0

Powers of imaginary unit i - class-XII

Description: powers of imaginary unit i
Number of Questions: 47
Created by:
Tags: complex numbers maths complex numbers and quadratic equations complex numbers and linear inequations
Attempted 0/47 Correct 0 Score 0

Which  of the following is correct ?

  1. $2 + 3i > 1 + 4i$

  2. $2 + 2i > 3 + 3i$

  3. $5 + 8i > 5 + 7i$

  4. None of these


Correct Option: C
Explanation:

Option $A$

$2+3i>1+4i$
$2^2+3^2>1^2+4^2$
$4+9>1+16$
$13>17$

It is not correct.

Option $B$
$2+2i>3+3i$

$2^2+2^2>3^2+3^2$
$4+4>9+9$
$8>18$

It is not correct.


Option $C$
$5+8i>5+7i$

$5^2+^82>5^2+7^2$
$25+64>25+49$
$89>74$

It is correct.

Hence, this is the answer.

Find the value of $\begin{vmatrix} 2+i & 2-i \ 1+i & 1-i \end{vmatrix}$ if $i^2=-1$.

  1. A complex quantity

  2. real quantity

  3. $0$

  4. cannot be determined


Correct Option: A
Explanation:

$\left| \begin{matrix} 2+i & 2-i \ 1+i & 1-i \end{matrix} \right| \ =(2+i)(1-i)-(2+i)(1+i)\ =2-2i+i-{ i }^{ 2 }-2-2i-i-{ i }^{ 2 }\ =-4i+2$

So it is complex quantity

Find the value of $\dfrac{i^{4n+1}-i^{4n-1}}{2}$.

  1. $-1$

  2. $1$

  3. $-i$

  4. $i$


Correct Option: D
Explanation:
We have,
$\dfrac{i^{4n+1}-i^{4n-1}}{2}$
$=\dfrac{(i^{4})^{n}.i-(i^{4})^{n}.i^{-1}}{2}$
$=\dfrac{i-i^{-1}}{2}$ [ Since $i^2=1\Rightarrow i^4=1$]
$=\dfrac{i+i}{2}$ [ As $i^2=-1\Rightarrow i=-\dfrac{1}{i}$]
$=i$.

$i^{242}=$

  1. $i$

  2. $-i$

  3. $1$

  4. $-1$


Correct Option: D
Explanation:

$(i)^{242}$

$=(i^{2})^{121}$

$=(-1)^{121}$                              since $i=\sqrt{-1}$.
Hence
$(-1)^{121}=-1$
Thus
$i^{242}=-1$

$\displaystyle i+\frac{1}{i}=$

  1. $1$

  2. $-1$

  3. $0$

  4. $2i$


Correct Option: C
Explanation:

Let $Z= i+\dfrac{1}{i}$


Mutiplying numerator and denominator by i. We get,

          $=i+\dfrac{i}{i^{2}}$

          $=i+\dfrac{i}{-1} \quad \dots (i^2=-1)$

          $=i-i$

      $Z=0$

Hence, 

$i+\dfrac{1}{i}=0$.

Evaluate :

 $(-\sqrt{-1})^{4n+3}, n \in N$

  1. -$i$

  2. $i$

  3. $1$

  4. -$1$


Correct Option: B
Explanation:

$(-\sqrt{-1})^{4n+3} = (-i)^{4n+3}
= (-i)^{4n}(-i)^3
= {(-i)^4}^n(-i)^3
= 1 \times (-i)^3 = i$

$\displaystyle \left ( i \right )^{457}$

  1. $\displaystyle -1 $

  2. $\displaystyle -i $

  3. $\displaystyle i $

  4. $\displaystyle 1 $


Correct Option: C
Explanation:

The value of $(i)^{457} $

$=(i)^{456+1} $
$=(i)^{4\times 114}(i)$
$= 1\times i $
$= i \quad [\because i^{4n}=1]$

The smallest integer n such that $\displaystyle \left(\frac{1+i}{1-i}\right)^{n}= 1$ is

  1. 16

  2. 12

  3. 8

  4. 4


Correct Option: D
Explanation:

$\displaystyle \left ( \frac{1 + i}{1 - i} \right )^n = 1$         ${ \because -i = \displaystyle \Rightarrow \frac{1}{i}}$
$\displaystyle \Rightarrow\left ( \frac{1 + i}{\displaystyle 1 + \frac{1}{i}} \right )^n = 1$
$i^n = 1$
so min value of $n =4$

$\displaystyle \left ( \frac{1 + i}{1 - i} \right )^2 + \left(\frac{1 - i}{1 + i} \right )^2$ is equal to

  1. $2i$

  2. $-2i$

  3. $-2$

  4. $2$


Correct Option: C
Explanation:

$\left(\dfrac{1+i}{1-i}\right)^2+\left(\dfrac{1-i}{1+i}\right)^2=\left[\dfrac{(1+i)(1+i)}{(1-i)(1+i)}\right]^2+\left[\dfrac{(1-i)(1-i)}{(1+i)(1-i)}\right]^2$


$=\left[\dfrac{1+2i-1}{2}\right]^2+\left[\dfrac{1-2i-1}{2}\right]^2$

$=\dfrac{4i^2}{4}+\dfrac{4i^2}{4}=[-1]+[-1]=-2$

The value of $\sqrt {-1} $ is

  1. $1$

  2. $-1$

  3. $i$ $(iota)$

  4. none of these


Correct Option: C
Explanation:

$\sqrt {-1} = i$ $(iota)$

$i$ is used to represent an imaginary number.
So, option $C$ is correct.

The value of $-3\sqrt {-10}$ is equal to

  1. $-3\sqrt {10}$

  2. $3\sqrt {10}$

  3. $-3i\sqrt {10}$

  4. None of these


Correct Option: C
Explanation:

$-3\sqrt {-10}$ $= -3\sqrt {-1} \times \sqrt {10}$


$= -3 i \sqrt {10}$
So, option C is correct.

Find the value of $\displaystyle \left( 4+2i \right) \left( 4-2i \right) $ given that $\displaystyle { i }^{ 2 }=-1$. 

  1. $12$

  2. $20$

  3. $\displaystyle 16-4i$

  4. $\displaystyle 4+16i$

  5. $\displaystyle 12-16i$


Correct Option: B
Explanation:

After expanding, we get $(4+2i)(4-2i)=16+8i-8i-4i^4$

According to the question $i^2=-1$
$\Rightarrow 16-4i^4$
$\Rightarrow 16-4 ( -1)$
$\Rightarrow 16+4=20$

If $i^{2} = -1$, calculate the value of $3i^{2} + i^{3} - i^{4}$.

  1. $-4 - i$

  2. $-2 - i$

  3. $2 + i$

  4. $4 + i$

  5. $6 + 2i$


Correct Option: A
Explanation:

$i$ is an imaginary number whose value is $\sqrt { -1 } $

So, $i^2=-1$
$i^3=i^2*i=-1*i=-i$
$i^4=(i^2)^2={(-1)}^2=1$
So the value of $3i^2+i^3-i^4$ is
$\Rightarrow 3\times (-1)+(-i)-(1)$
$\Rightarrow -3-i-1=-4-i$

The value of the sum $\displaystyle \sum _{ n=1 }^{ 13 }{ \left( { i }^{ n }+{ i }^{ n+1 } \right)  }$. where $i=\sqrt { -1 }$, equals 

  1. $i$

  2. $i-1$

  3. $-i$

  4. $0$


Correct Option: B
Explanation:

Given:

$\displaystyle \sum _{n=1}^{13}(i^n+i^{n+1})$

So,
$\Rightarrow(i^1+i^{2})+(i^2+i^3)+(i^3+i^4)+........+(i^{13}+i^{14})$

We know that
$i^2=-1$
$i^3=-i$
$i^4=1$
$i^5=i$
$i^6=-1$
$i^7=-i$
$i^8=1$

Therefore,
$\Rightarrow(i-1)+(-1-i)+(-i+1)+........+(i-1)$

Same cycle upto $4^{th}$ term.

Therefore,

$\Rightarrow(i-1)+(-1-i)+(-i+1)+(1+i)+........+(i-1)$

So, all terms will cancel out with each other up to $12th$ term.

Therefore,
$\Rightarrow i-1$

Hence, this is the answer.

Evaluate: $i^{24} + \left(\dfrac{1}{i}\right)^{26}$

  1. $0$

  2. $1$

  3. $-1$

  4. $2$


Correct Option: A
Explanation:

$ i^{24} + (\cfrac{1}{i})^{26}$

$ i^4 = 1$
$= 1 + \cfrac{1}{i^2}$
$ = \cfrac{i^2 +1}{i^2}  = 0$  (As $i^2 = -1$)

$z _1$ and $z _2$ are two complex numbers such that $|z _1|= |z _2|$ and $arg (z _1)+arg(z _2)=\pi$, then $z _1$ is equal to

  1. $2\overline{z} _2$

  2. $\overline{z} _2$

  3. $-\overline{z} _2$

  4. None of these


Correct Option: A

When simplified the value of $[i^{57}-(1/i^{25})]$ is?

  1. $0$

  2. $2i$

  3. $-2i$

  4. $2$


Correct Option: B
Explanation:

${i}^{57}-(\cfrac{1}{{i}^{25}})$

${({i}^{4})}^{14}.i-\cfrac { 1 }{ { \left( { i }^{ 4 } \right)  }^{ 8 }.i } $
$\Rightarrow$ $i-\cfrac{1}{i}$
$\Rightarrow$ $i-\cfrac{i}{{i}^{2}}$
$\Rightarrow$ $i+i$
$=2i$

The value of $i^{n}+i^{n+1}+i^{n+3}, n \epsilon N$ is 

  1. $0$

  2. $1$

  3. $2$

  4. $none\ of\ these$


Correct Option: B

The value of ${ i }^{ \frac { 1 }{ 3 }  }$ is:

  1. $\frac { \sqrt { 3 } - i }{ 2 }$

  2. $\frac { \sqrt { 3 } + i }{ 2 }$

  3. $\frac { 1 + i\sqrt { 3 } }{ 2 }$

  4. $\frac { 1 - i\sqrt { 3 } }{ 2 }$


Correct Option: B

The value of $\displaystyle\sum _{ n=0 }^{ 100 }{ { i }^{ n! } } $ equals ( where $i=\sqrt { -1 } $  ):

  1. $-1$

  2. $i$

  3. $2i + 95$

  4. $96 + i$


Correct Option: D
Explanation:
$\sum _{0}^{n} i^{n!}=i^0+i^1+i^2+i^{1\times2\times3}+.....+ i^{1\times 2.....\times 100}$
We know that , $i^{4n}=1$ , $i^{4n+1}=i$ , $i^{4n+2}=-1$ , $i^{4n+3}=-i$
So starting from n=4 every number will be 1
So our sum shortens to $1+i+(-1)+(-1)+97=96+i$

If $a ^ { 2 } + b ^ { 2 } = 1$, then $\dfrac { 1 + b + i a } { 1 + b - i a } = ?$

  1. 1

  2. 2

  3. $b + i a$

  4. $a + i b$


Correct Option: C
Explanation:
$\dfrac{1+b+ia}{1+b-ia}\times\dfrac{b+ia}{b+ia}$

$=\dfrac{\left(1+b+ia\right)\times\left(b+ia\right)}{b+{b}^{2}-iab+ia+iab+{a}^{2}}$

$=\dfrac{\left(1+b+ia\right)\times\left(b+ia\right)}{1+b+ia}$ since ${a}^{2}+{b}^{2}=1$

$=b+ia$

If ${(1+i)}^{2n}+{(1-i)}^{2n}=-{2}^{n+1}$ where, $i=\sqrt{-1}$ for all those $n$, which are

  1. even

  2. odd

  3. multiple of $3$

  4. None of these


Correct Option: A
Explanation:
In $(1+i)^{2n}+(1-i)^{2n}$
$=\left\{(1+i)^{2}\right\}^{n}+\left\{(1-i)^{2}\right\}^n$
$=(1+i^{2}+2i) ^{n}+(1+i^{2}-2i) ^{n}$
$=(1-1+2\ i)^{n}+(1-1-2\ i) ^{n}$
$=2^{n}i^{2}+i^{2}(-2) ^n$
$=i^{2}(2^{2}+(-2) ^n)$
When $n=2$
$= i^{2}(2^{2}+2^{2})=-1 \cdot 2^{2+1}$
Hence, $’n’$ must be even

If $z + \frac{1}{z} = 2\cos {6^0}$, then ${z^{1000}} + \frac{1}{{{z^{1000}}}} + 1$ is equal to 

  1. 0

  2. 1

  3. -1

  4. 2


Correct Option: A
Explanation:

$z+\cfrac{1}{z}=2\cos {6}^{o}$

$z=\cos ]theta+i\sin ]theta$
$z+\cfrac{1}{z}=\cos \theta +i\sin\theta +\cos \theta -i\sin\theta $
$2\cos{6}^{o}=2\cos \theta $
$\theta ={6}^{o}$
${z}^{1000}+\cfrac{1}{{z}^{1000}}=\cos(1000\theta )+i\sin(1000\theta )+\cos (1000\theta )-i\sin (1000\theta )+1$
$=2\cos(1000\theta )+1$
$=2\cos({6000}^{o} )+1$
$=2\cos(5760+240)+1$
$2\cos({240}^{o})+1=2\cos({120}^{o})+1$
$=-2\cos 60+1-1+1=0$
$\therefore$ ${z}^{1000}+\cfrac{1}{{z}^{1000}}+1=0$

The value of $( 1 + i ) ^ { 4 } + ( 1 - i ) ^ { 4 }$ is

  1. $8$

  2. $8 i$

  3. $-8$

  4. $32$


Correct Option: C
Explanation:

$(1+i)^4+(1-i)^4$


$\Rightarrow$  $[(1+i)^2]^2+[(1-i)^2]^2$

We know, $(a+b)^2=a^2+2ab+b^2$ and $(a-b)^2=^2-2ab+b^2$

$\Rightarrow$  $[1+2i+i^2]^2+[1-2i+i^2]^2$      

$\Rightarrow$  $[1+2i-1]^2+[1-2i-1]^2$                       [ $i^2=-1$ ]

$\Rightarrow$  $(2i)^2+(-2i)^2$

$\Rightarrow$  $4i^2+4i^2$

$\Rightarrow$  $-4-4$

$\Rightarrow$  $-8$

$\therefore$   $(1+i)^4+(1-i)^4=-8$

For positive integers $n _1, n _2, $ the value of the expression $(1 + i)^{n _1} + (1 + i^3)^{n _1} + (1 + i^5)^{n _2} + (1 + i^7)^{n _2}$, where $i = \sqrt{-1}$ is a 

  1. real

  2. complex number

  3. $0$

  4. $i$


Correct Option: A

If $\begin{vmatrix}6i & -3i & 1\4 & 3i & -1\20 & 3 & i\end{vmatrix} = x+ iy$, then 

  1. $x =3, y = 0$

  2. $x =1, y = 3$

  3. $x =0, y = 3$

  4. $x =0, y = 0$


Correct Option: D
Explanation:

Given:-

       $ \begin{vmatrix} 6i & -3i & 1 \ 4 & 3i & -1 \ 20 & 3 & i \end{vmatrix}=x+iy$
To find value of $x$ and $ y$.
By solving the given diterment.
$ \begin{vmatrix} 6i & -3i & 1 \ 4 & 3i & -1 \ 20 & 3 & i \end{vmatrix}=6i\left[ 3i\left( i \right) -\left( 3 \right) \left( -1 \right)  \right] -\left( -3i \right) \left[ 4\left( i \right) -\left( 20 \right) \left( -1 \right)  \right] +1\left[ (4)\left( 3 \right) -\left( 20 \right) \left( 3i \right)  \right] $
$ 6i\left[ 3{ i }^{ 2 }+3 \right] +3i\left[ 4i+20 \right] +1\left[ 12-60i \right] $
 We know that $i=\sqrt { -1 }$ hence,$ { i }^{ 2 }=-1$
By substituting the value of ${ i }^{ 2 }$ we get
$ \begin{vmatrix} 6i & -3i & 1 \ 4 & 3i & -1 \ 20 & 3 & i \end{vmatrix}=6i\left[ -3+3 \right] +12{ i }^{ 2 }+60i+12-60i$
$=0+12(-1)+60i+12-60i$
$ =0$
 By comparing with given we get.
$ x+iy=0$
 If $x& y$ are real no. then the only possible solution
 for$ x+iy=0$ is
$ x=0$ and$ y=0$
 Hence the answer is $x=0\quad & \quad y=0$

Let $\displaystyle \Delta =\left | \begin{matrix}a _{11} & a _{12} & a _{13}\a _{21}  &a _{22}  &a _{23} \a _{31}  &a _{32}  &a _{33} \end{matrix} \right |$ and $\displaystyle a _{pq}= i^{p+q}$ where $\displaystyle i= \sqrt{-1}.$ The value of $\displaystyle \Delta $ is 

  1. real and positive

  2. real and negative

  3. $0$

  4. imaginary


Correct Option: C
Explanation:

$\triangle =\left| \begin{matrix} { a } _{ 11 }\quad \quad  & { a } _{ 12 }\quad \quad  & { a } _{ 13 } \ { a } _{ 21 }\quad \quad  & { a } _{ 22 }\quad \quad  & { a } _{ 23 } \ { a } _{ 31 }\quad \quad  & { a } _{ 32 }\quad \quad  & { a } _{ 33 } \end{matrix} \right| \quad & \quad { a } _{ pq }={ i }^{ p+q }$

$\Rightarrow \quad \triangle =\left| \begin{matrix} { i }^{ 2 }\quad \quad  & { i }^{ 3 }\quad \quad  & { i }^{ 4 } \ { i }^{ 3 }\quad \quad  & { i }^{ 4 }\quad \quad  & { i }^{ 5 } \ { i }^{ 4 }\quad \quad  & { i }^{ 5 }\quad \quad  & { i }^{ 6 } \end{matrix} \right| ={ i }^{ 2+3+4 }\left| \begin{matrix} { 1 }\quad \quad  & 1\quad \quad  & 1 \ { i }\quad \quad  & { i }\quad \quad  & { i } \ { i }^{ 2 }\quad \quad  & { i }^{ 2 }\quad \quad  & { i }^{ 2 } \end{matrix} \right| $


$=i\left| \begin{matrix} 1 & 1 & 1 \ i & i & i \ -1 & -1 & -1 \end{matrix} \right| =-i\left| \begin{matrix} 1 & 1 & 1 \ i & i & i \ 1 & 1 & 1 \end{matrix} \right| $

$\therefore \quad \triangle =0$
Hence, option 'C' is correct.

The sequence $S=i+2{ i }^{ 2 }+3{ i }^{ 3 }+.......$ upto 100 times simplifies to where $i=\sqrt { -1 } $.

  1. $50(1-i)$

  2. $25i$

  3. $25(1+i)$

  4. $100(1-i)$


Correct Option: A
Explanation:

$S=i+2i^2+3i^3\ldots+100i^{100}\S=i-2-3i+4+\ldots +100\S=i(1-3+5\ldots)+(-2+4\ldots)\S=50-50i=50(1-i) $

 Find the value of $\dfrac{i^6 + i^7 + i^8 + i^9}{i^2 + i^3}$

  1. $ 0
    $

  2. $ 1
    $

  3. $ -1
    $

  4. $ None.
    $


Correct Option: A
Explanation:

Let $Z=\dfrac{i^6+i^7+i^8+i^9}{i^2+i^3}$


$=\dfrac{(i^2)^3-(i^2)^3i+(i^4)^2+(i^4)^2i}{-1-i}$


We know that, $i^2=-1$    and     $i^4=1$

$=\dfrac{-1-i+1+i}{-1-i}$

$Z=0$


$\therefore \dfrac{i^6+i^7+i^8+i^9}{i^2+i^3}=0$

The value of the sum $\displaystyle \sum _{n=1}^{13}(i^n+i^{n+1})$, where $i=\sqrt {-1}$, equals

  1. i

  2. i-1

  3. -i

  4. 0


Correct Option: B
Explanation:

We have $i^2 = -1$
Thus, $\displaystyle \sum _{n=1}^{4}(i^n+i^{n+1}) = (i^1 + i^2) + (i^2 + i^3) + (i^3 + i^4) + (i^4 + i^5) = (i - 1) + (-1 - i) + (-i + 1) + (1 + i) = 0$
\Rightarrow $\displaystyle \sum _{n=1}^{12}(i^n+i^{n+1}) = 0$
Now, only remains is $i^{13} + i^{14} = i - 1$

The value of $5\sqrt {-8}$ is 

  1. $10i\sqrt {4}$

  2. $20i\sqrt {2}$

  3. $10i\sqrt {2}$

  4. None of these


Correct Option: C
Explanation:

$5\sqrt {-8}$ $= 5\sqrt {8}\times \sqrt {-1}$

$=5\ i \sqrt {8}$ $= 5\ i \sqrt {4\times 2}$

$= 10\ i \sqrt {2}$
So, option C is correct.

The value of $2\sqrt {-49}$ is equal to

  1. $-14$

  2. None of these

  3. $14$

  4. $14i$


Correct Option: D
Explanation:

$2\sqrt {-49}$ $= 2\sqrt {-1 \times 7\times 7}$

$= 2\times 7\sqrt {-1}$ $= 14i$
So, option D is correct.

The value of $\sqrt {-36} $ is

  1. $6$

  2. $-6$

  3. $6i$

  4. None of these


Correct Option: C
Explanation:

$\sqrt {-36}$ $=\sqrt {-1 \times 6 \times 6}$

$= 6\sqrt {-1}$   ...............$(\because \sqrt {-1} = i)$

$= 6i$
So, option $C$ is correct.

If $(i^{413})(i^x)=1$, then determine the one possible value of x.

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: D
Explanation:

${ i }^{ 413 }{ i }^{ x }=1$

$\Rightarrow \quad { i }^{ 413 }=1$
now, $\left( 413+x \right) $ must be a multiple of 4 becouse ${ i }^{ 4 }=1$
$\therefore \quad \left( 413+3 \right) $ is divisible by $4$
                                     hence $x=3$

Evaluate and write in standard form $(4-2i)(-3+3i)$, where ${i}^{2}=-1$.

  1. $6+18i$

  2. $-6+18i$

  3. $12+18i$

  4. $6-18i$


Correct Option: B
Explanation:

Consider $(4-2i)(-3+3i)$

$\Rightarrow (4-2i)(-3+3i)=4(-3)+4(3i)-2i(-3)-2i(3i)$
$=-12+12i+6i-6i^2$
$=-12+18i+6$       ..... (as $i^2=-1$)
$=-6+18i$

If $i^{2} =-1$, then $i^{162}$ is equal to

  1. $-i$

  2. $-1$

  3. $0$

  4. $1$

  5. $i$


Correct Option: B
Explanation:
${ i }^{ 162 } = { i }^{ 2\left( 81 \right)  }\\$
$ \therefore  { i }^{ 2\left( 81 \right)  } = { -1 }^{ 81 } = { \left( -1 \right)  }^{ 81 } = -1$

If $i=\sqrt{-1}$, then select from the following having the greatest value.

  1. $i^4+i^3+i^2+i$

  2. $i^8+i^6+i^4+i^2$

  3. $i^{12}+i^9+i^6+i^3$

  4. $i^{16}+i^{12}+i^8+i^4$

  5. $i^{20}+i^{15}+i^{10}+i^5$


Correct Option: D
Explanation:

Given, $i=\sqrt {-1}$

The value of option $A$ is $1-i-1+i = 0$
The value in option $B$ is $1-1+1-1 = 0$
The value in option $C$ is $1+i-1-i = 0$
The value in option $D$ is $1+1+1+1 = 4$
The value in option $E$ is $1-i-1+i = 0$
So, the correct answer is option $D$.

Solve:

$\left ( \dfrac{2i}{1 \, + \, i} \right )^2$

  1. $-i$

  2. $i$

  3. $2i$

  4. $1-i$


Correct Option: C
Explanation:

We have,

$ {{\left( \dfrac{2i}{1+i} \right)}^{2}} $

$ \Rightarrow \dfrac{4{{i}^{2}}}{1+{{i}^{2}}+2i} $

$ \Rightarrow \dfrac{-4}{1-1+2i}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \because {{i}^{2}}=-1 \right) $

$ \Rightarrow \dfrac{-4}{2i} $

$ \Rightarrow \dfrac{-2}{i} $

$ \Rightarrow \dfrac{-2i}{{{i}^{2}}} $

$ \Rightarrow \dfrac{-2i}{-1} $

$ \Rightarrow 2i $


Hence, this is the answer.

Find the least value of $n$ for which $\left (\dfrac {1 + i}{1 - i}\right )^{n} = 1$.

  1. $4$

  2. $3$

  3. $-4$

  4. $1$


Correct Option: A,C
Explanation:

$\because \dfrac {1 + i}{1 - i} = \dfrac {1 + i}{1 - i}\times \dfrac {1 + i}{1 + i}$
$= \dfrac {(1 + i)^{2}}{1 - i^{2}} = \dfrac {1 + 2i + i^{2}}{1 - i^{2}}$
$= \dfrac {1 + 2i - 1}{1 + 1} = i$
$\therefore \left (\dfrac {1 + i}{1 - i}\right )^{n} = 1$
$\Rightarrow i^{n} = 1$
Thus, $i^{n}$ will be positive integer, if $n = 4$.

If $\dfrac { z+2i }{ z-2i } $ is purely imaginary then $\left| z \right| $ is 

  1. $1$

  2. $2$

  3. $\dfrac { 1 }{ 2 } $

  4. $\dfrac { 1 }{ 4 } $


Correct Option: A
Explanation:
$\dfrac{z+2i}{z-2i}$

$=\dfrac{z+2i}{z-2i}\times \dfrac{z+2i}{z+2i}$

$=\dfrac{z^2+4z-4}{z^2-4}$

Let $z=x+iy$

$=\dfrac{(x+iy)^2+4(x+iy)-4}{(x+iy)^2-4}$

$=\dfrac{x^2-y^2+2ixy-4+4x+4iy}{(x+iy)^2-4}$

$=\dfrac{(x^2-y^2+4x-4)+i(2xy+4y)}{(x+iy)^2-4}$

z is purely imaginary. So, Re(z)=0

$\dfrac{x^2-y^2+4x-4}{(x+iy)^2-4}=0$

$\Rightarrow x^2-y^2+4x-4=0$

$\therefore x^2-y^2+4x=4$

The above equation represents the hyperbola on x-axis, with $(1,0)$

$\therefore z=1$

Simplify the following :


$\left(\dfrac{1 \, + \, i}{1 \, - \, i}\right)^{4n \, + \, 1}$

  1. $1$

  2. $i$

  3. $0$

  4. None of these


Correct Option: B
Explanation:

For $n$ is positive integer, $4n+1$ is an odd integer$(5,9,13,....)$


Now,


$\left(\dfrac{1+i}{1-i}\right)^{4n+1}$

$\implies \left(\dfrac{(1+i)(1+i)}{(1-i)(1+i)}\right)^{4n+1}$

$\implies \left(\dfrac{(1-1+2i}{1-(i^2)}\right)^{4n+1}$

$\implies \left(\dfrac{2i}{2}\right)^{4n+1}\implies (i)^{4n+1}=i$.................[putting $n=4,9,13.....$]

$\left(\sqrt[3]{3}+\left(3^\cfrac{5}{6}\right)i\right)^3$ is an integer where $i=\sqrt{-1}$. The value of the integer is equal to.

  1. $24$

  2. $-24$

  3. $-22$

  4. $-21$


Correct Option: B
Explanation:
$\rightarrow { \left( \sqrt [ 3 ]{ 3 } +{ 3 }^\cfrac{ 5}{6 }i \right)  }^{ 3 }=3{ \left( 1+\sqrt { 3 } i \right)  }^{ 3 }=3{ \left( 1+\sqrt { 3 } i \right)  }^{ 2 }\left( 1+\sqrt { 3 } i \right) $
$\rightarrow 3{ \left( 1+\sqrt { 3 } i \right)  }^{ 3 }=3\left( 1+3\sqrt { 3 } { i }^{ 3 }+3\sqrt { 3 } i\left( 1+\sqrt { 3 } i \right)  \right) $
$\rightarrow 3\left( 1-3\sqrt { 3 } i+3\sqrt { 3 } i-9 \right) $
$\rightarrow 3\left( -8 \right) =-24$

 The value of $\sqrt{i}$ is 

  1. $1-i$

  2. $1+i$

  3. $ \pm \left( {1 + i} \right)$

  4. $i-1$

  5. $\frac{{ \pm 1}}{{\sqrt 2 }}\left( {1 + i} \right)$


Correct Option: E
Explanation:
We can write a complex number in the form $2=(a, b)=a+ib$
$z=\sqrt{i}$
Thus
$i=z^2=a^2-b^2+2abi=(a^2-b^2, 2ab)$
$a^2-b^2=0$
$2ab=1$
$2a^2=1$
$a^2=\dfrac{1}{2}$
$a=\pm \dfrac{1}{\sqrt{2}}$
$\sqrt{i}=\dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}}=\pm \dfrac{1}{\sqrt{2}}(1+i)$.

If ${ \left( \sqrt { 3 } -i \right)  }^{ n }={ 2 }^{ n }, n\in Z$, then $n$ is multiple

  1. $6$

  2. $10$

  3. $9$

  4. $12$


Correct Option: A
Explanation:
$(\sqrt {3}-i)^{n}=2^{n}$
$\Rightarrow \quad\left(\dfrac {\sqrt {3}-i}{2}\right) ^{n}=1$
$\Rightarrow \quad i \left(\dfrac {-1}{2}-\dfrac {i\sqrt {3}}{2}\right) ^{n}=1$
$\therefore \quad i n^{2n}=1$
$\therefore \quad i=1$ and $n^{2n}=1$
$’n ’$ is multiple of $’3 ’$ and $’4 ’$ 
$\Rightarrow \quad’n ’$ is multiple of $’12 ’$

For positive integers $n _1, n _2$ the value of the expression $(1 + i)^{n _1} + (1 + i^3)^{n _1} + (1 + i^5)^{n _2} + (1 + i^7)^{n _2} $, where $i = \sqrt{-1}$, is a real number if

  1. $n _1 = n _2 + 1$

  2. $n _1 = n _2 - 1$

  3. $n _1 = n _2$

  4. $n _1 > 0, n _2 > 0$


Correct Option: D
Explanation:

$(1+i)^{n _{1}}+(1+i^{2})^{n _{2}}+(1+i^{5})^{n _{2}}+(1+i^{7})^{n _{2}}$
$=(1+i)^{n _{1}}+(1-i)^{n _{2}}+(1+i)^{n _{2}}+(1-i)^{n _{2}}$
$=2[1+:^{n _{1}}C _{2}i^{2}+:^{n _{1}}C _{4}i^{4}...]+2[1+:^{n _{2}}C _{2}i^{2}+:^{n _{2}}C _{4}i^{4}...]$
$=2[1+-:^{n _{1}}C _{2}+:^{n _{1}}C _{4}-...]+2[1-:^{n _{2}}C _{2}+:^{n _{2}}C _{4}-...]$
Hence
For all $n _{1}>0$ and $n _{2}>0$ the above expression yields real integral number.
Where $n _{1},n _{2}\epsilon N$.
Hence, option 'D' is correct.

What is the value of the sum
$\displaystyle \sum _{ n=2 }^{ 11 }{ \left( { i }^{ n }+{ i }^{ n+1 } \right)  } $ where $i=\sqrt { -1 } $?

  1. $i$

  2. $2i$

  3. $-2i$

  4. $1+i$


Correct Option: C
Explanation:

$\displaystyle \sum _{n = 1}^{11} (i^{n} + i^{n + 1}) i = \sqrt {-1}$

Now $i^{2} = -1, i^{3} = -i, i^{4} = 1, i^{5} = i$ after this values repeats
$i^{2} + i^{3} + i^{4} + i^{5} = 0$
$\therefore \displaystyle \sum _{n = 2}^{11} i^{n} = i^{11} + i^{12} = -i + 1$
$\therefore \displaystyle \sum _{n = 2}^{11} i^{n} + i^{n + 1} = -2i$.

- Hide questions