


Correct Option: A

Find two rational numbers lying between $\dfrac{-1}{3}$ and $\dfrac{1}{2}$.

  1. -1/6,1 /6

  2. -2/3, 2/3

  3. none

  4. both


Correct Option: A

Which of the rational number lies between $-\dfrac { 2}{ 3} $ and $\dfrac {1 }{4}$

  1. $ {\dfrac{ - 5} {24}}$

  2. ${\dfrac {25} {12}}$

  3. ${\dfrac {51}  {24}}$

  4. ${\dfrac {5} {12}}$


Correct Option: A
Explanation:

Given the fractions $-\dfrac { 2}{ 3} $ and $\dfrac {1 }{4}$ can be written as $-\dfrac{8}{12}$ and $\dfrac{3}{12}$ or, $-\dfrac{16}{24}$ and $\dfrac{6}{24}$.

Now it is clear that $-\dfrac{5}{24}$ lies between the given fractions.

What is the sum of the addictive inverse of $\frac{2}{3}$ and the reciprocal of $\frac{9}{8}$?

  1. $\frac{3}{8}$

  2. -$\frac{3}{8}$

  3. $\frac{2}{9}$

  4. -$\frac{2}{9}$


Correct Option: C

Find five rational numbers between $\displaystyle\frac{-3}{2}$ and $\displaystyle\frac{5}{3}$.

  1. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-13}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{2}{6}$

  2. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{13}{6}$

  3. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{11}{6}$

  4. $\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$ and $\displaystyle\frac{2}{6}$


Correct Option: D
Explanation:
Converting the given rational numbers with the same denominators
$\cfrac{2}{3}=\cfrac{2\times5}{3\times5}=\cfrac{10}{15}$ and $\cfrac{4}{5}=\cfrac{4\times3}{5\times3}=\cfrac{12}{15}$

Also, $\cfrac{2}{3}=\cfrac{10}{15}=\cfrac{10\times4}{15\times4}=\cfrac{40}{60}$ and $\cfrac{4}{5}=\cfrac{12}{15}=\cfrac{12\times4}{15\times4}=\cfrac{48}{60}$

We know that $40,\,<\,41\,<\,42\,<\,43\,<44\,<45\,<\,46\,<\,47\,<\,48$
$\Rightarrow\cfrac{40}{60}\,<\,\cfrac{41}{60}\,<\,\cfrac{42}{60}\,<\,\dots\,<\,\cfrac{47}{60}\,<\,\cfrac{48}{60}$
Thus, we have the following five rational numbers between $\cfrac{2}{3}$ and $\cfrac{4}{5}$
$\cfrac{41}{60},\,\cfrac{43}{60},\,\cfrac{43}{60}\,\cfrac{44}{60}$ and $\cfrac{45}{60}$.

Converting the given rational numbers with the same denominators 
$\cfrac{-3}{2}=\cfrac{-3\times3}{2\times3}=\cfrac{-9}{6}$ and $\cfrac{5}{3}=\cfrac{5\times2}{3\times2}=\cfrac{10}{6}$

We know that $-9\,<\,-8\,<\,-7\,<\,-6\,<\,\dots\,<\,0\,<\,1\,<\,2\,<\,8\,<\,9\,<\,10$
$\Rightarrow\cfrac{-9}{6}\,<\,\cfrac{-8}{6}\,<\,\cfrac{-7}{6}\,<\,\cfrac{-6}{6}\,<\,\dots\,<\,\cfrac{0}{6}\,<\,\cfrac{1}{6}\,<\,\cfrac{2}{6}\,<\,\dots\,<\,\cfrac{8}{6}\,<\,\cfrac{9}{6}\,<\,\cfrac{10}{6}$.

Thus, we have the following five rational numbers between $\cfrac{-3}{2}$ and $\cfrac{5}{3}$ 
$\Rightarrow \cfrac{-8}{6},\,\cfrac{-7}{6},\,\cfrac{0}{6},\,\cfrac{1}{6}and\cfrac{2}{6}$

State True or False.

The five rational numbers between $\dfrac{3}{5}$ and $\dfrac{4}{5}$ are $ \displaystyle \frac{19}{30},\frac{20}{30},\frac{21}{30},\frac{22}{30},\frac{23}{30}$.

  1. True

  2. False


Correct Option: A
Explanation:

Since we want five  numbers we write $\frac{3}{5}$ and $\frac{4}{5}$
So multiply in numerator and denominator by 5+1 = 6 we get
$\Rightarrow \frac{3}{5}=\frac{3\times 6}{5\times 6}=\frac{18}{30}$
$\Rightarrow \frac{4}{5}=\frac{4\times 6}{5\times 6}=\frac{24}{30}$
We know that $18<19<20<21<22<23<24$
$\Rightarrow \frac{18}{30}<\frac{19}{30}<\frac{20}{30}<\frac{21}{30}<\frac{22}{30}<\frac{23}{30}<\frac{24}{30}$
Hence 5 rational number between $\frac{3}{5} and  \frac{4}{5}$are
$\frac{19}{30},\frac{20}{30},\frac{21}{30},\frac{22}{30},\frac{23}{30},$

There are 50 numbers Each numbers is subtracted from 53 and the mean of the numbers so obtained is found to be -3.5 The mean of the given numbers is 

  1. $48.9$

  2. $49.5$

  3. $52.5$

  4. $56.5$


Correct Option: B
Explanation:

$\Rightarrow$   Total observation is $50$

$\Rightarrow$  Let sum of $50$ number be $x$
$\therefore$    $\dfrac{x-(50\times 53)}{50}=-3.5$
$\therefore$    $x-2650=-3.5\times 50$
$\therefore$    $x-2650=-175$
$\therefore$    $x=-175+2650$
$\therefore$    $x=2475$
$\Rightarrow$   Original mean = $\dfrac{2475}{50}=49.5$

Write any $10$ rational numbers between $0\;and\;2$.

  1. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{88}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$

  2. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{21}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$

  3. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{35}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$

  4. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$


Correct Option: D
Explanation:

Let us write $0$ as $\displaystyle\frac{0}{10}\;and\;2$ as $\displaystyle\frac{20}{10}$.

The rational numbers between these are


$\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10},\,\displaystyle\frac{11}{10},\,\displaystyle\frac{12}{10},\,\displaystyle\frac{13}{10},\,\displaystyle\frac{14}{10},\,\displaystyle\frac{15}{10},\,\displaystyle\frac{16}{10},\,\displaystyle\frac{17}{10},\,\displaystyle\frac{18}{10},\,\displaystyle\frac{19}{10}$

Choose the rational number which does not lie between rational numbers $ \displaystyle \frac{3}{5} $ and $ \displaystyle \frac{2}{3} $ :

  1. $ \displaystyle \frac{46}{75} $

  2. $ \displaystyle \frac{47}{75} $

  3. $ \displaystyle \frac{49}{75} $

  4. $ \displaystyle \frac{50}{75} $


Correct Option: D
Explanation:

For $\dfrac{3}{5}$ multiply numerator and denominator by $15$ to make denominator $75$ that comes into $\dfrac{45}{75}.$
Similarly doing for second then we have $\dfrac{50}{75}.$
Now question is asking about rational lying between them.

So, we need to check the numerator only that lies in between $45$ and $50$ or not.
Clearly $D$ is correct.

Find five rational numbers between $1$ and $2.$

  1. $\dfrac {1}{10}, \dfrac {2}{10}, \dfrac {3}{10}, \dfrac {4}{10}, \dfrac {5}{10}$

  2. $\dfrac {1}{5}, \dfrac {2}{5}, \dfrac {3}{5}, \dfrac {4}{5}, \dfrac {5}{5}$

  3. $\dfrac {1}{2}, \dfrac {1}{3}, \dfrac {1}{4}, \dfrac {1}{5}, \dfrac {1}{6}$

  4. $\dfrac {8}{7}, \dfrac {9}{7}, \dfrac {10}{7}, \dfrac {11}{7}, \dfrac {12}{7}$


Correct Option: D
Explanation:

The given rational numbers are $1$ and $2$.

Let us multiply both the numbers by $\dfrac {7}{7}$.

$1\times \dfrac {7}{7} = \dfrac {7}{7}$ and $2\times \dfrac {7}{7} = \dfrac {14}{7}$.

Thus, five rational numbers between $\dfrac {7}{7} = 1$ and $\dfrac {14}{7} = 2$ are $\dfrac {8}{7}, \dfrac {9}{7}, \dfrac {10}{7}, \dfrac {11}{7}, \dfrac {12}{7}$.

Choose the rational number which does not lie between rational numbers $-\cfrac {2}{5}$ and $-\cfrac {1}{5}$

  1. $-\dfrac {1}{4}$

  2. $-\dfrac {3}{10}$

  3. $\dfrac {3}{10}$

  4. $-\dfrac {7}{20}$


Correct Option: C
Explanation:

Since the given rational numbers $-\dfrac {2}{5}$ and $-\dfrac {1}{5}$ are negative rational numbers, therefore, none of the positive rational number can lie between them.


Hence, the rational number $\dfrac {3}{10}$ does not lie between the rational numbers $-\dfrac {2}{5}$ and $-\dfrac {1}{5}$ 

Identity the rational number that does not lie between  $ \cfrac{3}{5}$ and $ \cfrac{2}{3}$.

  1. $ \cfrac{46}{75}$

  2. $ \cfrac{47}{75}$

  3. $ \cfrac{49}{75}$

  4. $ \cfrac{50}{75}$


Correct Option: D
Explanation:

Changing the fractions to denominator $=75$


$\dfrac{3}{5} = \dfrac{45}{75}$

$\dfrac{2}{3} = \dfrac{50}{75}$

$\therefore \dfrac{50}{75}$ doesn't lie in between $\dfrac{3}{5}$ and $\dfrac{2}{3}$

- Hide questions