Powers of imaginary unit i - class-XII
Description: powers of imaginary unit i | |
Number of Questions: 47 | |
Created by: Amal Dixit | |
Tags: complex numbers maths complex numbers and quadratic equations complex numbers and linear inequations |
Which of the following is correct ?
Find the value of $\begin{vmatrix} 2+i & 2-i \ 1+i & 1-i \end{vmatrix}$ if $i^2=-1$.
Find the value of $\dfrac{i^{4n+1}-i^{4n-1}}{2}$.
$i^{242}=$
$\displaystyle i+\frac{1}{i}=$
Evaluate :
$\displaystyle \left ( i \right )^{457}$
The smallest integer n such that $\displaystyle \left(\frac{1+i}{1-i}\right)^{n}= 1$ is
$\displaystyle \left ( \frac{1 + i}{1 - i} \right )^2 + \left(\frac{1 - i}{1 + i} \right )^2$ is equal to
The value of $\sqrt {-1} $ is
The value of $-3\sqrt {-10}$ is equal to
Find the value of $\displaystyle \left( 4+2i \right) \left( 4-2i \right) $ given that $\displaystyle { i }^{ 2 }=-1$.
If $i^{2} = -1$, calculate the value of $3i^{2} + i^{3} - i^{4}$.
The value of the sum $\displaystyle \sum _{ n=1 }^{ 13 }{ \left( { i }^{ n }+{ i }^{ n+1 } \right) }$. where $i=\sqrt { -1 }$, equals
Evaluate: $i^{24} + \left(\dfrac{1}{i}\right)^{26}$
$z _1$ and $z _2$ are two complex numbers such that $|z _1|= |z _2|$ and $arg (z _1)+arg(z _2)=\pi$, then $z _1$ is equal to
When simplified the value of $[i^{57}-(1/i^{25})]$ is?
The value of $i^{n}+i^{n+1}+i^{n+3}, n \epsilon N$ is
The value of ${ i }^{ \frac { 1 }{ 3 } }$ is:
The value of $\displaystyle\sum _{ n=0 }^{ 100 }{ { i }^{ n! } } $ equals ( where $i=\sqrt { -1 } $ ):
If $a ^ { 2 } + b ^ { 2 } = 1$, then $\dfrac { 1 + b + i a } { 1 + b - i a } = ?$
If ${(1+i)}^{2n}+{(1-i)}^{2n}=-{2}^{n+1}$ where, $i=\sqrt{-1}$ for all those $n$, which are
If $z + \frac{1}{z} = 2\cos {6^0}$, then ${z^{1000}} + \frac{1}{{{z^{1000}}}} + 1$ is equal to
The value of $( 1 + i ) ^ { 4 } + ( 1 - i ) ^ { 4 }$ is
For positive integers $n _1, n _2, $ the value of the expression $(1 + i)^{n _1} + (1 + i^3)^{n _1} + (1 + i^5)^{n _2} + (1 + i^7)^{n _2}$, where $i = \sqrt{-1}$ is a
If $\begin{vmatrix}6i & -3i & 1\4 & 3i & -1\20 & 3 & i\end{vmatrix} = x+ iy$, then
Let $\displaystyle \Delta =\left | \begin{matrix}a _{11} & a _{12} & a _{13}\a _{21} &a _{22} &a _{23} \a _{31} &a _{32} &a _{33} \end{matrix} \right |$ and $\displaystyle a _{pq}= i^{p+q}$ where $\displaystyle i= \sqrt{-1}.$ The value of $\displaystyle \Delta $ is
The sequence $S=i+2{ i }^{ 2 }+3{ i }^{ 3 }+.......$ upto 100 times simplifies to where $i=\sqrt { -1 } $.
Find the value of $\dfrac{i^6 + i^7 + i^8 + i^9}{i^2 + i^3}$
The value of the sum $\displaystyle \sum _{n=1}^{13}(i^n+i^{n+1})$, where $i=\sqrt {-1}$, equals
The value of $5\sqrt {-8}$ is
The value of $2\sqrt {-49}$ is equal to
The value of $\sqrt {-36} $ is
If $(i^{413})(i^x)=1$, then determine the one possible value of x.
Evaluate and write in standard form $(4-2i)(-3+3i)$, where ${i}^{2}=-1$.
If $i^{2} =-1$, then $i^{162}$ is equal to
If $i=\sqrt{-1}$, then select from the following having the greatest value.
Solve:
Find the least value of $n$ for which $\left (\dfrac {1 + i}{1 - i}\right )^{n} = 1$.
If $\dfrac { z+2i }{ z-2i } $ is purely imaginary then $\left| z \right| $ is
Simplify the following :
$\left(\dfrac{1 \, + \, i}{1 \, - \, i}\right)^{4n \, + \, 1}$
$\left(\sqrt[3]{3}+\left(3^\cfrac{5}{6}\right)i\right)^3$ is an integer where $i=\sqrt{-1}$. The value of the integer is equal to.
The value of $\sqrt{i}$ is
If ${ \left( \sqrt { 3 } -i \right) }^{ n }={ 2 }^{ n }, n\in Z$, then $n$ is multiple
For positive integers $n _1, n _2$ the value of the expression $(1 + i)^{n _1} + (1 + i^3)^{n _1} + (1 + i^5)^{n _2} + (1 + i^7)^{n _2} $, where $i = \sqrt{-1}$, is a real number if
What is the value of the sum
$\displaystyle \sum _{ n=2 }^{ 11 }{ \left( { i }^{ n }+{ i }^{ n+1 } \right) } $ where $i=\sqrt { -1 } $?