Order of operations - class-VII
Description: order of operations | |
Number of Questions: 43 | |
Created by: Prabha Kade | |
Tags: use of brackets numbers multiplication and division of algebraic expressions brackets place value, ordering and rounding maths substitution equations and simple functions |
Subtract $ - \frac{2}{3}{y^3}-\frac{2}{7}{y^2} - 5$ from $\frac{1}{3}{y^3} + \frac{5}{7}{y^2} - 2$, then the resultant value is .
If r and s are zeroes of the polynomial $t^2-4t+3$, then $\dfrac{1}{r}+\dfrac{1}{s}-2rs+\dfrac{14}{3}$ is equal to
State whether True or False.
Simplify $(a + b) (c -d) + (a- b) (c + d) + 2 (ac + bd)$
Simplify: $(x + y)(x^2 -xy + y^2)$
The simplified form of the expression given below is :$\dfrac{\dfrac{y^4-x^4}{x(x+y)}-\dfrac{y^3}{x}}{y^2-xy+x^2}$
In the equation $4x+y=10$, if the value of $x$ ins increased by $3$, then what would be the effect on the corresponding value of $y$
Evaluate $\sqrt {13+\sqrt {44+10^2}}$.
$x^2+y^2 =100$ find $x$ if $y=6$
If ${a}^{2}+{b}^{2}+{c}^{2}-ab-bc-ca=0$, then
If $\displaystyle b=6-\left [ \frac{4b+3}{2a-5} \right ]$, express a in terms of b.
Given $\displaystyle b=\frac{2a}{a-2}$ and $\displaystyle c=\frac{3b-4}{4b+3}$, express c in terms of a.
The value of $100 - { ( 7 $of $8 + 4 ) \div 5 } $ is
The value of $12\div \dfrac {1}{2}+0.5\times \dfrac {5}{2}-2$ is
Find the value of $\displaystyle \frac{2}{1+\frac{1}{1-\frac{1}{2}}}\times\frac{3}{\frac{5}{6}of\frac{3}{2}\div 1\frac{1}{4}}$.
If $a$ and $ b $ are any two real numbers with opposite signs, which of the following is the greatest?
What is the value of $((x^3-2)\div2^2)\times 4+16$?
Simplify: $3x[x^2+1]-[2x(x^2+x-1)+1]-x^2$
Find the value of the expression using BODMAS rule: $4-x^2\div x +(4\times-(\dfrac{2x^3}{x^2}))-3^2$.
Simplify using BODMAS rule: $[((100+x)x^4)\div x^2]\times 2 - (x+x^2-1)$.
Use the BODMAS rule to reduce the expression: $x-1[(x^2+x-2)(x^2-1^2)\div (x-1)^2]$.
Solve: $12-[5y+2x(y^2-2x+2)+6y-(y^2-1)]\times 2$.
Expand the expression using BODMAS rule: $x^2-x[(-x)(-2+x)]\div x+x^3-3x^2$
Reduce the following expression using BODMAS rule: $2y-1(y-y^2)+5y[(-2y)(y^2-1)]$
Simplify the expression: $4x^3[(3x-x^2)-1]+(x^2)[x+1]$.
Find the value of $5x[2x(x^2+x^3)-x^3]-4x^2\div x^2-12x$.
Use the BODMAS rule to simplify the expression:
Simplify the expression: $x^2\times(x-1)+[(2x+2)\times 4x]-1$
$24[x+1]-[x^2-24+x]-[2x^2]\div [x^2]$ using BODMAS rule to reduce the expression.
Solve the expression using BODMAS rule: $3x(x-2)+x(x^2\times 2x)-12x$
If $1\le a\le 2$, then $\sqrt { a-2\sqrt { a-1 } } -\sqrt { a+2\sqrt { a-1 } } =$.......
A number x is decreased by m% and some other number y is increased by m%. If both the results are equal, find m in terms of x and y. Also, find m if $\displaystyle 2x=3y$.
Make b the subject of formula : $\displaystyle a=\frac{1+b^2}{1-b^2}$.
$\frac{1}{3}(-2p+6q-9r)-\frac{1}{6}(-4p -18q +24r) = $
$ \frac{3}{4}(a+y) \left [ y + a - \frac{1}{3} \left ( y + a -\frac{1}{4}(a+y) \right )\right ]$
$-84\times 29+365=$?
In a class, there are 18 boys who are over 160 em tall. If these constitute three-fourths of the boys and the total number of boys is two-third of the total number of students in the class, what is the number of girls in the class?
$35+15\times 1.5=$?
$(800\div 64)\times (1296\div 36)=$?
$9+\cfrac { 3 }{ 4 } +7+\cfrac { 2 }{ 17 } -\left( 9+\cfrac { 1 }{ 15 } \right) =$?